
COS418 Precept 1
Feb 5th 2021

Go Resources

Go tutorial: https://tour.golang.org/list

Go Playground: https://play.golang.org

Basic syntax code in playground: https://tinyurl.com/y7rdgqj3

https://tour.golang.org/list
https://play.golang.org
https://tinyurl.com/y7rdgqj3

Agenda for Today

● Go Basics
○ Program Structure
○ Variables
○ Functions
○ Loops
○ Composite Data Types
○ OOP in Go

● Exercise Time

// All files start with a package declaration
package main

// Import statements, one package on each line
import (
 "errors"
 "fmt"
)

// Main method will be called when the Go
executable is run
func main() {
 fmt.Println("Hello world!")
 basic()
 add(1, 2)
 divide(3, 4)
 loops()
 slices()
 maps()
 sharks()
}

Program Structure

A basic Go program contains
❏ Package specification: serves as a

separate namespace, like modules or
libraries in other languages

❏ Import other packages
❏ Package-level declarations: var, func,

const, type

// Declare a package-level variable
var msg string = “Hello World”

// Function declaration
func basic() {
 // Declare x as a variable, initialized to 0
 var x int
 // Declare y as a variable, initialized to 2
 var y int = 2
 // Declare z as a variable, initialized to 4
 // This syntax can only be used in a function
 z := 4

 // Assign values to variables
 x = 1
 y = 2
 z = x + 2 * y + 3

 // Print the variables; just use %v for most types
 fmt.Printf("x = %v, y = %v, z = %v\n", x, y, z)
 // Print the package-level string variable
 fmt.Println(msg)
}

Variables
● Variable Declaration

○ The General form
var name type = expression

“= expression” may be omitted. The
variable will take zero value for the
type, e.g 0 for numbers, false for
boolean, “” for strings, and nil for the
rest

○ Short Variable Declaration
name := expression

Only for local variables within a
function

Note: Keep in mind := is a declaration,
whereas = is an assignment

// Function declaration; takes in 2 ints and outputs
an int
func add(x, y int) int {
 return x + y
}

// Function that returns two things; error is nil if
successful
func divide(x, y int) (float64, error) {
 if y == 0 {
 return 0.0, errors.New("Divide by zero")
 }
 // Cast x and y to float64 before dividing
 return float64(x) / float64(y), nil
}

Functions

● Function Declaration
○ The General Form:

func name (parameter-list) (result-list)
{

body
}
Named functions are declared only at
the package level.

// squares() returns an anonymous function
// that itself returns the next square number each
time it is called
func squares() func() int {
 var x int
 return func() int {

x++
return x*x

 }
}

func main() {
 // Assign a function variable to func squares()
 f := squares()
 fmt.Println(f()) // “1”
 fmt.Println(f()) // “4”
 fmt.Println(f()) // “9”
}

Functions

● Anonymous Functions
○ Define such a function at its

point of use
○ Declare without a name

following the func keyword

func loops() {
 // For loop
 for i := 0; i < 10; i++ {
 fmt.Print(".")
 }
 // While loop
 sum := 1
 for sum < 1000 {
 sum *= 2
 }
 fmt.Printf("The sum is %v\n", sum)
}

Loops

● In Go, while loops are represented via for
loops

func slices() {
 slice := []int{1, 2, 3, 4, 5, 6, 7, 8}
 fmt.Println(slice)
 fmt.Println(slice[2:5]) // 3, 4, 5
 fmt.Println(slice[5:]) // 6, 7, 8
 fmt.Println(slice[:3]) // 1, 2, 3

 slice2 := make([]string, 3)
 slice2[0] = "tic"
 slice2[1] = "tac"
 slice2[2] = "toe"
 fmt.Println(slice2)
 slice2 = append(slice2, "tom")
 slice2 = append(slice2, "radar")
 fmt.Println(slice2)
 for index, value := range slice2 {
 fmt.Printf("%v: %v\n", index, value)
 }
 fmt.Printf("Slice length = %v\n",
len(slice2))
}

Composite Data Types

● Composite types are based on basic data
types (e.g integers, floating point
numbers, strings, and booleans). In Go,
some common composite types are:
○ Array: fixed-length, elements of

same type
○ Slice: variable-length, elements of

same type
○ Map: hash table of key value pairs
○ Struct: contain arbitrary fields and

types

func maps() {
 // Declare a map whose keys have type string, and values have type int
 myMap := make(map[string]int)
 myMap["yellow"] = 1
 myMap["magic"] = 2
 myMap["amsterdam"] = 3
 fmt.Println(myMap)
 myMap["magic"] = 100
 delete(myMap, "amsterdam")
 fmt.Println(myMap)
 fmt.Printf("Map size = %v\n", len(myMap))
}

Composite Data Types: Map

Object-Oriented Programming (OOP) in Go

● Go also provides programmers with an
OOP paradigm. We can view:
○ Object: a value or variable that has

methods
○ Method: a function associated with

a particular type

● Methods in Go
○ Method Declaration

Similar to function declaration, but
add an extra parameter between
func and name. This will attach the
function to the type of the
parameter.

○ Example

import “math”
// Declare a struct named Point with x, y positions
type Point struct { X, Y float64}

// Implement a method that find Hypotenuse distance
between one Point and another
func (p Point) Distance(q Point) float64 {
 return math.Hypot(q.X - p.X, q.Y - p.Y)
}

// standard function
func Distance(p Point, q Point) float64 {
 return math.Hypot(q.X - p.X, q.Y - p.Y)
}

func main() {
 p := Point{1, 2}
 q := Point{4, 6}
 fmt.Println(p.Distance(q)) // “5” method call
 fmt.Println(Distance(p, q)) // “5” function call
}

Exercise Time

// Object oriented programming
// Convention: capitalize first letter of public fields
type Shark struct {
 Name string
 Age int
}

// Declare a public method
// This is called a receiver method
func (s *Shark) Bite() {
 fmt.Printf("%v says CHOMP!\n", s.Name)
}

// Because functions in Go are pass by value
// (as opposed to pass by reference), receiver
// methods generally take in pointers to the
// object instead of the object itself.
func (s *Shark) ChangeName(newName string) {
 s.Name = newName
}

// Receiver methods can take in other objects as well
func (s *Shark) Greet(s2 *Shark) {
 if (s.Age < s2.Age) {
 fmt.Printf("%v says your majesty\n",
s.Name)
 } else {
 fmt.Printf("%v says yo what's up %v\n",
 s.Name, s2.Name)
 }
}

func sharks() {
 shark1 := Shark{"Bruce", 32}
 shark2 := Shark{"Sharkira", 40}
 shark1.Bite()
 shark1.ChangeName("Lee")
 shark1.Greet(&shark2) // pass in pointer
 shark2.Greet(&shark1)
}

Sharks and Their Methods
Output:
Bruce says CHOMP!
Lee says your majesty
Sharkira says yo what's up Lee

// Launch n goroutines, each printing a number
// Note how the numbers are not printed in order
func goroutines() {
 for i := 0; i < 10; i++ {
 // Print the number asynchronously
 go fmt.Printf("Printing %v in a goroutine\n", i)
 }
 // At this point the numbers may not have been printed yet
 fmt.Println("Launched the goroutines")
}

Go Routines
Possible Output:

Printing 4 in a goroutine
Printing 8 in a goroutine
Printing 9 in a goroutine
Printing 0 in a goroutine
Printing 1 in a goroutine
Printing 6 in a goroutine
Printing 2 in a goroutine
Printing 3 in a goroutine
Launched the goroutines

// Channels are a way to pass messages across goroutines
func channels() {
 ch := make(chan int)
 // Launch a goroutine using an anonymous function
 go func() {
 i := 1
 for {
 // This line blocks until someone
 // consumes from the channel
 ch <- i * i
 i++
 }
 }()
 // Extract first 10 squared numbers from the channel
 for i := 0; i < 10; i++ {
 // This line blocks until someone sends into the channel
 fmt.Printf("The next squared number is %v\n", <-ch)
 }
}

(Unbuffered) Channels

Output:

The next squared number is 1
The next squared number is 4
The next squared number is 9
The next squared number is 16
The next squared number is 25
The next squared number is 36
The next squared number is 49
The next squared number is 64
The next squared number is 81
The next squared number is 100

// Buffered channels are like channels except:
// 1. Sending only blocks when the channel is full
// 2. Receiving only blocks when the channel is empty
func bufferedChannels() {
 ch := make(chan int, 3)
 ch <- 1
 ch <- 2
 ch <- 3
 // Buffer is now full; sending any new messages will block
 // Instead let's just consume from the channel
 for i := 0; i < 3; i++ {
 fmt.Printf("Consuming %v from channel\n", <-ch)
 }
 // Buffer is now empty; consuming from channel will block
}

Buffered Channels
Output:

Consuming 1 from channel
Consuming 2 from channel
Consuming 3 from channel

