¥ C0S226 Precept # 10 - Exercises Spring ‘20

Online version: https://us.edstem.org/courses/77/lessons/1118/

EXERCISE 1: Compression Warm-up

compressed size

A. The compression ratio is defined as original size ., Consider a sequence of n characters, 8-bits each,
what is the compression ratio achieved by Huffman coding in the following cases:

o If there are only two characters?

o the worst case?

B. Move-To-Front is a lossless encoding algorithm that works as follows:

Maintain an ordered sequence of the characters in the alphabet by repeatedly reading a character from
the input message; printing the position in the sequence in which that character appears; and moving
that character to the front of the sequence.

Example. Input: BCC
Output: 120
B is 1 C is 2 C is 0
ABCDEF —>BACDEF ——» CBADEF —3» CBADEF
012345 12345 012345 012345

Assuming the alphabet is A-Z, where A has code 0, B code 1, etc.:

o Encode“AAABBBCCCDDDETEFE".
o Encode“A E ABECAD"

C. Move-To-Front encoding is typically used to convert a given text into one where some characters appear
much more frequently than others. Based on the examples above, when does MoveToFront achieve this
goal well?

D. The goal of the Burrows-Wheeler |ossless transform is to convert a given text into text where
sequences of the same character occur near each other many times.

How should Move-To-Front, Huffman and Burrows-Wheeler be used together in order to achieve a good
compression ratio?

https://us.edstem.org/courses/77/lessons/1118/
https://us.edstem.org/courses/77/lessons/1061/
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%5Ctfrac%7B%5Cmathrm%7Bcompressed%5C%20size%7D%7D%7B%5Cmathrm%7Boriginal%5C%20size%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=n#0

EXERCISE 2: Burrows-Wheeler Transform

A. List the circular suffixes of the word “W E E K E N D” and then sort them in lexicographical order.

Original Sorted
WEEKEND

EEKENDW

B. The Burrows-Wheeler transform is the last character of each of the sorted circular suffixes, preceded
by the row number in which the original string ends up when considered in sorted order.

What is the Burrows-Wheeler Transformof “W E E K E N D"?

C. How much memory (as a function of the number of characters in the String n) is needed to store the
circular suffixes? Using Big-Theta notation.

EXERCISE 3: Burrows-Wheeler Inverse-Transform

A. Given only the last character of each of the circular suffixes when considered in sorted order, can we
infer the first character in each of these suffixes? Explain your answer.

RSIEREN B R e A RIS I}
ommXxXm=Z2

https://www.codecogs.com/eqnedit.php?latex=n#0

B. We know from Exercise 2 .B that the Burrows-Wheeler transform stores where the original string is.
The goal of the inverse-transform is to find the characters of the original string, i.e. the characters
between Wand D in row 6.

[72]
+

*

=z=zXxXxmMmmmo
OmmXxX M= 2

Observation. A circular suffix that ends with a W comes directly after a circular suffix that begins with a
W in the original (un-sorted) circular suffix array. Look at your answer for 2.A!

Use the following (very slow) algorithm to construct the array next[] to keep track of where the next
circular suffix is for each of the sorted circular suffixes.

(n isthe number of circular suffixes and used[] isofsize n andisinitializedto false)

1| for (int i = 0; i < n; i++) {

2 for (int j = 0; j < n; j++) {
3 if (used[j]) continue;

4 if (s[i] == t[j]) {

5 used[j] = true;

6 next[i] = J;

7 break;

8 }

9 }

10 | }

Original S[] t[] next[]
WEEKEND D----- N 6
EEKENDW E----- W
EKENDWE E----- E
KENDWEE E----- K
ENDWEEK K-»---- E
NDWEEKE N----- E
DWEEKEN Ww----- D

C. Trace the array next[] starting at row 6 to reconstruct the original string.

Exercise 4: Knuth-Morris-Pratt

Construct the Knuth-Morris-Pratt DFA for the string PAPAYA over the alphabet {A, P, Y}. Complete the
transition diagram and the corresponding DFA table.

ONONONONONONO

Exercise 5: Circular Substrings

Implement method search(String s, String t), which returns true if the non-empty string s is a
substring of a non-empty circular string t. The examples in the table below explain what is meant by a
substring of a circular string.

string s circular string t substring
ABBA BBBBBBABBABBBBB yes
ABBA BABBBBBABBBBBAB yes
BBAABBAABBAABB ABBA yes
ABBA BBBBBBBABABBBB no
BAABAAB ABBA no

Assuming the binary alphabet {A, B}, Your algorithm should take ©(m+n) time in the worst case,
where n is the length of t and m is the length of s.

Note. You have access to all the data structures and algorithms in algs4. Do not reimplement an
algorithm or a data structure if you can use it as is. Simply import it and use it!

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%5CTheta(m%20%2B%20n)#0
https://algs4.cs.princeton.edu/code/javadoc/

