Time 2

COS 418: Distributed Systems Lecture 6

Wyatt Lloyd

Motivation: Multi-site database replication

- A New York-based bank wants to make its transaction ledger database resilient to whole-site failures
- Replicate the database, keep one copy in sf, one in nyc

The consequences of concurrent updates

- Replicate the database, keep one copy in sf, one in nyc
 - Client sends reads to the nearest copy
 - Client sends update to both copies

Totally-Ordered Multicast

Goal: All sites apply updates in (same) Lamport clock order

- Client sends update to one replica site j
 - Replica assigns it Lamport timestamp C_i. j
- Key idea: Place events into a sorted local queue
 - Sorted by increasing Lamport timestamps

Example: P1's local queue:

 \leftarrow Timestamps

Totally-Ordered Multicast (Almost correct)

- 1. On receiving an update from client, broadcast to others (including yourself)
- 2. On receiving an update from replica:
 - a) Add it to your local queue
 - b) Broadcast an acknowledgement message to every replica (including yourself)
- 3. On receiving an acknowledgement:
 - Mark corresponding update acknowledged in your queue
- 4. Remove and process updates <u>everyone</u> has ack'ed from <u>head</u> of queue

Totally-Ordered Multicast (Almost correct)

Totally-Ordered Multicast (Correct version)

- 1. On receiving an update from client, broadcast to others (including yourself)
- 2. On receiving or processing an update:
 - a) Add it to your local queue, if received update
 - b) Broadcast an acknowledgement message to every replica (including yourself) only from head of queue
- 3. On receiving an acknowledgement:
 - Mark corresponding update acknowledged in your queue
- 4. Remove and process updates <u>everyone</u> has ack'ed from <u>head</u> of queue

Totally-Ordered Multicast (Correct version)

So, are we done?

- Does totally-ordered multicast solve the problem of multi-site replication in general?
- Not by a long shot!
- 1. Our protocol assumed:
 - No node failures
 - No message loss
 - No message corruption
- 2. All to all communication does not scale
- 3. Waits forever for message delays (performance?)

Take-away points: Lamport clocks

- Can totally-order events in a distributed system: that's useful!
 - We saw an application of Lamport clocks for totally-ordered multicast
- But: while by construction, $a \rightarrow b$ implies C(a) < C(b),
 - The converse is not necessarily true:
 - C(a) < C(b) does not imply a \rightarrow b (possibly, a || b)

Can't use Lamport timestamps to infer causal relationships between events

Lamport Clocks Review

Q: $a \rightarrow b$ => LC(a) < LC(b)

Q: LC(a) < LC(b) => b -/-> a ($a \rightarrow b$ or $a \parallel b$)

 $Q: a \parallel b => nothing$

Lamport Clocks and Causality

- Lamport clock timestamps do not capture causality
- Given two timestamps C(a) and C(z), want to know whether there's a chain of events linking them:

$$a \rightarrow b \rightarrow \dots \rightarrow y \rightarrow z$$

Vector clock: Introduction

- One integer can't order events in more than one process
- So, a Vector Clock (VC) is a vector of integers, one entry for each process in the entire distributed system
 - Label event e with VC(e) = $[c_1, c_2, ..., c_n]$
 - Each entry c_k is a count of events in process k that causally precede e

Vector clock: Update rules

• Initially, all vectors are [0, 0, ..., 0]

• Two update rules:

- 1. For each local event on process i, increment local entry c_i
- 2. If process j receives message with vector $[d_1, d_2, ..., d_n]$:
 - Set each local entry c_k = max{c_k, d_k}
 - Increment local entry c_j

Vector clock: Example

• All processes' VCs start at [0, 0, 0]

Applying local update rule

- Applying message rule
 - Local vector clock piggybacks on inter-process messages

Physical time \downarrow

Comparing vector timestamps

- Rule for comparing vector timestamps:
 - V(a) = V(b) when $a_k = b_k$ for all k
 - V(a) < V(b) when $a_k \le b_k$ for all k and V(a) \ne V(b)
- Concurrency:
 - V(a) \parallel V(b) if $a_i < b_i$ and $a_j > b_j$, some i, j

Vector clocks capture causality

- V(w) < V(z) then there is a chain of events linked by Happens-Before (→) between a and z
- V(a) || V(w) then there is no such chain of events between a and w

Comparing vector timestamps

- Rule for comparing vector timestamps:
 - V(a) = V(b) when $a_k = b_k$ for all k
 - They are the same event
 - V(a) < V(b) when $a_k \le b_k$ for all k and V(a) \ne V(b) • a \rightarrow b
- Concurrency:
 - V(a) || V(b) if a_i < b_i and a_j > b_j, some i, j
 a || b

Two events a, z

Lamport clocks: C(a) < C(z) Conclusion: z -/-> a, i.e., either $a \rightarrow z$ or $a \parallel z$

Vector clocks: V(a) < V(z)Conclusion: $a \rightarrow z$

Vector clock timestamps precisely capture happens-before relation (potential causality)