Spanner

Part ||

COS 418: Distributed Systems
Lecture 19

Haonan Lu

Slides adapted from Wyatt Lloyd and Mike Freedman’s, which are adapted from the Spanner OSDI talk

Recap: Spanner is Strictly Serializable

« Efficient read-only transactions in strictly
serializable systems
« Strict serializability is desirable but costly!
* Reads are prevalent! (340x more than write txns)
 Efficient rotxns - good system overall performance

Recap: Ideas Behind Read-Only Txns

* Tag writes with physical timestamps upon commit
* Write txns are strictly serializable, e.g., 2PL

* Read-only txns return the writes, whose commit
timestamps precede the reads’ current time

 Rotxns are one-round, lock-free, and never abort

Recap: TrueTime

* Timestamping writes must enforce the invariant

« If T2 starts after T1 commits (finishes), then T2 must have a
larger timestamp

* TrueTime: partially-synchronized clock abstraction
« Bounded clock skew (uncertainty)
* TT.now() - [earliest, latest]; earliest <= T, <= latest

« Uncertainty (€) is kept short

* TrueTime enforces the invariant by
« Use at least TT.now().latest for timestamps
« Commit wait

Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp

Let T1 write Sg and T2 write S, TT.after(15)

. b <X
== true

Sa >

3 8 1516 20
Tabs |13 N r A >
\ 7 7 N /
AN //W%l
Sg 6—-—: ‘ >
T1.now() T1.commit

—[3,15] (ts = 15)
b TrueTime

Enforcing the Invariant with TT

If T2 starts after T1 commits (finishes), then T2 must
have a larger timestamp
Let T1 write Sg and T2 write S,

T2.now() T2.commit
=[18, 22] (ts :32)

Sa - >
/ RN
3 5 8 1516 b0
T * \Z x >
s XL LT Rag T
\\: ’//Wait\l\'//
Sh —:= ¢ >
T1.now() T1.commit
- [3, 15] (ts = 15) T2.ts > T1.ts

TrueTime

After-class Puzzles

 What’s the rule of thumb for choosing ts?
At least T, then at least TT.now().latest

« Can we use TT.now().earliest for ts?

 Can we use TT.now().latest — 1 for ts?
« Without implementation constraints

 Can we use TT.now().latest + 1 for ts?

This Lecture

 How write transactions are done
« 2PL + 2PC (sometimes 2PL for short)
 How they are timestamped

 How read-only transactions are done
 How read timestamps are chosen
« How reads are executed

Read-Write Transactions (2PL)

* Three phases

2 oo ‘o'

Execute - Prepare > Commit

\ J
|

2PC: atomicity

Read-Write Transactions (2PL)

Execute |
T A-a!
Client | \/A a; >
Al i >
B RA) !
B | E >
C I i >

xn T = {R(A=?), W(A=?+1), W(B=?+1), W(C=?+1)}

Execute:

* Does reads: grab read locks and return the most recent data, e.g., R(A=a)
» Client computes and buffers writes locally, e.g., A=a+1, B=a+1, C = a+1

Read-Write Transactions (2PL)

Execute | Prepare :

. T A=a' I
Coord. > A | E Oki >

o R(A) ! \\- Recv W(a+‘|)ﬂ !
Par. > B | : Log Prepare E >

; \'ﬁ Recv W(a+1) / !
Par. > C : E Log Prepare : >

ﬁ Recv W(a+1) '

Prepare:

« Choose a coordinator, e.g., A, others are participants
» Send buffered writes and the identity of the coordinator; grab write locks

« Each J)artlmpant prepares T by logging a prepare record via Paxos with its replicas.
Coord skips prepare (Paxos Logging)

» Participants send OK to the coord if lock grabbed and after Paxos logging is done
11

Read-Write Transactions (2PL)

Execute | Prepare : Commit
. T A=a I
Client | \/ ; ; >
| ok ! ac
Coord. > A | : : C()Lr?]?nit bb l‘
o R(A) ! \ 8 Recv W(a+1)/7 ! \;
! /Apply W(a+1) Log
Par. > B | ; Log Prepare ; Commit
! 8 Recv W(a+1) / ! X Apply W(a 1)%
Par. > C | ! Log Prepare ' Log
' 8 Recv W(a+1) ' Commit
Apply W(a+‘|)‘h
Commit:

» After hearing from all participants, coord commits T if all OK; o/w, abort T

» Coord logs a commit/abort record via Paxos, applies writes if commit, release all locks
» Coord sends commit/abort messages to participants

» Participants log commit/abort via Paxos, apply writes if commit, release locks

» Coord sends result to client either after its “log commit” or after ack
12

Timestamping Read-Write Transactions

>

Execute | Prepare : Commit
| |
. T I I
Client | , ;
I I }(_ Commit _){
I I Wait
! tsg, tSg ! ac
Coord. > A | : -@— o bb l‘
! \ 8) 1S | Commit ;E -
: Lo ! Tts =ts °9
Par. > B | ; Prepare , A Commit
! ﬁ tsg : Tts =tsp
| |
Par. > C | : ® Log : Log
. a ts Prepare ' Commit
© T.ts =1s,

Timestamping:

« Participant: choose a timestamp, e.g., tsg and tsg, larger than any writes it has applied

» Coordinator: choose a timestamp, e.g., ts,, larger than

* Any writes it has applied
* Any timestamps proposed by the participants, e.g., tsg and ts¢
* Its current TT.now().latest

« Coord commit-waits: TT.after(ts,) == true. Commit-wait overlaps with Paxos logging

* s, is T's commit timestamp

13

Read-Only Transactions (shards part)

W1 WO WO

Client | : >
ts=
WO W1 cmt / /_ /
L | : >

Txn T’ = R(A=?, B=?, C=7) Wait
 Client chooses a read timestamp ts = TT.now().latest
* If no prepared write, return the preceding write, e.g., on A

o If Wéite prepared with ts’ > ts, no need to wait, proceed with read, e.g.,
on

« If write prepared with ts’ < ts, wait until write commits, e.g., on C

Read-Only Transactions (Paxos part)

T,
Client | : W >
ts=1
R W\/ .
' 5 | I

0 |

B V:Vo W2Paxos: W3Paxos >
0 I
W |

C F ! >
0 10

Paxos writes are monotonic, e.g., writes with smaller timestamp must be applied
earlier, W, is applied before W3

T’ needs to wait until there exits a Paxos write with ts>10, e.g., W3, so all writes
before 10 are finalized

Put it together: a shard can process a read at ts if ts <= tqys

tsate = MIN(ti575°, tsare) - before tyy, all system states (writes) have finalized

A Puzzle to Help With Understanding

 What if no replication, only shards
* Not in the paper, not realistic

Txn T ={Wx, W}, T"=R (A, C)

T,
: W
Client | . ble >
ts=
Wo f
A >
O /
Wo
B | >
0)
W, Weprep Weemt
C 1 l : >
0 Sprep t5=8

T’ sees partial effect of T, e.g., sees W¢ but not W,, and violates atomicity

A Puzzle to Help With Understanding

 Solution: uncertainty-wait

O
W
Client —e >
ts=10

Wo

| >

0)

Wo

B | >

0

w chl’ep WCcmt

= ! :

0 tsprep tscmt>1 0]

Uncertainty-wait ensures that ts.,,; must > readTS because

W, starts after T’ “commits,” and
T’ waits out uncertainty before “commit”, e.g., TT.after(10) == true

Serializable Snapshot Reads

 Client specifies a read timestamp way in the past
« E.g., one hour ago

* Read shards at the stale timestamp

 Serializable
* Old timestamp cannot ensure real-time order

» Better performance
* No waiting in any cases
« E.g., non-blocking, not just lock-free

« Can we have this performance but still strictly serializable?
« E.g., one-round, non-blocking, and strictly serializable
« Coming in next lecture!

Takeaway

« Strictly serializable (externally consistent)
 Make it easy for developers to build apps!

 Reads dominant, make them efficient
 One-round, lock-free

* TrueTime exposes clock uncertainty

« Commit wait and at least TT.now.latest() for timestamps
ensure real-time ordering

* Globally-distributed database
« 2PL w/ 2PC over Paxos!

