
Consensus: Paxos and RAFT

COS 418: Distributed Systems
Lecture 13

Wyatt Lloyd

RAFT slides based on those from Diego Ongaro and John Ousterhout

Consensus Used in Systems

Group of servers want to:

• Make sure all servers in group receive the same updates in the
same order as each other

• Maintain own lists (views) on who is a current member of the
group, and update lists when somebody leaves/fails

• Elect a leader in group, and inform everybody
• Ensure mutually exclusive (one process at a time only) access to

a critical resource like a file

2

• Figure out how to reach consensus for 1 decision

3

Single-shot Consensus

Paxos Guarantees

• Safety (bad things never happen)
• Agreement: All processes that decide do so on the same value

• Validity: Value decided must have proposed by some process

• Liveness (good things eventually happen)

• Termination: All non-faulty processes eventually decide on a value

Paxos’s Safety and Liveness
• Paxos is always safe

• Paxos is very often live (but not always, more later)

Roles of a Process in Paxos

• Three conceptual roles
– Proposers propose values
– Acceptors accept values, where value is chosen if majority

accept
– Learners learn the outcome (chosen value)

• In reality, a process can play any/all roles

6

Strawmen

• 3 proposers, 1 acceptor
– Acceptor accepts first value received
– No liveness with single failure

• 3 proposers, 3 acceptors
– Accept first value received, learners choose common value

known by majority
– But no such majority is guaranteed

7

Paxos

• Each acceptor accepts multiple proposals
– Hopefully one of multiple accepted proposals will have a majority

vote (and we determine that)
– If not, rinse and repeat (more on this)

• How do we select among multiple proposals?
– Ordering: proposal is tuple (proposal #, value) = (n, v)
– Proposal # strictly increasing, globally unique
– Globally unique?

• Trick: set low-order bits to proposer’s ID

8

Paxos Protocol Overview

• Proposers:
1. Choose a proposal number n
2. Ask acceptors if any accepted proposals with na < n
3. If existing proposal va returned, propose same value (n, va)
4. Otherwise, propose own value (n, v)
Note altruism: goal is to reach consensus, not “win”

• Accepters try to accept value with highest proposal n
• Learners are passive and wait for the outcome

9

• Proposer:
– Choose proposal n,

send <prepare, n> to
acceptors

10

• Acceptors:
• If n > nh

• nh = n ← promise not to accept
any new proposals n’ < n

• If no prior proposal accepted
• Reply < promise, n, Ø >

• Else
• Reply < promise, n, (na , va) >

• Else
• Reply < prepare-failed >

Paxos Phase 1

Paxos Phase 2

• Proposer:
– If receive promise from majority of acceptors,

• Determine va returned with highest na, if exists
• Send <accept, (n, va || v)> to acceptors

• Acceptors:
– Upon receiving (n, v), if n ≥ nh,

• Accept proposal and notify learner(s)
na = nh = n
va = v

11

Paxos Phase 3

• Learners need to know which value chosen

• Each acceptor notifies all learners
– Simplest approach, but many messages

12

Paxos: Well-behaved Run

13

<accepted, (1 ,v1)>

1

2

n

.

.

.

1 1

2

n

.

.

.
<prepare, 1>

1

<promise, 1>

1

2

n

.

.

.

<accept,
(1,v1)>

decide
v1

Paxos is Safe
• Intuition: if proposal with value v chosen, then every

higher-numbered proposal issued by any proposer has
value v.

14

Majority of
acceptors

accept (n, v):

v is chosen

Next prepare request
with proposal n+1

Often, but not always, live

Completes phase 1
with proposal n0

15

Starts and completes phase
1 with proposal n1 > n0

Performs phase 2,
acceptors reject

Restarts and completes
phase 1 with proposal n2 >

n1

Process 0 Process 1

Performs phase 2, acceptors
reject

… can go on indefinitely …

Paxos Summary

• Described for a single round of consensus
• Proposer, Acceptors, Learners

– Often implemented with nodes playing all roles

• Always safe: Quorum intersection
• Very often live
• Acceptors accept multiple values

– But only one value is ultimately chosen
• Once a value is accepted by a majority it is chosen

Flavors of Paxos
• Terminology is a mess
• Paxos loosely and confusingly defined…

• We’ll stick with
– Basic Paxos
– Multi-Paxos

Flavors of Paxos: Basic Paxos
• Run the full protocol each time

– e.g., for each slot in the command log

• Takes 2 rounds until a value is chosen

Flavors of Paxos: Multi-Paxos

• Elect a leader and have them run 2nd phase directly
– e.g., for each slot in the command log
– Leader election uses Basic Paxos

• Takes 1 round until a value is chosen
– Faster than Basic Paxos

• Used extensively in practice!
– RAFT is similar to Multi Paxos

20

RAFT: A CONSENSUS ALGORITHM
FOR REPLICATED LOGS

Diego Ongaro and John Ousterhout

Stanford University

21

• Replicated log => replicated state machine
– All servers execute same commands in same order

• Consensus module ensures proper log replication

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients
shl

22

1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration

Raft Overview

23

• At any given time, each server is either:
– Leader: handles all client interactions, log

replication
– Follower: completely passive
– Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader

Server States

24

• Servers start as followers
• Leaders send heartbeats (empty AppendEntries

RPCs) to maintain authority
• If electionTimeout elapses with no RPCs (100-

500ms), follower assumes leader has crashed
and starts new election

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
higher termdiscover current leader

or higher term

“step
down”

Liveness Validation

25

• Time divided into terms
– Election (either failed or resulted in 1 leader)
– Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Terms (aka epochs)

26

• Start election:
– Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:
1. Receive votes from majority of servers:

• Become leader
• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Elections

27

• Safety: allow at most one winner per term
– Each server votes only once per term (persists on disk)
– Two different candidates can’t get majorities in same term

• Liveness: some candidate eventually wins
– Each choose election timeouts randomly in [T, 2T]
– One usually initiates and wins election before others start
– Works well if T >> network RTT

Servers

Voted for
candidate A

B can’t also
get majority

Elections

28

• Log entry = < index, term, command >
• Log stored on stable storage (disk); survives crashes
• Entry committed if known to be stored on majority of servers

– Durable / stable, will eventually be executed by state machines

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

29

Log Structure

• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers
• Once new entry committed:

– Leader passes command to its state machine, sends result to client
– Leader piggybacks commitment to followers in later AppendEntries
– Followers pass committed commands to their state machines

30

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is “optimal” in common case:
– One successful RPC to any majority of servers

31

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

• If log entries on different server have same index and term:
– Store the same command
– Logs are identical in all preceding entries

• If given entry is committed, all preceding also committed

32

Log Operation: Highly Coherent

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1

ret
2

mov
3

div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

server1

server2

• AppendEntries has <index,term> of entry preceding new ones
• Follower must contain matching entry; otherwise it rejects
• Implements an induction step, ensures coherency

33

Log Operation: Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

• New leader’s log is truth, no special steps, start normal operation
– Will eventually make follower’s logs identical to leader’s
– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

34

Leader Changes

• Raft safety property: If leader has decided log entry is
committed, entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed → Present in future leaders’ logs
Restrictions on

commitment
Restrictions on
leader election

35

Safety Requirement
Once log entry applied to a state machine, no other state

machine must apply a different value for that log entry

• Elect candidate most likely to contain all
committed entries
– In RequestVote, candidates incl. index + term of last log entry
– Voter V denies vote if its log is “more complete”:

(newer term) or (entry in higher index of same term)
– Leader will have “most complete” log among electing majority

36

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during
leader transition

Committed?
Can’t tell

which entries
committed!

s1

s2

• Case #1: Leader decides entry in current term
is committed

• Safe: leader for term 3 must contain entry 4
37

Committing Entry from Current Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2 Can’t be elected as
leader for term 3

AppendEntries just succeeded

Leader for term 2

• Case #2: Leader trying to finish committing entry from
earlier

• Entry 3 not safely committed:
– s5 can be elected as leader for term 5 (how?)
– If elected, it will overwrite entry 3 on s1, s2, and s3

38

Committing Entry from Earlier Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

• For leader to decide entry is committed:
1. Entry stored on a majority
2. ≥ 1 new entry from leader’s term also on majority

• Example; Once e4 committed, s5 cannot be elected leader
for term 5, and e3 and e4 both safe

39

New Commitment Rules
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

4

4

3

Leader for term 4

Leader changes can result in log inconsistencies
40

Challenge: Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing
Entries

Extraneous
Entries

1 2 3 4 5 6 7 8 9 10 11 12

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own
– Delete extraneous entries
– Fill in missing entries

• Leader keeps nextIndex for each follower:
– Index of next log entry to send to that follower
– Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1Before repair 2 2 33 3 3 32

(a)

(f)

1 1 1 4(f)

nextIndex

After repair

Leader temporarily disconnected
→ other servers elect new leader

→ old leader reconnected
→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)
– Every RPC contains term of sender
– Sender’s term < receiver:

• Receiver: Rejects RPC (via ACK which sender processes…)
– Receiver’s term < sender:

• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers
– Deposed server cannot commit new log entries

43

Neutralizing Old Leaders

• Send commands to leader
– If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged, committed, and
executed by leader

• If request times out (e.g., leader crashes):
– Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures
– E.g., Leader can execute command then crash before responding
– Client should embed unique request ID in each command
– This unique request ID included in log entry
– Before accepting request, leader checks log for entry with same id

44

Client Protocol

RECONFIGURATION

45

• View configuration: { leader, { members }, settings }
• Consensus must support changes to configuration

– Replace failed machine
– Change degree of replication

• Cannot switch directly from one config to another:
conflicting majorities could arise

46

Configuration Changes

Cold Cnew
Server 1
Server 2
Server 3
Server 4
Server 5

time

Majority of Cold

Majority of Cnew

• Joint consensus in intermediate phase: need majority of both
old and new configurations for elections, commitment

• Configuration change just a log entry; applied immediately on
receipt (committed or not)

• Once joint consensus is committed, begin replicating log entry
for final configuration

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

47

2-Phase Approach via Joint Consensus

• Any server from either configuration can serve as leader
• If leader not in Cnew, must step down once Cnew

committed

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

48

2-Phase Approach via Joint Consensus

leader not in Cnew
steps down here

Viewstamped Replication:

A new primary copy method to support
highly-available distributed systems

Oki and Liskov, PODC 1988

49

• Strong leader
– Log entries flow only from leader to other servers
– Select leader from limited set so doesn’t need to

“catch up”
• Leader election

– Randomized timers to initiate elections
• Membership changes

– New joint consensus approach with overlapping
majorities

– Cluster can operate normally during configuration
changes

50

Raft vs. VR

