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Dynamic programming

Algorithm design paradigm.  

・Break up a problem into a series of overlapping subproblems. 

・Build up solutions to larger and larger subproblems. 

(caching solutions to subproblems for later reuse) 

 

 

Application areas. 

・Operations research:  multistage decision processes, control theory, optimization, ... 

・Computer science:  AI, compilers, systems, graphics, databases, robotics, theory, …. 

・Economics. 

・Bioinformatics. 

・Information theory. 

・Tech job interviews. 

 

 

Bottom line.  Powerful technique; broadly applicable.
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THE THEORY OF DYNAMIC PROGRAMMING 
RICHARD BELLMAN 

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical 
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming. 

To begin with, the theory was created to treat the mathematical 
problems arising from the study of various multi-stage decision 
processes, which may roughly be described in the following way: We 
have a physical system whose state at any time / is determined by a 
set of quantities which we call state parameters, or state variables. 
At certain times, which may be prescribed in advance, or which may 
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are 
equivalent to transformations of the state variables, the choice of a 
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of 
future ones, with the purpose of the whole process that of maximizing 
some function of the parameters describing the final state. 

Examples of processes fitting this loose description are furnished 
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical 
clinic ; from the determination of long-term investment programs for 
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for 
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments. 

I t is abundantly clear from the very brief description of possible 
applications tha t the problems arising from the study of these 
processes are problems of the future as well as of the immediate 
present. 

Turning to a more precise discussion, let us introduce a small 
amount of terminology. A sequence of decisions will be called a 
policy, and a policy which is most advantageous according to some 
preassigned criterion will be called an optimal policy. 

The classical approach to the mathematical problems arising from 
the processes described above is to consider the set of all possible 

An address delivered before the Summer Meeting of the Society in Laramie on 
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954. 
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see Assignment 6

Some famous examples.  

・System R algorithm for optimal join order in relational databases. 

・Needleman–Wunsch/Smith–Waterman for sequence alignment. 

・Cocke–Kasami–Younger for parsing context-free grammars. 

・Bellman–Ford–Moore for shortest path. 

・De Boor for evaluating spline curves. 

・Viterbi for hidden Markov models. 

・Unix diff for comparing two files. 

・Avidan–Shamir for seam carving. 

・NP-complete graph problems on trees (vertex color, vertex cover, independent set, ...). 

・…

Dynamic programming algorithms
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Dynamic programming books
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Fibonacci numbers

Fibonacci numbers.  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,  …

7

Leonardo Fibonacci

3 5 13

21 34

8

55 89
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Fibonacci numbers.  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,  …
 
 
 
 
 
Goal.  Given n, compute Fn. 

 

Naïve recursive approach:

<latexit sha1_base64="lG5KV5dzjHqxJdRxPd6Wu2waeY8="></latexit>

Fi =

8
><

>:
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1 B7 i = 1

Fi�1 + Fi�2 B7 i > 1

Fibonacci numbers:  naïve recursive approach
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public static long fib(int i) 
{ 
   if (i == 0) return 0; 
   if (i == 1) return 1; 
   return fib(i-1) + fib(i-2); 
}



Dynamic programming:  quiz 1

How long to compute fib(80) using the naïve recursive algorithm? 

A.  Less than 1 second. 

B.  About 1 minute. 

C.  More than 1 hour. 

D.  Overflows a 64-bit long integer.

9

~/Desktop/dp> java Fibonacci 42 
267914296 
1.04 seconds 

~/Desktop/dp> java Fibonacci 43 
433494437 
1.67 seconds 

~/Desktop/dp> java Fibonacci 44 
701408733 
2.70 seconds 

⋮ 
~/Desktop/dp> java Fibonacci 80 
23416728348467685 
2.88 years

seems to increase by a 
factor of about 1.6𐄂



Fibonacci numbers:  recursion tree and exponential growth

Exponential waste.  Same overlapping subproblems are solved repeatedly. 

Ex.  To compute fib(6): 

・ fib(5) is called 1 time. 

・ fib(4) is called 2 times. 

・ fib(3) is called 3 times. 

・ fib(2) is called 5 times. 

・ fib(1) is called Fn = F6 = 8 times.

10
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“overlapping subproblems”

running time = # subproblems × cost per subproblem



Fibonacci numbers:  top-down dynamic programming

Memoization. 

・Maintain an array (or symbol table) to remember all computed values. 

・If value to compute is known, just return it; 

otherwise, compute it; remember it; and return it. 

 

 

 

 

 

 

 

 

 

 

 

Impact.  Solves each subproblem Fi only once; Θ(n) time to compute Fn.
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public static long fib(int i) 
{ 
   if (i == 0) return 0; 
   if (i == 1) return 1; 
   if (f[i] == 0) f[i] = fib(i-1) + fib(i-2); 
   return f[i]; 
}

assume global long  array f[], initialized to 0 (unknown)



Fibonacci numbers:  bottom-up dynamic programming

Bottom-up dynamic programming. 

・Build computation from the “bottom up.” 

・Solve small subproblems and save solutions. 

・Use those solutions to solve larger subproblems. 

 

 

 

 

 

 

 

 

 

 

 

Impact.  Solves each subproblem Fi only once; Θ(n) time to compute Fn ; no recursion.
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public static long fib(int n) 
{ 
   long[] f = new long[n+1]; 
   f[0] = 0; 
   f[1] = 1; 
   for (int i = 2; i <= n; i++) 
       f[i] = f[i-1] + f[i-2];  
   return f[n]; 
} smaller subproblems



Fibonacci numbers:  further improvements

Performance improvements. 

・Save space by saving only two most recent Fibonacci numbers. 

 

 

 

 

 

 

 

 

 

・Exploit additional properties of problem:
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public static long fib(int n) { 
   int f = 0, g = 1; 
   for (int i = 0; i < n; i++) { 
      g = f + g; 
      f = g - f; 
   } 
   return f; 
}

f and g are consecutive 
Fibonacci numbers



Dynamic programming recap

Dynamic programming. 

・Divide a complex problem into a number of simpler overlapping subproblems. 

[ define n + 1 subproblems, where subproblem i is computing the ith Fibonacci number ] 

・Define a recurrence relation to solve larger subproblems from smaller subproblems. 

[ easy to solve subproblem i if we know solutions to subproblems i − 1 and i − 2 ] 

 

 

 

 

・Store solutions to each of these subproblems, solving each subproblem only once. 

[ use an array, storing subproblem i in f[i] ] 

・Use stored solutions to solve the original problem. 

[ subproblem n is original problem ]

14
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Goal.  Install WiFi routers in a row of n houses so that: 

・Minimize total cost, where cost(i) = cost to install a router at house i.  

・Requirement: no two consecutive houses without a router.

i 1 2 3 4 5 6

cost(i) 1 4 12 8 9 11

ROUTER INSTALLATION PROBLEM

16

cost to install router at house i
(4 + 8 + 9 = 21)



ROUTER INSTALLATION PROBLEM:  DYNAMIC PROGRAMMING FORMULATION

Goal.  Install WiFi routers in a row of n houses so that: 

・Minimize total cost, where cost(i) = cost to install a router at house i.  

・Requirement: no two consecutive houses without a router. 

 

Subproblems. 

・yes(i)  =  min cost to install router at houses 1, …, i  with router at i. 

・no(i)   =  min cost to install router at houses 1, …, i  with no router at i. 

・Optimal cost = min { yes(n),  no(n) }. 

 

Dynamic programming recurrence. 

・yes(0)  =  no(0)  =  0 

・yes(i)  =  cost(i) +  min { yes(i − 1),  no(i − 1) } 

・no(i)  =  yes(i − 1)

17

“optimal substructure” 
(optimal solution can be constructed from 
optimal solutions to smaller subproblems)



ROUTER INSTALLATION:  NAÏVE RECURSIVE IMPLEMENTATION

A mutually recursive implementation.

18

private int yes(int i) 
{ 
   if (i == 0) return 0; 
   return cost[i] + Math.min(yes(i-1), no(i-1)); 
} 

private int no(int i) 
{ 
   if (i == 0) return 0; 
   return yes(i-1); 
} 

public int minCost() 
{ 
   return Math.min(yes(n), no(n)); 
}

no(i)  =  yes(i − 1)

yes(i)  =  cost(i)   +  min { yes(i − 1),  no(i − 1) }



What is running time of the naïve recursive algorithm as a function of n?

A.  Θ(n)

B.  Θ(n2)

C.  Θ(cn) for some c > 1. 

D.  Θ(n!)

Y3

Y2

Y1 N1

N2

Y1

N3

Y2

Y1 N1

Y3

Y2

Y1 N1

N2

Y1

Dynamic programming:  quiz 2

19

Y4 N4

Y5

yes(5)

yes(4) no(4)
“overlapping subproblems”

Y3 Y3

running time = # subproblems × cost per subproblem

Y2 Y2 Y2

Y1 Y1 Y1 Y1 Y1

Y4
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“ Those who cannot remember the
    past are condemned to repeat it. ”

(Jorge Agustín Nicolás Ruiz de Santayana y Borrás)

— Dynamic Programming

Dynamic programming aphorism



ROUTER INSTALLATION:  BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation. 

 

 

 

 

 

 

 

 

 

 

 

Proposition.  Takes Θ(n) time and uses Θ(n) extra space. 

Remark.  Could eliminate the no[] array by substituting identity no[k] = yes[k-1].
21

int[] yes = new int[n+1]; 
int[] no  = new int[n+1]; 

for (int i = 1; i <= n; i++) 
{ 
   yes[i] = cost[i] + Math.min(yes[i-1], no[i-1]); 
   no[i]  = yes[i-1]; 
} 

return Math.min(yes[n], no[n]);

yes(i)  =  cost(i)  +  min { yes(i − 1),  no(i − 1) }
no(i)  =  yes(i − 1)



no(6)  =  yes(5)yes(5)  =  cost(5) +  min { yes(4),  no(4) }yes(4)  =  cost(4) +  min { yes(3),  no(3) }no(3)  =  yes(2)yes(2)  =  cost(2) +  min { yes(1),  no(1) }no(1)  =  yes(0)

So far:  we’ve computed the value of the optimal solution. 

Still need:  the solution itself (where to install routers).

i 0 1 2 3 4 5 6

yes(i) 0 1 4 13 12 21 23

no(i) 0 0 1 4 13 12 21

ROUTER INSTALLATION:  RECONSTRUCTING THE SOLUTION (BACKTRACE)

22

yes(i) = cost to install routers at houses 1, 2, …, i with router       at house i
no(i) = cost to install routers at houses 1, 2, …, i with router not at house i



COIN CHANGING

Problem.  Given n coin denominations { d1, d2, …, dn }  and a target value V, 

find the fewest coins needed to make change for V (or report impossible). 

 

Ex.  Coin denominations = {1, 10, 25, 100 }, V = 130. 

Greedy (8 coins).   131¢ = 100 + 25 + 1 + 1 + 1 + 1 + 1 + 1. 

Optimal (5 coins).  131¢ = 100 + 10 + 10 + 10 + 1. 

 

 

 

 

 

 

 

 

Remark.  Greedy algorithm is optimal for U.S. coin denominations {1, 5, 10, 25, 100 }.
23

vending machine
(out of nickels)

5 coins
(131¢)

8 coins
(131¢)



Problem.  Given n coin denominations { d1, d2, …, dn }  and a target value V, 

find the fewest coins needed to make change for V (or report impossible). 

 

Subproblems.  OPT(v)  =  fewest coins needed to make change for amount v. 

Optimal value.  OPT(V). 
 

Multiway choice.  To compute OPT(v), 

・Select a coin of denomination di ≤ v  for some i. 

・Use fewest coins to make change for v −  di. 

 

Dynamic programming recurrence.

COIN CHANGING:  DYNAMIC PROGRAMMING FORMULATION

24

optimal substructure

take best
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Dynamic programming:  quiz 3

In which order to compute OPT(v) in bottom-up DP ?  

A. Increasing i.

B. Decreasing i.

C. Either A or B. 

D. Neither A nor B.

25

for (int v = 1; v <= V; v++) 
   opt[v] = ...

for (int v = V; v >= 1; v--) 
   opt[v] = ...
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COIN CHANGING:  BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation. 

 

 

 

 

 

 

 

 

 

 

Proposition.  DP algorithm takes Θ(n V) time and uses Θ(V) extra space. 

Note.  Not polynomial in input size; underlying problem is NP-complete.

26

int[] opt = new int[V+1]; 
opt[0] = 0; 

for (int v = 1; v <= V; v++) 
{ 
   // opt[v] = min_i { 1 + opt[v - d[i]] } 
   opt[v] = INFINITY; 
   for (int i = 1; i <= n; i++) 
      if (d[i] <= v) 
         opt[v] = Math.min(opt[v], 1 + opt[v - d[i]]); 
}

n, log V
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Problem.  Given a DAG with positive edge weights, find shortest path from s  to t . 

Subproblems.  distTo(v)  = length of shortest s↝v path. 

Goal.  distTo(t). 

 

 

Multiway choice.  To compute distTo(v) : 

・Select an edge e = u→v entering v. 

・Combine with shortest s↝u path. 

 

 

 

Dynamic programming recurrence.

Shortest paths in directed acyclic graphs:  dynamic programming formulation

28

u3

u1

vu 2

optimal substructure

take best
u2

10s

<latexit sha1_base64="cETBrH0OFzew3BYtWq8OoQ6R8og="></latexit>
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Shortest paths in directed acyclic graphs:  bottom-up solution

Bottom-up DP algorithm.  Takes Θ(E + V) time with two tricks: 

・Solve subproblems in topological order. 

・Form reverse digraph GR  (to support iterating over edges incident to vertex v). 

 

 

Equivalent (but simpler) computation.  Relax vertices in topological order. 

 

 

 

 

 

 

 

Remark.  Can find the shortest paths themselves by maintaining edgeTo[] array.

29

 
Topological topological = new Topological(G); 
for (int v : topological.order()) 
   for (DirectedEdge e : G.adj(v)) 
      relax(e);

ensures that “small” subproblems are solved before “large” ones

u3

u1

vuu2



Given a DAG, how to find longest path from s to t in Θ(E + V) time?
 
 
 
 
 
 
 
 

A.  Negate edge weights; use DP algorithm to find shortest path. 

B.  Replace min with max in DP recurrence. 

C.  Either A or B.

D.  No poly-time algorithm is known (NP-complete).

Dynamic programming:  quiz 4

30

0 1 2 3 4 5 6 71

1

1

longest path from s to t in a DAG (all edge weights = 1)

0 2 4 5 6 7

1

s t



DP subproblem dependency digraph. 

・Vertex v for each subproblem v . 

・Edge v→w , if subproblem v  must be solved before subproblem w . 

・Digraph must be a DAG. Why? 

 

Ex 1.  Modeling the coin changing problem as a shortest path problem in a DAG.

Shortest paths in DAGs and dynamic programming

31

0 1 2 3 4 5 6 7 8 91

1

coin denominations = { 1, 5, 8 }

10
1

1

1

1

0 5

1

10

1

s t

V = 10;



DP subproblem dependency digraph. 

・Vertex v for each subproblem v . 

・Edge v→w , if subproblem v  must be solved before subproblem w . 

・Digraph must be a DAG. Why? 

 

Ex 2.  Modeling the router installation problem as a shortest path problem in a DAG.

Shortest paths in DAGs and dynamic programming

32

s t

1

0

1

2 3 4 5 6
cost to install 

router at house 1

04

0 0

12

12 8

9 11

11

cost to install 
router at house 2

s t

0

4
0

0

8

0

9
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Content-aware resizing

Seam carving.  [Avidan–Shamir]  Resize an image without distortion for display 

on cell phones and web browsers.    

34
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Content-aware resizing

Seam carving.  [Avidan–Shamir]  Resize an image without distortion for display 

on cell phones and web browsers.    

 

 

 

 

 

 

 

 

 

 

 

 

 

In the wild.  Photoshop, ImageMagick, GIMP, ...
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To find vertical seam in a picture: 

・Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.  

・Weight of pixel = “energy function” of 8 neighboring pixels.

Content-aware resizing
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Content-aware resizing

To find vertical seam in a picture: 

・Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.  

・Weight of pixel = “energy function” of 8 neighboring pixels. 

・Seam = shortest path (sum of vertex weights) from top to bottom.
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To remove vertical seam in a picture: 

・Delete pixels on seam (one in each row).

Content-aware resizing
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Content-aware resizing:  dynamic programming formulation

Problem.  Find a min energy path from top to bottom. 

Subproblems.  distTo(col,  row)  = energy of min energy path from any top pixel to pixel (col, row). 

Goal.  min { distTo(col, H−1) }.
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Summary

How to design a dynamic programming algorithm. 

・Find good subproblems. 

・Develop DP recurrence for optimal value. 

– optimal substructure 

– overlapping subproblems 

・Determine order in which to solve subproblems.  

・Cache computed results to avoid unnecessary re-computation. 

・Reconstruct the solution:  backtrace or save extra state.
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