Successfully System

Implementation Strategies
Mar 19th, 2021

Overview

e Understand the Concepts and Code Structure
e lterative Design Process
o Start Simple, then Build Up
e Modular Programming
e Tips on Debugging

Understand the Concept and Code Structure

e \What is the conceptual system you want to build?
o Understand the concept and verify your knowledge with some examples
o Rewrite the algorithm to some pseudocode, which can serve as the guide during actual
programming
e How is the system physically built?
o Read the skeleton code
o Map the algorithms/concepts to the given code structure
o Draw flow charts to understand of code flow

e How to use the system?

o Read the testing script to see how an external user will talk to our system and invoke its APIs
to accomplish desired tasks

How is the System Physically Built?

Understand the simulator’s implementation (see simulator.go)

e The role of the simulator
e Methods it use to interact with the server module

-

\

~

StartSnapshot(server_id)

Server 3

NotifySnapshotComplete
(server_id, snap_id)

4//”//////////

)

Simulator

CollectSnapshot ‘\\\\\\\\\\\\\\
(snap_id)

Server 2

How is the System Physically Built?

Understand the server’s implementation (see server.go)

e Methods it uses to communicate with each other HandlePacket
e Methods it uses to take a local snapshot (msg)
SendTokens () l
HandlePacket ‘////// StartSnapshot
(msg) /////’ (snap_id)
R l Server 3
Tick() StartSnapshot
— (snap_id) j f SendTokens() ...
Server 1 HandlePacket
(msg)
— ~
Simulator SendTokens () l
StartSnapshot
(snap_id)

Server 2

How to Use the System?

Understand how the external environment talks to our system
(see test_ common.go and snapshot_test.go)

J InjectEvents()
. e N
Topology Event File
File

Global Snapshot -

Server 3

-

Simulator

Server 2

Understand Concept and Code Structure

Summary

e Fully comprehend the algorithm

e Spend time to map your understanding of the concept to the starter code

o For both the system interface and individual modules, understand data is transferred
between and

e Charts and pseudocode can help A LOT!

lterative Design Process

Common design methodology in product
design, including software design

You will understand a little more about your
design when you start implementing it.

e Start with the base case (aka simplest

case)
o Example: one global snapshot at a time for
Assignment 2, distributed MapReduce
without any failure for Assignment 1.3

e Testregularly: should pass test case
for 2 nodes, then 3 nodes and ...
e Add one more complexity at a time

Iterative design process

p
Design p . Test
prototype prototype in
and/or laboratory
refine
features
Evaluate N "_Refine
prototype with prototype
users in diverse design
settings

Image Source from the Internet

lterative Design Process: Distributed Snapshot

Key ldea: Start Simple, then Build Up

When passing all non-concurrent tests

|

|

|

|

|

Testing |
| Final design with :
|

|

|

|

|

|

one snapshot at a
time

0 o“e\' © concurrent snapshots

I
I
I
I
I
I
: Simple design with
I
I
I
I
: Implementation

Modular Programming

lterative design means code change every time when refining the design

Modular programming

e Decompose the system into several independent modules/pieces
e Use a set of simple yet flexible APls for intra-module communication

Advantages of modular programming

e Makes it easier to reason about and debug each component of your system
e Requires minimal change in the code

10

Modular Programming

Phase 1: single snapshot at a time

Divide our server module into 3 pieces:

e Server State
e Execution logic

e Alayer of helper functions

Goal: write a layer of helper
functions

Server Module

|

Helper Functions API

|

Execution Logic

func HandlePacket(...) {
case TokenMessage:
// Do something
case MarkerMessage:

4

11

Modular Programming

Phase 2: concurrent snapshots

e Update the state variables and
helper functions’ implementation

e Keep the APl and execution logic
unmodified (almost)

Server Module

gl

|

Helper Function

|

e
Execution Logic Lile G“a“g

func HandlePacket(...) {
case TokenMessage:
// Do something
case MarkerMessage:

_— p

®

13

Tips on Debugging

e Start Early!
e Commit your code to Git often and early, and every time when you pass a
new test (enable comparative debugging later if necessary

e Have proper naming for variables and add comments in your code
o Easier for both you and others to read and debug your code

e Take advantage of Go Playground if you are not familiar with any Go specifics
e Prints are your friend!

15

https://play.golang.org/

Prints Are Your Friend ©

e Always verify the behavior of your program! Sometimes, it may not align with
your expectation because of some hidden bugs.

e Track execution using printing statements to understand the code flow
o Especially helpful in the early development of your design when the code complexity is not too

high
e Help catch errors in the early stage
e Example

o InAssignment 2, we can print out the server state before and after HandlePacket () and
StartSnapshot () that you implement after each tick of the simulator

16

