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1. Peer-to-Peer Systems
– What, why, and the core challenge
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Today



• A distributed system architecture:
– No centralized control
– Nodes are roughly symmetric in function

• Large number of unreliable nodes
4

What is a Peer-to-Peer (P2P) system?
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Node Node
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Successful adoption in some niche areas

1. Client-to-client (legal, illegal) file sharing
1. Napster (1990s), Gnutella, BitTorrent, etc.

2. Digital currency: no natural single owner (Bitcoin)

3. Voice/video telephony: user to user anyway (Skype in old days)
– Issues: Privacy and control
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P2P adoption



• High capacity for services through parallelism and scalability:
– More disks, network connections, CPUs, etc. as peers join
– Data are divided and duplicated, accessible from multiple peers concurrently

• Absence of a centralized server may mean:
– Less chance of service overload as load increases
– Easier deployment
– A single failure won’t wreck the whole system (no single point of failure)
– System as a whole is harder to attack
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Why might P2P be a win?
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The lookup problem: locate the data

N1

N2 N3

N6N5

Publisher (N4)

N7

?Internet

put(“Pacific Rim.mp4”, 
[content])

get(“Pacific Rim.mp4”)
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Centralized lookup (Napster)

N1

N2 N3

N6N5

Publisher (N4)

N7

SetLoc(“Pacific Rim.mp4”, 
IP address of N4)

Lookup(“Pacific 
Rim.mp4”)DB

key=“Pacific Rim.mp4”, 
value=[content]

Simple, but O(N) state and a 
single point of failure



9

Flooded queries (original Gnutella)

N1

N2 N3

N6N5

Publisher (N4)

N7

Lookup(“Pacific 
Rim.mp4”)

key=“Star Wars.mov”, 
value=[content]

Robust, but O(N = number of peers) 
messages per lookup
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Tradeoffs in distributed systems

# msgs

# states

Napster
Many states

Good performance
Single PoF

Gnutella

Nearly no states
Many msgs
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Tradeoffs in distributed systems

# msgs

# states

Napster
Many states

Good performance
Single PoF

Gnutella

Nearly no states
Many msgs

Ideal
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Tradeoffs in distributed systems

# msgs

# states

Napster
Many states

Good performance
Single PoF

Gnutella

Nearly no states
Many msgs

DHT
(Chord)

msgs < Gnutella
states < Napster



1. Peer-to-Peer Systems

2. Distributed Hash Tables (DHT)

3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P
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Today
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What is a DHT (and why)?
• Distributed Hash Table: an abstraction of hash table in a distributed setting
key = hash(data)
lookup(key) à IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) à data

• Partitioning data in large-scale distributed systems
– Tuples in a global database engine
– Data blocks in a global file system
– Files in a P2P file-sharing system
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Cooperative storage with a DHT

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

user user user….
upload download

System

App



• Decentralized: no central authority

• Scalable: low network traffic overhead 

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join
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DHT is expected to be



1. Peer-to-Peer Systems

2. Distributed Hash Tables (DHT)

3. The Chord Lookup Service
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Today



• Hashed values (integers) using the same hash function
– Key identifier = SHA-1(key)
– Node identifier = SHA-1(IP address)

• How does Chord partition data?
– i.e., map key IDs to node IDs

• Why hash key and address?
– Uniformly distributed in the ID space
– Hashed key à load balancing; hashed address à independent failure
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Chord identifiers
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Consistent hashing [Karger ‘97] – data partition

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Identifiers/key space
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Consistent hashing [Karger ‘97] – data partition

Key is stored at its successor: node with next-higher ID

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1 

Stores keys 2, 3 Stores keys 4, 5 

Stores key 6

Stores key 7, 0

Identifiers/key space
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Consistent hashing [Karger ‘97] – basic lookup

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1 

Stores keys 2, 3 Stores keys 4, 5 

Stores key 6

Stores key 7, 0

Key 1 ?

At Node 1

Look up key 1

Successor 
pointer

O(N) messages and hops!

Identifiers/key space
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Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

Separators

Key ranges

Successors 
of separators

Identifiers/key space
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Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1
O(logN) messages 

and hops!

Node 1



• A binary lookup tree rooted at every node  
– Threaded through other nodes' finger tables

• Better than arranging nodes in a single tree
– Every node acts as a root

• So there's no root hotspot
• No single point of failure
• But a lot more state in total
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Implication of finger tables



• Interface: lookup(key) ® IP address

• Efficient: O(log N) messages per lookup
– N is the total number of nodes (peers)

• Scalable: O(log N) state per node

• Robust: survives massive failures
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Chord lookup algorithm properties



28

Chord – node joining

3-bit
ID space

0
1
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4
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7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Contact node

Lookup id 2Identifiers/key space
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Chord – node joining

3-bit
ID space

0
1
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7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your 
successor = 3Identifiers/key space
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Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your 
successor = 3

Moves key 2 to node 2

Identifiers/key space
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Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Periodic stabalization messages 
from each node to its successor 

maintain node positions

Identifiers/key space
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Chord – node joining

3-bit
ID space

0
1
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3
4
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7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes
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Chord – node joining

3-bit
ID space
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Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes
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Chord – node joining

3-bit
ID space
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Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining
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Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes
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Chord – node joining

3-bit
ID space

0
1
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4
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Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes
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Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1



37

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1
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Chord – failures and successor list

3-bit
ID space

0
1
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3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

Points to successor
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Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

Points to successor

Succ. of id 7
(Succ. Of node 6)
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Chord – failures and successor list

3-bit
ID space

0
1
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3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0,1

Look up key 1

r-nearest successors
(r = logN)

Points to successor
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Chord – failures and successor list

3-bit
ID space

0
1
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3
4

5
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7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

What if look 
up key 7?

r-nearest successors
(r = logN)
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DHash replicates blocks at r successors

3-bit
ID space

0
1
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3
4
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7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

What if look 
up key 7?

r-nearest successors
(r = logN)

Key 7

Key 7

“Adjacent” nodes in 
the ring may be far away 

in the network
à Independent failures



1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHT, P2P
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Today



Why don’t all services use P2P?

1. High latency and limited bandwidth between peers 
(vs. intra/inter-datacenter, client-server model)

1. 1 M nodes = 20 hops; 50 ms / hop gives 1 sec lookup latency

2. User computers are less reliable than managed servers

3. Lack of trust in peers’ correct behavior
– Securing DHT routing hard, unsolved in practice
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• Seem promising for finding data in large P2P systems
• Decentralization seems good for load, fault tolerance  

• But: the security problems are difficult
• But: churn is a problem, particularly if log(n) is big

• DHTs have not had the hoped-for impact
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DHTs in retrospective



• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used today in Amazon 

Dynamo and other systems

• Replication for high availability, efficient recovery

• Incremental scalability
– Peers join with capacity, CPU, network, etc. 

• Self-management: minimal configuration
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What DHTs got right


