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Recap: Spanner is Strictly Serializable

« Efficient read-only transactions in strictly
serializable systems
« Strict serializability is desirable but costly!
* Reads are prevalent! (340x more than write txns)
 Efficient rotxns - good system overall performance



Recap: Ideas Behind Read-Only Txns

* Tag writes with physical timestamps upon commit
* Write txns are strictly serializable, e.g., 2PL

* Read-only txns return the writes, whose commit
timestamps precede the reads’ current time

 Rotxns are one-round, lock-free, and never abort



Recap: TrueTime

* Timestamping writes must enforce the invariant

« If T2 starts after T1 commits (finishes), then T2 must have a
larger timestamp

* TrueTime: partially-synchronized clock abstraction
« Bounded clock skew (uncertainty)
* TT.now() - [earliest, latest]; earliest <= T, <= latest

« Uncertainty (€) is kept short

* TrueTime enforces the invariant by
« Use at least TT.now().latest for timestamps
« Commit wait



Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp

Let T1 write Sg and T2 write S, TT.after(15)
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Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write Sg and T2 write S,

T2.now() T2.commit
=[18, 22] (ts :32)
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After-class Puzzles

 What’s the rule of thumb for choosing ts?
At least T, then at least TT.now().latest

« Can we use TT.now().earliest for ts?

 Can we use TT.now().latest — 1 for ts?
« Without implementation constraints

 Can we use TT.now().latest + 1 for ts?



This Lecture

 How write transactions are done
« 2PL + 2PC (sometimes 2PL for short)
 How they are timestamped

 How read-only transactions are done
 How read timestamps are chosen
« How reads are executed



Read-Write Transactions (2PL)

* Three phases
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2PC: atomicity




Read-Write Transactions (2PL)
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Execute:

* Does reads: grab read locks and return the most recent data, e.g., R(A=a)
» Client computes and buffers writes locally, e.g., A=a+1, B=a+1, C = a+1



Read-Write Transactions (2PL)

Execute | Prepare :
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Prepare:

« Choose a coordinator, e.g., A, others are participants
» Send buffered writes and the identity of the coordinator; grab write locks

« Each J)artlmpant prepares T by logging a prepare record via Paxos with its replicas.
Coord skips prepare (Paxos Logging)

» Participants send OK to the coord if lock grabbed and after Paxos logging is done
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Read-Write Transactions (2PL)

Execute | Prepare : Commit
. T A=a I
Client | \/ ; ; >
| ok ! ac
Coord. > A | : : C()Lr?]?nit bb l‘
o R(A) ! \ 8 Recv W(a+1)/7 ! \;
! /Apply W(a+1) Log
Par. > B | ; Log Prepare ; Commit
! 8 Recv W(a+1) / ! X Apply W(a 1)%
Par. > C | ! Log Prepare ' Log
' 8 Recv W(a+1) ' Commit
Apply W(a+‘|)‘h
Commit:

» After hearing from all participants, coord commits T if all OK; o/w, abort T

» Coord logs a commit/abort record via Paxos, applies writes if commit, release all locks
» Coord sends commit/abort messages to participants

» Participants log commit/abort via Paxos, apply writes if commit, release locks

» Coord sends result to client either after its “log commit” or after ack
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Timestamping Read-Write Transactions
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Timestamping:

« Participant: choose a timestamp, e.g., tsg and tsg, larger than any writes it has applied

» Coordinator: choose a timestamp, e.g., ts,, larger than

* Any writes it has applied
* Any timestamps proposed by the participants, e.g., tsg and ts¢
* Its current TT.now().latest

« Coord commit-waits: TT.after(ts,) == true. Commit-wait overlaps with Paxos logging

* s, is T's commit timestamp

13



Read-Only Transactions (shards part)
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Txn T’ = R(A=?, B=?, C=7) Wait
 Client chooses a read timestamp ts = TT.now().latest
* If no prepared write, return the preceding write, e.g., on A

o If Wéite prepared with ts’ > ts, no need to wait, proceed with read, e.g.,
on

« If write prepared with ts’ < ts, wait until write commits, e.g., on C



Read-Only Transactions (Paxos part)
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Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W, is applied before W3

T’ needs to wait until there exits a Paxos write with ts>10, e.g., W3, so all writes
before 10 are finalized

Put it together: a shard can process a read at ts if ts <= tqys

tsate = MIN(ti575°, tsare) - before tyy, all system states (writes) have finalized



A Puzzle to Help With Understanding

 What if no replication, only shards
* Not in the paper, not realistic

Txn T ={Wx, W}, T"=R (A, C)
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T’ sees partial effect of T, e.g., sees W¢ but not W,, and violates atomicity



A Puzzle to Help With Understanding

 Solution: uncertainty-wait
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Uncertainty-wait ensures that ts.,,; must > readTS because

W, starts after T’ “commits,” and
T’ waits out uncertainty before “commit”, e.g., TT.after(10) == true



Serializable Snapshot Reads

 Client specifies a read timestamp way in the past
« E.g., one hour ago

* Read shards at the stale timestamp

 Serializable
* Old timestamp cannot ensure real-time order

» Better performance
* No waiting in any cases
« E.g., non-blocking, not just lock-free

« Can we have this performance but still strictly serializable?
« E.g., one-round, non-blocking, and strictly serializable
« Coming in next lecture!



Takeaway

« Strictly serializable (externally consistent)
 Make it easy for developers to build apps!

 Reads dominant, make them efficient
 One-round, lock-free

* TrueTime exposes clock uncertainty

« Commit wait and at least TT.now.latest() for timestamps
ensure real-time ordering

* Globally-distributed database
« 2PL w/ 2PC over Paxos!



