
Making Systems Faster:
Distributed Video Processing

COS 418: Distributed Systems
Lecture 21

Wyatt Lloyd

[Grey slides from Qi Huang’s SOSP 2017 Talk]

Distributed Video Processing Outline
• Motivation for video processing
• (How streaming video works)

• Legacy design

• SVE design

• Why SVE is faster than legacy

SVE: Distributed Video Processing at
Facebook Scale

Facebook, University of Southern California, Cornell, Princeton

Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav Tverdokhlib,
Amit Yajurvedi, Paul Dapolito IV, Xifan Yan, Maxim Bykov, Chuen Liang, Mohit
Talwar, Abhishek Mathur, Sachin Kulkarni, Matthew Burke, Wyatt Lloyd

Qi Huang

Video is growing across Facebook

• FB: 500M users watch 100M hours video daily (Mar. 16)
• Instagram: 250M daily active users for stories (Jun. 17)
• All: many tens of millions of daily uploads, 3X NYE spike

01

Processing

Processing is diverse and demanding

Input
video

Re-encoding

Thumbnail

Video
Classification

Pt. 1
Legacy System

Scaling Challenges

Pt. 2
SVE

Impact of Design

02

Web ServerClient

She is having so much fun with #MSQRD

Legacy: upload video file to web server

03

Web ServerClient
Original
Storage

Legacy: preserve original for reliability

She is having so much fun with #MSQRD

04

Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: process after upload completes
Processing

05

Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: encode w/ varying bitrates
Processing

1080P
16Mbps

720P
4Mbps

480P
1.5Mbps

06

Final
Storage

Original
StorageWeb ServerClient

She is having so much fun with #MSQRD

Legacy: store encodings before sharing
Processing

1080P
16Mbps

720P
4Mbps

480P
1.5Mbps

07

Client
Final

Storage

Sharing with adaptive streaming

FBCDN

Web Server

720p
480p

08

Client Web Server Original
Storage Processing Final

Storage

Focus: pre-sharing pipeline

All steps from when a user starts an upload until a
video is ready to be shared

09

How Long Does This Take? (Latency)

Client Web Server Original
Storage Processing Final

Storage

How Long Does This Take? (Latency)

Client Web Server

16 MB Video ≈ 16 secs
1 Mbps link

1 MB Video ≈ 1 secs
8 Mbps link

SVE paper stats:

Video Size
≤1MB 10% of uploads over 10 seconds

3-10MB 50% of uploads over 10 seconds

300MB 50% of uploads over 9 minutes
-1GB

How Long Does This Take? (Latency)

Web Server

How Long Does This Take? (Latency)

Web Server Original
Storage

(pipelined with uploading)

SVE paper stats:

median 200 ms
90% 650 ms
99% 900 ms

How Long Does This Take? (Latency)

Original
Storage Processing

SVE paper stats:

10% of all video take ≥ 1.3 s

Proportional to video size:

Most videos over 100 MB take over 6 seconds

How Long Does This Take? (Latency)

Processing

SVE paper stats:

Video Size
1-3MB 20% take over 10 seconds

100- 50% take over 1 minute
300MB

>1GB 23% take over 10 minutes

Original
Storage Processing Final

Storage

Serial pipeline leads to slow processing

Client Web Server

10

Let’s Make This Faster!

Client Web Server Original
Storage Processing Final

Storage

Chat me how!

Client Web Server Original
Storage

Final Blob
Storage

Monolithic script slows development

Processing

“Let’s experiment speech recognition,
add a logic to extract audio and analysis”

“We want to experiment AI-based
encodings to spend 10x CPU for 30%

compression improvement on
popular videos”

“Pass-through for
small and well-

formatted videos”

“Change color
coding at

different time” “We need to change the thumbnail
generation logic for videos > x
minutes to create scene-based

scrubber preview”

11

Challenges for video processing @ FB
Speedy

Users can share videos quickly

Flexible
Thousands of engineers can write pipelines for tens of apps

Robust
Handle faults and overload that is inevitable at scale

12

Our Streaming Video Engine (SVE)
is speedy, flexible, and robust

13

• Overlap fault tolerance and processing
• Overlap upload and processing
• Parallel processing

Speedy: harness parallelism
Users can share videos quickly

14

Architectural changes for parallelism

Client Web Server Original
Storage Processing Final

Storage

15

Architectural changes for parallelism

Client Web Server Final
Storage

Original
Storage

Worker

Scheduler

Preprocessor
Worker

Worker

16

Overlap fault tolerance and processing

Client Web Server Final
Storage

Original
Storage

Worker

Scheduler

Preprocessor
Worker

Worker

Write-through
Cache

17

Client Web Server

Split into segments

Final
Storage

Overlap upload and processing

Original
Storage

Scheduler

Preprocessor

Worker

Worker

Worker

18

Preprocessor
Client Web Server

Final
Storage

Overlap upload and processing

Original
Storage

Scheduler

Worker

Worker

...upload in progress

Worker

19

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

Worker

Worker

Worker

...upload in progress

720P Encode

480P Encode

Thumbnail

20

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

...upload in progress

720P Encode

480P Encode

Thumbnail

21

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

...upload in progress

720P Encode

480P Encode

Thumbnail

22

Preprocessor
Client Web Server

Final
Storage

Parallel processing w/ many workers

Original
Storage

Scheduler

Worker

Worker

Worker

23

Preprocessor
Client Web Server

Final
Storage

Three sources of parallelism

Original
Storage

Scheduler

Worker

Worker

Worker
Overlap fault tolerance
and processing
Overlap upload and processing
Parallel processing

24

Let’s Make This Faster!

Store

Upload

Process

Store

Upload

Process

MES

VEE

Pre-Sharing Latency

D

A

C

B

A B

C

D

E

E

Figure 3: Logical diagrams of the pre-sharing latency of

MES and SVE. Letters mark points in the diagram that

are measured and reported in later figures.

4 Low Latency Processing

Low latency processing of videos makes applications more
interactive. The earlier videos are processed, the sooner they
can be shared over News Feed or sent over Messenger. This
section describes how SVE provides low latency by overlap-
ping uploading and processing (§4.1), processing the video
in parallel (§4.2), and by overlapping fault tolerant storage
and processing (§4.3). Figure 3 shows the logical pre-sharing
latency for the MES and SVE designs to provide intuition for
why these choices lead to lower latency. This section also
quantifies the latency improvement that the SVE provides
over MES (§4.4). All data is for News Feed uploads in a 6-
day period in June 2017 unless otherwise specified.

4.1 Overlap Uploading and Encoding

The time required for a client to upload all segments of a
video is a significant part of the pre-sharing latency. Fig-
ure 4a shows CDFs of upload times. Even for the small-
est size class (1 MB) approximately 10% of uploads take
more than 10 seconds. For the 3–10 MB size class, the per-
centage of videos taking more than 10 seconds jumps to
50%. For the large size classes of 30–100 MB, 100–300 MB,
300 MB–1 GB, and � 1 GB, more than half of the uploads
take 1 minute, 3 minutes, 9 minutes, and 28 minutes, respec-
tively. This demonstrates that upload time is a significant part
of pre-sharing latency.

Uploads are typically bottlenecked by the bandwidth
available to the client, which we cannot improve. This leaves
us with two options for decreasing the effect of upload la-
tency on pre-sharing latency: 1) upload less data, and 2) over-
lap uploading and encoding. One major challenge we over-
come in SVE is enabling these options while still supporting

the large and diverse set of clients devices that upload videos.
Our insight is to opportunistically use client-side processing
to enable faster sharing when it is possible and helpful, but
to use cloud-side processing as a backup to cover all cases.

We decrease the latency for uploads through client-side re-
encoding of the video to a smaller size when three conditions
are met: the raw video is large, the network is bandwidth
constrained, and the appropriate hardware and software sup-
port exists on the client device. We avoid re-encoding when
a video is already appropriately sized or when the client has
a high bandwidth connection because these uploads will al-
ready complete quickly. Thus, we prefer to avoid using client
device resources (e.g., battery) since they will provide little
benefit. Requiring all three conditions ensures we only do
client-side re-encoding when it meaningfully decreases pre-
sharing latency.

We decrease overall latency by overlapping uploading and
server-side encoding so they can proceed mostly in paral-
lel. This overlap is enabled by splitting videos into GOP-
aligned segments. When there is client-side support for split-
ting, which is common, we do splitting there because it is a
lightweight computation. When there is not client-side sup-
port, the preprocessor splits the video to enable paralleliz-
ing uploading and processing for all videos. As a result, the
combined upload and processing latency can be as low as the
upload latency plus the last segment processing latency.

4.2 Parallel Processing

The time required to process a video (D–E) is a signifi-
cant part of the pre-sharing latency. Figure 4b shows CDFs
of standard definition (SD) encoding time for different size
classes of videos under MES. Unsurprisingly, there is a
strong correlation between video size and encoding time. For
the size classes smaller than 10 MB, most videos can be en-
coded in fewer than 10 seconds. Yet, for even the smallest
size class, more than 2% of videos take 10 or more seconds
to encode. For large videos the encoding time is even more
significant: 53% of videos in the 100–300 MB size class take
more than 1 minute, 13% of videos in the 300 MB–1 GB size
class take more than 5 minutes, and 23% of videos larger
than 1 GB take over 10 minutes. This demonstrates that pro-
cessing time is a significant part of pre-sharing latency.

Fortunately, segmenting a video along GOP boundaries
makes processing of the video parallelizable. Each segment
can be processed separately from, and in parallel with, each
other segment. The challenges here are in selecting a seg-
ment size, enabling per-segment encoding, and ensuring the
resulting video is still well formed.

Segment size controls a tradeoff between the compres-
sion within each segment and parallelism across segments.
Larger segments result in better compression because there
is a larger window over which the compression algorithm can
exploit temporal locality, but less parallelism because there

Legacy

SVE

2.3
3

3.7

6.1

9.3

0

10

< 3M 3M ~ 10M 10M ~ 100M 100M ~ 1G >1G

Video size buckets

R
el

at
iv

e
sp

ee
du

p

Results: 2.3x ~ 9.3x speedup

25

2.3
3

3.7

6.1

9.3

0

10

< 3M 3M ~ 10M 10M ~ 100M 100M ~ 1G >1G

Video size buckets

R
el

at
iv

e
sp

ee
du

p

Results: 2.3x ~ 9.3x speedup

Overlap upload & processing

26

2.3
3

3.7

6.1

9.3

0

10

< 3M 3M ~ 10M 10M ~ 100M 100M ~ 1G >1G

Video size buckets

R
el

at
iv

e
sp

ee
du

p

Results: 2.3x ~ 9.3x speedup
Parallel Processing

27

• Rely on priority to degrade non-latency-sensitive tasks
• Defer full video processing for some new uploads
• Load-shedding across global deployments

Robust: tolerate overload
Handle faults and overload that is inevitable at scale

38

3X peak load during New Year Eve

3X

Date

U
pl

oa
d

vo
lu

m
e Xmas

NYE

39

Prepare for overload

Client Web Server Final Blob
Storage

Original
Storage

Worker

Scheduler

Preprocessor
Worker

Worker

Worker

Worker

Worker

Preprocessor

40

Use priority for worker overload

Scheduler

Hi-priority queue

Low-priority queue

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Only assign hi-pri tasks
under overload

41

Preprocessor

Defer full video processing

Web Server
DAG

Generation
Code

Cache

Scheduler

Hi-priority queue

Original
Storage

42

Scheduler

Worker

Worker

Worker

Preprocessor

Regional redirection

Web Server
Scheduler

Worker

Worker

Worker

Preprocessor

Traffic:

Local distribution → 100%

Traffic:

Local distribution → 70%
Remote distribution → 30%

43

One preprocessor handles all
segments of one video

Mapping from video to
preprocessor determined when
upload starts

Storage system is eventually
consistent, what could go wrong?

Failures from Global Inconsistencies
Lesson Learned

preprocessor = null

if (segment.is_first_segment()) {
preprocessor = get_preprocessor()
storage_write(video_id, “preprocessor”, preprocessor)

} else {
preprocessor = storage_read(video_id, “preprocessor”)

}

forward_segment(preprocessor, segment)

Summary
• Motivation for video processing
• (How streaming video works)

• Legacy design – Serial processing was slow

• SVE design – Three sources of parallelism make SVE faster
• Overlap upload and processing
• Overlap fault tolerance and processing
• Parallel processing

