Distributed Systems Intro

1 VET [NOV h
TES | TAM
Al EN | TVM |}

COS 418: Distributed Systems
Lecture 1

Wyatt Lioyd

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?

* Failure

 Limited computation/storage/...

* Physical location

Distributed Systems, Where?

 Web Search (e.g., Google, Bing)

» Shopping (e.g., Amazon, Walmart)

* File Sync (e.g., Dropbox, iCloud)

« Social Networks (e.g., Facebook, Twitter)
* Music (e.g., Spotify, Apple Music)

* Ride Sharing (e.g., Uber, Lyft)

* Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, DOTA2)

“The Cloud” Is not
amorphous

HINr fx
/ e

1\11‘!‘! PP ii\-l-\'of/?fl(ﬂ(lﬂ.ﬂ . 144,»

el S = .U.u.m.mﬂ;ﬁ:.;.:.:.F.u« R e
- " u«b PALALS A)W:Auﬂli
T s _ _

7 : ‘ 1,

o ‘s
g -
TS

VNN LUY S Sa e

. e W™

- — —

>

’
L \\"q M
> gty

‘-l\‘\kqf..’\\ -
N E\ -
S, \‘_/’
o e —

L 100,000s of physical servers
SR 10s MW energy consumption A==
{; = \\
L E=N=
Facebook Prlnevme Al \-}-p

| HF?IVI physmal infra, $1' |T |infr it wﬁw

1

Distributed Systems Goal

» Service with higher-level abstractions/interface

* e.g., file system, database, key-value store, programming
model, ...

* Hide complexity
» Scalable (scale-out)
 Reliable (fault-tolerant)
» Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need to

Scalable Systems in this Class

« Scale computation across many machines
« MapReduce, Streaming Video Engine

» Scale storage across many machines
 Dynamo, COPS, Spanner

Fault Tolerant Systems in this Class

* Retry on another machine
« MapReduce, Streaming Video Engine

* Maintain replicas on multiple machines
* Primary-backup replication
 Paxos
« RAFT
 Bayou
 Dynamo, COPS, Spanner

Range of Abstractions and Guarantees

« Eventual Consistency
 Dynamo

« Causal Consistency
« Bayou, COPS

 Linearizability
* Paxos, RAFT, Primary-backup replication

« Strict Serializability
« 2PL, Spanner

Learning Objectives

* Reasoning about concurrency
* Reasoning about failure
 Reasoning about performance

* Building systems that correctly handle concurrency and failure

* Knowing specific system designs and design components

Conclusion

* Distributed Systems
« Multiple machines doing something together
* Pretty much everywhere and everything computing now

¢ “Systems”
« Hide complexity and do the heavy lifting (i.e., interesting!)
« Scalability, fault tolerance, guarantees

