Consensus: Paxos and RAFT

K| ver [Nov (N
TES | TAM
Bl ex | Tvm

COS 418: Distributed Systems
Lecture 13

Wyatt Lloyd

RAFT slides based on those from Diego Ongaro and John Ousterhout

Consensus Used in Systems

Group of servers want to:

« Make sure all servers in group receive the same updates in the
same order as each other

* Maintain own lists (views) on who is a current member of the
group, and update lists when somebody leaves/fails

« Ensure mutually exclusive (one process at a time only) access to
a critical resource like a file

Single-shot Consensus

* Figure out how to reach consensus for 1 decision

Paxos Guarantees

« Safety (bad things never happen)

« Agreement: All processes that decide do so on the same value

« Validity: Value decided must have proposed by some process

* Liveness (good things eventually happen)

Termination: All non-faulty processes eventually decide on a value

Paxos’s Safety and Liveness

* Paxos is always safe

« Paxos is very often live (but not always, more later)

Roles of a Process In Paxos

* Three conceptual roles
propose values

accept values, where value is chosen if majority
accept

learn the outcome (chosen value)

* In reality, a process can play any/all roles

Strawmen

» 3 proposers, 1 acceptor
— Acceptor accepts first value received
— No liveness with single failure

« 3 proposers, 3 acceptors

— Accept first value received, learners choose common value
known by majority

— But no such majority is guaranteed

Paxos

« Each acceptor accepts

— Hopefully one of multiple accepted proposals will have a majority
vote (and we determine that)

— If not, rinse and repeat (more on this)

 How do we select among multiple proposals?
— Ordering: proposal is tuple
— Proposal # strictly increasing, globally unique
— Globally unique?
* Trick: set low-order bits to proposer’s ID

Paxos Protocol Overview

1. Choose a proposal number n

2. Ask acceptors if any accepted proposals withn, < n

3. If existing proposal v, returned, propose same value (n, v,)
4. Otherwise, propose own value (n, v)

Note : goal is to reach consensus, not “win”

try to accept value with highest proposal n
are passive and wait for the outcome

Paxos Phase 1

— Choose proposal n,
send <prepare, n> to
acceptors

*If n>n,
*n,=n < promise not to accept
any new proposals n’ < n
* If no prior proposal accepted
* Reply < promise, n, @ >
* Else
* Reply < promise, n, (n, v,) >
* Else
* Reply < prepare-failed >

10

Paxos Phase 2

— If receive promise from of acceptors,
* Determine v, returned with highest n_, if exists

« Send <accept, (n, v, || v)> to acceptors

— Upon receiving (n, v), ifn=n,,
 Accept proposal and notify learner(s)
n,=nN,=n
Vo=V

Paxos Phase 3

need to know which value chosen

« Each acceptor notifies all learners
— Simplest approach, but many messages

Paxos: Well-behaved Run

1—»@ =1_.@_.®\
\@/ \@ &

<accept, : : > decide
(1 !V1)> V1

<prepare, 1> ' <promise, 1> ' '
)

<accepted, (1 ,v4)>

Paxos is Safe

* Intuition: if proposal with value v chosen, then every
higher-numbered proposal issued by any proposer has
value v.

Majority of
acceptors
accept (n, v):

Next prepare request
with proposal n+1

V is chosen

Often, but not always, live

Process 0

Completes phase 1
with proposal n0

Performs phase 2,
acceptors reject

Restarts and completes
phase 1 with proposal n2 >
ni

v

Process 1

Starts and completes phase
1 with proposal n1 > n0

Performs phase 2, acceptors
Y reject

... can go on indefinitely ...

Paxos Summary

Described for a single round of consensus

Proposer, Acceptors, Learners
— Often implemented with nodes playing all roles

Always safe: Quorum intersection
Very often live

Acceptors accept multiple values
— But only one value is ultimately chosen

Once a value is accepted by a majority it is chosen

Flavors of Paxos

* Terminology is a mess
* Paxos loosely and confusingly defined...

 We'll stick with
— Basic Paxos
— Multi-Paxos

Flavors of Paxos: Basic Paxos

* Run the full protocol each time
—e.g., for each slot in the command log

 Takes 2 rounds until a value is chosen

Flavors of Paxos: Multi-Paxos

 Elect a leader and have them run 2"9 phase directly
—e.g., for each slot in the command log
— Leader election uses Basic Paxos

 Takes 1 round until a value is chosen
— Faster than Basic Paxos

« Used extensively in practice!
—RAFT is similar to Multi Paxos

20

RAFT: A CONSENSUS ALGORITHM
FOR REPLICATED LOGS

Goal: Replicated Log

ij ij ij ij ij ij Clients

(Consensus Consensus Con nsus S\ate
Module achine Module achine o ule Ma ine
“ ng ‘ Qg} Servers

x $ m%

|add|jmp|mov| |add|jmp|mov| |add|jmp|mov|

* Replicated log => replicated state machine

— All servers execute same commands in same order
» Consensus module ensures proper log replication

Raft Overview

1. Leader election

Normal operation (basic log replication)
Safety and consistency after leader changes
Neutralizing old leaders

Client interactions

o o A 0N

Reconfiguration

23

Server States

« At any given time, each server is either:

— Leader: handles all client interactions, log
replication

— Follower: completely passive
— Candidate: used to elect a new leader

 Normal operation: 1 leader, N-1 followers

CFoIIower) CCandidate) (Leader)

24

Liveness Validation

» Servers start as followers

« Leaders send heartbeats iempty AppendEntries

RPCs) to maintain authority

* If electionTimeout elapses with no RPCs (100-
500ms), follower assumes leader has crashed
and starts new election

_ timeout, _
timeout, new election receive votes from

FoIIower) (Candidate) (Leader)

discover server with

discover current leader higher term
or higher term

25

Terms (aka epochs)

Term 1 Term 2 Term 3 Term 4 Term 5
\ {) { —
\ / \ / time
Elections Split Vote Normal Operation

* Time divided into terms
— Election (either failed or resulted in 1 leader)
— Normal operation under a single leader

 Each server maintains current term value

* Key role of terms: identify obsolete information

26

Elections

« Start election:
— Increment current term, change to candidate state, vote for self

« Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:
Become leader
Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
Return to follower state

3. No-one wins election (election timeout elapses):
Increment term, start new election

Elections

« Safety: allow at most one winner per term

— Each server votes only once per term (persists on disk)
— Two different candidates can’t get majorities in same term

B can't also ’[][] ’[][] [] Voted for
get majority 1 i ! candidate A
Servers

 Liveness: some candidate eventually wins
— Each choose election timeouts randomly in [T, 2T]
— One usually initiates and wins election before others start
— Works well if T >> network RTT

28

Log Structure

term 1 2 3 4 5 6 7 8
L [FA7A 71Tz 3333
f add [cmp| ret |mov| jmp | div | shl | sub
command
1 1 1 2 3
add |cmp| ret [mov| jmp
1 1 1 2 3 3 3 3
add [cmp| ret |mov| jmp | div | shl | sub
1 1
add [cmp
1 1 1 2 3 3 3
add [cmp| ret |mov| jmp | div | shl

l‘
l

* Log entry = < index, term, command >
» Log stored on stable storage (disk); survives crashes

» Entry committed if known to be stored on majority of servers
— Durable / stable, will eventually be executed by state machines

;l
l

log index

leader

~ followers

committed entries

Normal operation

(Consensus Consensus Consknsus te)
Module achine Module achine oWlule Madhine

2%

DL

RO

Q) 2dlimpimov ifT

Client sends command to leader
Leader appends command to its log
Leader sends AppendEntries RPCs to followers

Log }‘
|add |jmp |mov|

Log
|add |jmp|mov|
.

Once new entry committed:
— Leader passes command to its state machine, sends result to client
— Leader piggybacks commitment to followers in later AppendEntries
— Followers pass committed commands to their state machines

Normal operation

(Consensus Consensus us
Module achine Module achine Ma me

x x ‘?g«$

|add|jmp|mov| |add|jmp|mov| |add|jmp|mov|

* Crashed / slow followers?
— Leader retries RPCs until they succeed

» Performance is “optimal” in common case:
— One successful RPC to any majority of servers

Log Operation: Highly Coherent

1 2 3 4 5 6

1 1 11 2 3 3
servert add |cmp| ret |[mov| jmp | div

1 1 1 2 3 4
server2 add |cmp| ret [mov| jmp | sub

* If log entries on different server have same index and term:
— Store the same command
— Logs are identical in all preceding entries

« If given entry is committed, all preceding also committed

Log Operation: Consistency Check

leader | 44 |cmp| ret |mov| jmp AppendEntries succeeds:
T B e matching entry

follower add

leader |44

cmp| ret |mov ij AppendEntries fails:
mismatch
follower | il | 214 X

* AppendEntries has <index,term> of entry preceding new ones

* Follower must contain matching entry; otherwise it rejects

« Implements an induction step, ensures coherency

Leader Changes

* New leader’s log is truth, no special steps, start normal operation
— Will eventually make follower’s logs identical to leader’s
— Old leader may have left entries partially replicated

« Multiple crashes can leave many extraneous log entries

log index 1 2 3 4 5 6 7
term” s, T1|1|5]6[6]6

Safety Requirement

« Raft safety property: If leader has decided log entry is
committed, entry will be present in logs of all future leaders

* Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed — Present in future leaders’ logs

Restrictions on J K» Restrictions on

commitment leader election .

Picking the Best Leader

——————

, s;[111 21| 2 | Committed?
Can't tell L
which entries s,[1]|1]|1]2
committed! .'"1""1""1-";"2-“: Unavailable during
; ; leader transition

 Elect candidate most likely to contain all
committed entries

— In RequestVote, candidates incl. index + term of last log entry

— Voter V denies vote if its log is “more complete”:
(newer term) or (entry in higher index of same term)

— Leader will have “most complete” log among electing majority

Committing Entry from Current Term

1 2 3 4 5

s;|1]11|2]|2]|2|-— Leader forterm 2

s;| 111 2; 2 §<— AppendEntries just succeeded

sg| 1112 } Can’t be elected as

leader for term 3

« Case #1: Leader decides entry in current term
Is committed

« Safe: leader for term 3 must contain entry 4

Committing Entry from Earlier Term

1 2 3 4 5

Leader for term 4

AppendEntries just succeeded

ss|1][1[3]3]3

» Case #2: Leader trying to finish committing entry from
earlier

* Entry 3 not safely committed:

— s; can be elected as leader for term 5 (how?)
— If elected, it will overwrite entry 3on s,, s,, and s,

New Commitment Rules

12 3 4 5
s,|1]11]2]|4 Leader for term 4
s, 1[1]2]4
sy 1|1]2]4
s4| 111
ss|1]1]3]3]3

* For leader to decide entry is committed:
1. Entry stored on a majority

2. =1 new entry from leader’s term also on majority

« Example; Once e4 committed, s, cannot be elected leader
for term 5, and e3 and e4 both safte

Challenge: Log Inconsistencies

Leader for term 8

~

Possible
followers

-

3 4 5 6 7 8 9 10 11 12
114|14|5|[5|6|6]|6
A0 1
11414]|15|5]|6]6; '
___________________ L____(:\ Missing
1] 4! i/ Entries
T .’"I""l
114(4|5]|5([6]|6]|6i6]
-
1{4la|5|5]|6]|6]|6!7 7\
N i~ Extraneous
1a|afa]a | / =niries
—]
"""""""""" -"“‘
1il22]2|3[|3[3]|3]3]

———————————————————————————————

Leader changes can result in log inconsistencies

40

Repairing Follower Logs nextindex

- -
1.2 3 4 5 6 7 8 910 11 12
Leader for term 7 1111121215151 6l6 [_6_:'
g '2aYaYaYaYaYa
@ | 1[1[1]4
Followers - avavavavavalal
wy|1|[1|1]2]|2]2]|3]|3]|3|3]|3

« New leader must make follower logs consistent with its own
— Delete extraneous entries
— Fill in missing entries

- Leader keeps nextindex for each follower:
— Index of next log entry to send to that follower
— Initialized to (1 + leader’s last index)

« If AppendEntries consistency check fails, decrement nextindex, try again

Repairing Follower Logs

nextindex
1 2 3 4 5 6 7 8 9 10 11 12

Leader for term 7 111|144 |[5]|5|6|6]|6

@/|1[1[1]4

N
SN
N
N
N
w
w
w
w
w

Before repair (f) | 1

—_—
—
N

After repair (f) | 1

Neutralizing Old Leaders

Leader temporarily disconnected
- other servers elect new leader
- old leader reconnected
- old leader attempts to commit log entries

* Terms used to detect stale leaders (and candidates)
— Every RPC contains term of sender

— Sender’s term < receiver:
* Receiver: Rejects RPC (via ACK which sender processes...)

— Receiver’s term < sender:
* Receiver reverts to follower, updates term, processes RPC

 Election updates terms of majority of servers
— Deposed server cannot commit new log entries

Client Protocol

Send commands to leader
— If leader unknown, contact any server, which redirects client to leader

Leader only responds after command logged, committed, and
executed by leader

If request times out (e.g., leader crashes):
— Client reissues command to new leader (after possible redirect)

Ensure exactly-once semantics even with leader failures

— E.g., Leader can execute command then crash before responding
— Client should embed unique request ID in each command

— This unique request ID included in log entry

— Before accepting request, leader checks log for entry with same id

RECONFIGURATION

Configuration Changes

* View configuration: {leader, { members }, settings }
« Consensus must support changes to configuration
— Replace failed machine
— Change degree of replication

« Cannot switch directly from one config to another:

conflicting majorities could arise
Cod ,/ Cre

w
Server 1 | | | \
Server 2 |] | Majority of Cyq
Server 3 | i |
Server 4 | | Majority of C,,,
Server 5 | |

..... < /
time —

2-Phase Approach via Joint Consensus

Joint consensus in intermediate phase: need majority of both
old and new configurations for elections, commitment

Configuration change just a log entry; applied immediately on
receipt (committed or not)

Once joint consensus is committed, begin replicating log entry
for final configuration

C,q Can make C,ew CaN make
unilateral decisions unilateral decisions
- } >
Cnew ooooooo .
Co|d+new..”...§— oooooo d
C0|d L NN N NNMN) q:
: : —>
Coignew €Nty Cew €Ntry time

committed committed

47

2-Phase Approach via Joint Consensus

* Any server from either configuration can serve as leader

* If leader notin C,_,,, must step down once C,__,,
committed

C,q Can make C,ew Can make
unilateral decisions unilateral decisions

> : -

CneW —

Colgnew ** T—cessse ‘:\ leader not in C,,,
C oy ™ o ¢ ¢ ¢ o o < : steps down here
: : —>
Coignew €Nty Cew €Ntry time

committed committed

Viewstamped Replication:

A new primary copy method to support
highly-available distributed systems

Oki and Liskov, PODC 1988

49

Raft vs. VR

 Strong leader

— Log entries flow only from leader to other servers

— Select leader from limited set so doesn’t need to
“catch up”

* Leader election
— Randomized timers to initiate elections
 Membership changes
— New joint consensus approach with overlapping
majorities
— Cluster can operate normally during configuration
changes

50

