
Concurrency in Go
Feb 12th 2021

Go Resources

https://tour.golang.org/list

https://play.golang.org

https://gobyexample.com

https://tour.golang.org/list
https://play.golang.org
https://gobyexample.com/

Outline

Two Synchronization Mechanisms

Locks

Channels

MapReduce

A Case Study of WordCount

Two synchronization mechanisms

Locks - limit access to a critical section

Channels - pass information across processes using a queue

Example: Bank Account

Bob Alice
100

Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 110

b = b + 10

Write b = 120120

Example: Bank Account

Bob Alice
100

Read b = 100

Bank Account

b = b + 10

Write b = 110 110

Read b = 100

b = b + 10

Write b = 110110

What went wrong?

Changes to balance are not atomic

Critical section

Locks in Go

Read Write Locks in Go

Two Solutions to the Same Problem

Locks:

Multiple threads can reference same
memory location

Use lock to ensure only one thread is
updating it at any given time

Channels:

Data item initially stored in channel

Threads must request item from
channel, make updates, and return
item to channel

T1 T2 T3

0x1000: 100

T1 T2 T3

100
C

100

110

Go channels

Channels also allow us
to safely communicate
between goroutines

Go channels

Easy to express
asynchronous RPC

Awkward to express
this using locks

Bank Account Code (using channels)

Bank Account Code (using channels)

Bank Account Code (using channels)

Bank Account Code (using channels)

Bank Account Code (using channels)

Select statement

allows a goroutine to wait on multiple channels at once

}

Select statement

allows a goroutine to wait on multiple channels at once

}

Handle timeouts using

Handle timeouts using

Exercise: Implementing a mutex using channels

Exercise: Implementing a mutex using channels

Exercise: Implementing a mutex using channels

Exercise: Implementing a mutex using channels

Exercise: Implementing a mutex using channels

Mutexes vs. Semaphores

Mutexes allow 1 process to enter
critical section at a time. Allows at
most n concurrent accesses

Semaphores allow up to N processes
to enter critical section simultaneously

Study Rooms

1

2

3

7

6

5
4

Outline

Two synchronization mechanisms

Locks

Channels

MapReduce

A Case Study of WordCount

Application: WordCount

How much wood would a woodchuck chuck if a woodchuck could chuck wood?

WordCount

Application: WordCount

Locally: Tokenize and store words in a hash map

How do you parallelize this?

Split document by half

Build two hash maps, one for each half

Merge the two hash maps (by key)

How do you do this in a distributed environment?

Input document

Partition

Compute word counts locally

Compute word counts locally

Now …
How to merge results?

Don’t merge

Merging results computed locally

— requires additional computation for correct results

— what if data is too big? Too slow…

Partition key space among nodes in cluster (e.g. , , ...)

1. Assign a key space to each node
2. Split local results by the key spaces
3. Fetch and merge results that correspond to the node’s key space

Send everything to one node

Several options

Split local results by key space

All-to-all shuffle

Note the duplicates...

Merge results received from other nodes

MapReduce

Partition dataset into many chunks

Map stage: Each node processes one or more chunks locally

Reduce stage: Each node fetches and merges partial results from all other nodes

MapReduce Interface

map(key, value) -> list(<k’, v’>)

Apply function to (key, value) pair

Outputs list of intermediate pairs

reduce(key, list<value>) -> <k’, v’>

Applies aggregation function to values

Outputs result

MapReduce: WordCount

map(key, value):
// key = document name
// value = document contents
for each word w in value:

emit (w, 1)

reduce(key, values):
// key = the word
// values = number of occurrences of that word
count = sum(values)
emit (key, count)

46

map combine shuffle reduce

MapReduce: WordCount

Why is this hard?

Failure is common

Even if each machine is available p = 99.999% of the time, a datacenter with
n = 100,000 machines still encounters failures of the time

Data skew causes unbalanced performance across cluster

Problems occur at scale

Hard to debug!

2004

MapReduce

2007 2011 2012 2015

Dryad

Assignment 1.2 is due 2/16

Assignment 1.3 is due 2/18

Sequential MapReduce

Master

Map Phase

Map Task 0

Map Task N-1

...

Reduce Phase

Reduce Task 0

Reduce Task K-1

...
Merge

Distributed MapReduce

Master

Map Phase

Map Task 0

Map Task N-1

...

Reduce Phase

Reduce Task 0

Reduce Task K-1

...
Merge

