
Peer-to-Peer Systems and
Distributed Hash Tables

COS 418: Distributed Systems
Lecture 9

Haonan Lu
[Credit: Slides Adapted from Mike Freedman, Wyatt Lloyd, Kyle Jamieson and Daniel Suo]

2

Distributed Application Architecture

client

Server
Client

Ask for page

Provide page

www.princeton.edu

client

client

Client-Server

Peer

Peer

Peer

Peer

Ask
for

Provide
Luca.mov

Nobody.mov

Peer-to-Peer

This lecture

1. Peer-to-Peer Systems
– What, why, and the core challenge

3

Today

• A distributed system architecture:
– No centralized control
– Nodes are roughly symmetric in function

• Large number of unreliable nodes
4

What is a Peer-to-Peer (P2P) system?
Node

Node

Node Node

Node

Internet

Successful adoption in some niche areas

1. Client-to-client (legal, illegal) file sharing
1. Napster (1990s), Gnutella, BitTorrent, etc.

2. Digital currency: no natural single owner (Bitcoin)

3. Voice/video telephony: user to user anyway (Skype in old days)
– Issues: Privacy and control

5

P2P adoption

• High capacity for services through parallelism and scalability:
– More disks, network connections, CPUs, etc. as peers join
– Data are divided and duplicated, accessible from multiple peers concurrently

• Absence of a centralized server may mean:
– Less chance of service overload as load increases
– Easier deployment
– A single failure won’t wreck the whole system (no single point of failure)
– System as a whole is harder to attack

6

Why might P2P be a win?

7

The lookup problem: locate the data

N1

N2 N3

N6N5

Publisher (N4)

N7

?Internet

put(“Pacific Rim.mp4”,
[content])

get(“Pacific Rim.mp4”)

8

Centralized lookup (Napster)

N1

N2 N3

N6N5

Publisher (N4)

N7

SetLoc(“Pacific Rim.mp4”,
IP address of N4)

Lookup(“Pacific
Rim.mp4”)DB

key=“Pacific Rim.mp4”,
value=[content]

Simple, but O(N) state and a
single point of failure

9

Flooded queries (original Gnutella)

N1

N2 N3

N6N5

Publisher (N4)

N7

Lookup(“Pacific
Rim.mp4”)

key=“Star Wars.mov”,
value=[content]

Robust, but O(N = number of peers)
messages per lookup

10

Tradeoffs in distributed systems

msgs

states

Napster
Many states

Good performance
Single PoF

Gnutella

Nearly no states
Many msgs

11

Tradeoffs in distributed systems

msgs

states

Napster
Many states

Good performance
Single PoF

Gnutella

Nearly no states
Many msgs

Ideal

12

Tradeoffs in distributed systems

msgs

states

Napster
Many states

Good performance
Single PoF

Gnutella

Nearly no states
Many msgs

DHT
(Chord)

msgs < Gnutella
states < Napster

1. Peer-to-Peer Systems

2. Distributed Hash Tables (DHT)

3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P

13

Today

14

What is a DHT (and why)?
• Distributed Hash Table: an abstraction of hash table in a distributed setting
key = hash(data)
lookup(key) à IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) à data

• Partitioning data in large-scale distributed systems
– Tuples in a global database engine
– Data blocks in a global file system
– Files in a P2P file-sharing system

15

Cooperative storage with a DHT

Distributed hash table

Distributed application
get (key) data

node node node….

put(key, data)

Lookup service
lookup(key) node IP address

(DHash)

(Chord)

user user user….
upload download

System

App

• Decentralized: no central authority

• Scalable: low network traffic overhead

• Efficient: find items quickly (latency)

• Dynamic: nodes fail, new nodes join

16

DHT is expected to be

1. Peer-to-Peer Systems

2. Distributed Hash Tables (DHT)

3. The Chord Lookup Service

17

Today

• Hashed values (integers) using the same hash function
– Key identifier = SHA-1(key)
– Node identifier = SHA-1(IP address)

• How does Chord partition data?
– i.e., map key IDs to node IDs

• Why hash key and address?
– Uniformly distributed in the ID space
– Hashed key à load balancing; hashed address à independent failure

18

Chord identifiers

19

Consistent hashing [Karger ‘97] – data partition

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Identifiers/key space

20

Consistent hashing [Karger ‘97] – data partition

Key is stored at its successor: node with next-higher ID

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space

21

Consistent hashing [Karger ‘97] – basic lookup

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Key 1 ?

At Node 1

Look up key 1

Successor
pointer

O(N) messages and hops!

Identifiers/key space

23

Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

Separators

Key ranges

Successors
of separators

Identifiers/key space

24

Chord – finger tables

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

Each node keeps m states
Key space à m ranges via
(N+2k-1) mod 2m, 1<=k<=m

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1
O(logN) messages

and hops!

Node 1

• A binary lookup tree rooted at every node
– Threaded through other nodes' finger tables

• Better than arranging nodes in a single tree
– Every node acts as a root

• So there's no root hotspot
• No single point of failure
• But a lot more state in total

26

Implication of finger tables

• Interface: lookup(key) ® IP address

• Efficient: O(log N) messages per lookup
– N is the total number of nodes (peers)

• Scalable: O(log N) state per node

• Robust: survives massive failures

27

Chord lookup algorithm properties

28

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Contact node

Lookup id 2Identifiers/key space

29

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your
successor = 3Identifiers/key space

30

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Your
successor = 3

Moves key 2 to node 2

Identifiers/key space

31

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Periodic stabalization messages
from each node to its successor

maintain node positions

Identifiers/key space

32

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes

33

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes

34

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes

35

Chord – node joining

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node
Node 2 is joining

Points to successor
Points to predecessor

Identifiers/key space

*The pseudocode comes from Rodrigo Fonseca’s lecture notes

36

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

37

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

38

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

Points to successor

39

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0

Look up key 1

Points to successor

Succ. of id 7
(Succ. Of node 6)

40

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

2, [2,3), node 3
3, [3,5), node 3
5, [5,1), node 5

1, [1,2), node 1
2, [2,4), node 3
4, [4,0), node 5

4, [4,5), node 5
5, [5,7), node 5
7, [7,3), node 0,1

Look up key 1

r-nearest successors
(r = logN)

Points to successor

41

Chord – failures and successor list

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

What if look
up key 7?

r-nearest successors
(r = logN)

42

DHash replicates blocks at r successors

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Identifiers/key space
Node

What if look
up key 7?

r-nearest successors
(r = logN)

Key 7

Key 7

“Adjacent” nodes in
the ring may be far away

in the network
à Independent failures

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHT, P2P

43

Today

Why don’t all services use P2P?

1. High latency and limited bandwidth between peers
(vs. intra/inter-datacenter, client-server model)

1. 1 M nodes = 20 hops; 50 ms / hop gives 1 sec lookup latency

2. User computers are less reliable than managed servers

3. Lack of trust in peers’ correct behavior
– Securing DHT routing hard, unsolved in practice

44

• Seem promising for finding data in large P2P systems
• Decentralization seems good for load, fault tolerance

• But: the security problems are difficult
• But: churn is a problem, particularly if log(n) is big

• DHTs have not had the hoped-for impact

45

DHTs in retrospective

• Consistent hashing
– Elegant way to divide a workload across machines
– Very useful in clusters: actively used today in Amazon

Dynamo and other systems

• Replication for high availability, efficient recovery

• Incremental scalability
– Peers join with capacity, CPU, network, etc.

• Self-management: minimal configuration

46

What DHTs got right

