
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/6/21 9:26 AM

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs

‣ seam carving
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs
ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming

Algorithm design paradigm.

・Break up a problem into a series of overlapping subproblems.

・Build up solutions to larger and larger subproblems.

(caching solutions to subproblems for later reuse)

Application areas.

・Operations research: multistage decision processes, control theory, optimization, ...

・Computer science: AI, compilers, systems, graphics, databases, robotics, theory, ….

・Economics.

・Bioinformatics.

・Information theory.

・Tech job interviews.

Bottom line. Powerful technique; broadly applicable.

3

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Richard Bellman, *46

see Assignment 6

Some famous examples.

・System R algorithm for optimal join order in relational databases.

・Needleman–Wunsch/Smith–Waterman for sequence alignment.

・Cocke–Kasami–Younger for parsing context-free grammars.

・Bellman–Ford–Moore for shortest path.

・De Boor for evaluating spline curves.

・Viterbi for hidden Markov models.

・Unix diff for comparing two files.

・Avidan–Shamir for seam carving.

・NP-complete graph problems on trees (vertex color, vertex cover, independent set, ...).

・…

Dynamic programming algorithms

4

Dynamic programming books

5

at informit.com/register for convenient
access to downloads, updates, and
corrections as they become available.

Register Your Product

R O B E R T S E D G E W I C K
K E V I N W A Y N E

Robert Sedgewick and Kevin Wayne’s Computer Science:
An Interdisciplinary Approach is the ideal modern introduction
to computer science with Java programming for both students and
professionals. Taking a broad, applications-based approach, Sedgewick
and Wayne teach through important examples from science, mathematics,
engineering, !nance, and commercial computing.

The book demysti!es computation, explains its intellectual underpinnings,
and covers the essential elements of programming and computational
problem solving in today’s environments. The authors begin by introducing
basic programming elements such as variables, conditionals, loops,
arrays, and I/O. Next, they turn to functions, introducing key modular
programming concepts, including components and reuse. They present
a modern introduction to object-oriented programming, covering current
programming paradigms and approaches to data abstraction.

Building on this foundation, Sedgewick and Wayne widen their focus
to the broader discipline of computer science. They introduce classical
sorting and searching algorithms, fundamental data structures and their
application, and scienti!c techniques for assessing an implementation’s
performance. Using abstract models, readers learn to answer basic
questions about computation, gaining insight for practical application.
Finally, the authors show how machine architecture links the theory of
computing to real computers, and to the !eld’s history and evolution.

For each concept, the authors present all the information readers need
to build con!dence, together with examples that solve intriguing problems.
Each chapter contains question-and-answer sections, self-study drills,
and challenging problems that demand creative solutions.

Companion web site (introcs.cs.princeton.edu/java) contains
Q Extensive supplementary information, including suggested

approaches to programming assignments, checklists, and FAQs
Q Graphics and sound libraries
Q Links to program code and test data
Q Solutions to selected exercises
Q Chapter summaries
Q Detailed instructions for installing a Java programming environment
Q Detailed problem sets and projects

Companion 20-part series of video lectures is available at
informit.com/title/9780134493831

Cover design by Chuti Prasertsith
Cover illustration by Robert Sedgewick

 Text printed on recycled paper

ROBERT SEDGEWICK is the
William O. Baker Professor of Computer
Science at Princeton University,
where he was founding chairman
of the Department of Computer
Science. He has held visiting
research positions at Xerox PARC,
Institute for Defense Analyses, and
INRIA, and served on the board
of directors at Adobe Systems. His
research interests include analytic
combinatorics, design and analysis
of algorithms and data structures,
and program visualization. He has
written seventeen books.

KEVIN WAYNE is the Phillip Y.
Goldman Senior Lecturer in Computer
Science at Princeton University, where
he has taught since 1998, earning
several teaching awards. He is an
ACM Distinguished Educator and
holds a Ph.D. in operations research
and industrial engineering from
Cornell University.

Sedgewick and Wayne are coauthors
of Introduction to Programming in
Java: An Interdisciplinary Approach
(2015) and Algorithms, Fourth
Edition (2011), both from Addison-
Wesley. They have developed
extensive web content and MOOCs
on computer science and algorithms
(Sedgewick and Wayne), and on the
analysis of algorithms and analytic
combinatorics (Sedgewick). Their
pioneering MOOCs have attracted
more than 1 million learners; their
web content draws millions of
hits annually.

informit.com/aw
informit.com/sedgewick
introcs.cs.princeton.edu/java

ISBN-13:
ISBN-10:

978-0-13-407642-3
0-13-407642-7

9 7 8 0 1 3 4 0 7 6 4 2 3

5 7 9 9 9

$79.99 U.S. | $99.99 CANADA

C
om

puter Science
A

n
 In

te
rd

iscip
lin

a
ry

 A
p

p
ro

a
ch

SEDGEWICK

WAYNE

Computer Science/Programming

Computer
Science

An Interdisciplinary Approach

9780134076423_Sedgewick_Computer_Science_Cover.indd 1 4/26/16 10:08 AMpp. 284–289

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs

‣ seam carvingROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Fibonacci numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

7

Leonardo Fibonacci

3 5 13

21 34

8

55 89

<latexit sha1_base64="lG5KV5dzjHqxJdRxPd6Wu2waeY8=">AAACsXicbVFda9swFJXdfXTZR9P2cRtcFlYGY8HqNloYG4VB2WMHS9sRB0+Wr1MRWTKSPBKMn/cb+yP6HyYnHixpLwgO5xzdq3uUllJYF0XXQbh17/6Dh9uPeo+fPH2209/dO7e6MhxHXEttLlNmUQqFIyecxMvSICtSiRfp7GurX/xGY4VWP9yixEnBpkrkgjPnqaT/5zQR8BniFKdC1dx3sk0v/gQRHMRFque1yKEBT7SuCOIYWpXepdJ/6mlSi3e0gbcrdNjAAWzavwDtxaiybiQk/UE0jJYFtwHtwIB0dZbsBntxpnlVoHJcMmvHNCrdpGbGCS7RL1FZLBmfsSmOPVSsQDupl4k18NozGeTa+KMcLNn/b9SssHZRpN5ZMHdlN7WWvEsbVy4/ntRClZVDxVeD8kqC09DGD5kwyJ1ceMC4Ef6twK+YYdz5T1qbsuxdIl/bpJ5XSnCd4QYr3dwZ1vgU6WZmt8H54ZB+HEbfPwxOjrs8t8lz8oq8IZQckRPyjZyREeHkJtgPXgQvw/fhz/BXmK6sYdDd2SdrFc7+Ai0pzMY=</latexit>

Fi =

8
><

>:

0 B7 i = 0

1 B7 i = 1

Fi�1 + Fi�2 B7 i > 1

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Goal. Given n, compute Fn.

Naïve recursive approach:

<latexit sha1_base64="lG5KV5dzjHqxJdRxPd6Wu2waeY8=">AAACsXicbVFda9swFJXdfXTZR9P2cRtcFlYGY8HqNloYG4VB2WMHS9sRB0+Wr1MRWTKSPBKMn/cb+yP6HyYnHixpLwgO5xzdq3uUllJYF0XXQbh17/6Dh9uPeo+fPH2209/dO7e6MhxHXEttLlNmUQqFIyecxMvSICtSiRfp7GurX/xGY4VWP9yixEnBpkrkgjPnqaT/5zQR8BniFKdC1dx3sk0v/gQRHMRFque1yKEBT7SuCOIYWpXepdJ/6mlSi3e0gbcrdNjAAWzavwDtxaiybiQk/UE0jJYFtwHtwIB0dZbsBntxpnlVoHJcMmvHNCrdpGbGCS7RL1FZLBmfsSmOPVSsQDupl4k18NozGeTa+KMcLNn/b9SssHZRpN5ZMHdlN7WWvEsbVy4/ntRClZVDxVeD8kqC09DGD5kwyJ1ceMC4Ef6twK+YYdz5T1qbsuxdIl/bpJ5XSnCd4QYr3dwZ1vgU6WZmt8H54ZB+HEbfPwxOjrs8t8lz8oq8IZQckRPyjZyREeHkJtgPXgQvw/fhz/BXmK6sYdDd2SdrFc7+Ai0pzMY=</latexit>

Fi =

8
><

>:

0 B7 i = 0

1 B7 i = 1

Fi�1 + Fi�2 B7 i > 1

Fibonacci numbers: naïve recursive approach

8

public static long fib(int i)
{
 if (i == 0) return 0;
 if (i == 1) return 1;
 return fib(i-1) + fib(i-2);
}

Dynamic programming: quiz 1

How long to compute fib(80) using the naïve recursive algorithm?

A. Less than 1 second.

B. About 1 minute.

C. More than 1 hour.

D. Overflows a 64-bit long integer.

9

~/Desktop/dp> java Fibonacci 42
267914296
1.04 seconds

~/Desktop/dp> java Fibonacci 43
433494437
1.67 seconds

~/Desktop/dp> java Fibonacci 44
701408733
2.70 seconds

⋮
~/Desktop/dp> java Fibonacci 80
23416728348467685
2.88 years

seems to increase by a
factor of about 1.6𐄂

Fibonacci numbers: recursion tree and exponential growth

Exponential waste. Same overlapping subproblems are solved repeatedly.

Ex. To compute fib(6):

・ fib(5) is called 1 time.

・ fib(4) is called 2 times.

・ fib(3) is called 3 times.

・ fib(2) is called 5 times.

・ fib(1) is called Fn = F6 = 8 times.

10

F0

F1

F2

F1

F3

F0

F1

F2

F1

F0

F1

F2

F3

F4

F5

F0

F1

F2

F1

F0

F1

F2

F3

F4

F6

fib(6)

Fn ⇠ �n, � =
1 +

p
5

2
⇡ 1.618

<latexit sha1_base64="bwGZd7SViTIKBwQMzy63s6AiNIc=">AAACdnicbVBNaxsxEJW3X2n65aTHQhA1oYUWsxvS1qUEAoWSQw8p1EnA65pZ7WwsopUUabbYLPun8mvaY/sreqy88aF2OiD09ObNjOZlVklPcfyzE926fefuvY37mw8ePnr8pLu1feJN5QQOhVHGnWXgUUmNQ5Kk8Mw6hDJTeJpdfFzkT7+j89LorzS3OC7hXMtCCqBATbqfP000Tz/w1Muyve1UftOveXpZQd6++AFPCweiTvirILt0VL9pmnqvCfIUrHVmFuqS/ttkMOn24n7cBr8JkiXosWUcT7Y622luRFWiJqHA+1ESWxrX4EgKhc1mWnm0IC7gHEcBaijRj+t27YbvBibnhXHhaOIt+29FDaX38zILyhJo6tdzC/J/uVFFxWBcS20rQi2uBxWV4mT4wkOeS4eC1DwAEE6Gv3IxheARBadXprS9LYqVTepZpaUwOa6ximbkoAkuJuue3QQne/1kv//+y37vcLD0c4M9Y8/ZS5awd+yQHbFjNmSCXbEf7Bf73fkT7US70YtradRZ1jxlKxHFfwH4YL8d</latexit>

F5

F4 F4

F3F3 F3

F2F2 F2 F2 F2

F1 F1F1 F1F1 F1 F1F1

F6

F0F0 F0 F0 F0

“overlapping subproblems”

running time = # subproblems × cost per subproblem

Fibonacci numbers: top-down dynamic programming

Memoization.

・Maintain an array (or symbol table) to remember all computed values.

・If value to compute is known, just return it;

otherwise, compute it; remember it; and return it.

Impact. Solves each subproblem Fi only once; Θ(n) time to compute Fn.

11

public static long fib(int i)
{
 if (i == 0) return 0;
 if (i == 1) return 1;
 if (f[i] == 0) f[i] = fib(i-1) + fib(i-2);
 return f[i];
}

assume global long array f[], initialized to 0 (unknown)

Fibonacci numbers: bottom-up dynamic programming

Bottom-up dynamic programming.

・Build computation from the “bottom up.”

・Solve small subproblems and save solutions.

・Use those solutions to solve larger subproblems.

Impact. Solves each subproblem Fi only once; Θ(n) time to compute Fn ; no recursion.

12

public static long fib(int n)
{
 long[] f = new long[n+1];
 f[0] = 0;
 f[1] = 1;
 for (int i = 2; i <= n; i++)
 f[i] = f[i-1] + f[i-2];
 return f[n];
} smaller subproblems

Fibonacci numbers: further improvements

Performance improvements.

・Save space by saving only two most recent Fibonacci numbers.

・Exploit additional properties of problem:

13

Fn =

�n

p
5

�
, � =

1 +
p
5

2

<latexit sha1_base64="qTqPeHo2TCbeNG2egfE16uI5ecE=">AAACiXicbVBba9RAFJ6Nt9p62dZHXw4ugqAsSam4VYRCQXys4LaFTQyTycnu0MkknTkpXYb8PH+Ev8FXfXeSLuJuPTDDx3eZy5fVSloKwx+D4M7de/cfbD3c3nn0+MnT4e7eqa0aI3AqKlWZ84xbVFLjlCQpPK8N8jJTeJZdHHf62RUaKyv9lZY1JiWfa1lIwclT6TD9lGqIP8DHbosVFgQziN9AXBguXFwv5DfdutheGnJv27aXjJwvCBKPLhueQ2fq8n0igtfw1+3223Q4CsdhP3AbRCswYqs5SXcHe3FeiaZETUJxa2dRWFPiuCEpFLbbcWOx5uKCz3HmoeYl2sT1TbTw0jM5FJXxSxP07L8Jx0trl2XmnSWnhd3UOvJ/2qyhYpI4qeuGUIubi4pGAVXQ1Qq5NChILT3gwkj/VhAL7hshX/7aLf3ZNYq1n7jrRktR5bjBKromw7sWo83OboPT/XF0MD78cjA6mqz63GLP2Qv2ikXsHTtin9kJmzLBvrOf7Bf7HewEUTAJ3t9Yg8Eq84ytTXD8B/tXxlY=</latexit>

✓
1 1
1 0

◆n

=

✓
Fn+1 Fn

Fn Fn�1

◆n

<latexit sha1_base64="YBLq+fpefCJlszRHnIKk8oW5jr0=">AAACoXicbVFda9swFJXd9WNe2yXt417EwsZgLFilsJQyKBTK9paNpS3EqZHlm0RUlo103SYY/9A97L9MccNY3F2Q7uHcTx0lhZIWw/CX52+92N7Z3XsZvNo/OHzd6R5d27w0AkYiV7m5TbgFJTWMUKKC28IAzxIFN8n95Sp+8wDGylz/xGUBk4zPtJxKwdFRcecxSmAmdVVkHI1c1AGj7ymLosaHQQQ6/Ru700F0Hp3TL3TlgnblVVzpj6x2dVexdh3c3eBKf2J1u1Pc6YX9sDH6HLA16JG1DeOudxSluSgz0CgUt3bMwgInFTcohQI3oLRQcHHPZzB2UPMM7KRqFKrpO8ekdJobdzTShv23ouKZtcsscZluxbltx1bk/2LjEqeDSSV1USJo8TRoWiqKOV3JTVNpQKBaOsCFkW5XKubccIHuUzamNL0LEBsvqRalliJPocUqXKDhtVORtTV7Dq5P+uy0f/b9tHcxWOu5R96Qt+QDYeQzuSBfyZCMiCC/vS1v3zvwe/43f+j/eEr1vXXNMdkwf/wH0QLLZg==</latexit>

public static long fib(int n) {
 int f = 0, g = 1;
 for (int i = 0; i < n; i++) {
 g = f + g;
 f = g - f;
 }
 return f;
}

f and g are consecutive
Fibonacci numbers

Dynamic programming recap

Dynamic programming.

・Divide a complex problem into a number of simpler overlapping subproblems.

[define n + 1 subproblems, where subproblem i is computing the ith Fibonacci number]

・Define a recurrence relation to solve larger subproblems from smaller subproblems.

[easy to solve subproblem i if we know solutions to subproblems i − 1 and i − 2]

・Store solutions to each of these subproblems, solving each subproblem only once.

[use an array, storing subproblem i in f[i]]

・Use stored solutions to solve the original problem.

[subproblem n is original problem]

14

<latexit sha1_base64="pZcKEDNVg1Xxmmn2+MhtVB0b6DU=">AAACsnicdVFda9swFJW9ry77Sru9jY3LwspgNMgh6wqlozAoe+xgacviYGT5OhWVJSPJI8H4fX+xf6K/YXKSwpJ1FwSHc47u1T1KSymso/Q6CO/df/Dw0dbjzpOnz56/6G7vnFldGY4jrqU2FymzKIXCkRNO4kVpkBWpxPP06murn/9CY4VWP9y8xEnBpkrkgjPnqaT7+yQRcARxilOhau472aYTHwKF3bhI9awWOTTgidZFIY6hVaO71OhWPUlqsRc18HGJBg3swqb9C0SdGFW2GgmdpNuj/X063B8M4F8Q9emiemRVp8l2sBNnmlcFKscls3Yc0dJNamac4BL9FpXFkvErNsWxh4oVaCf1IrIG3nsmg1wbf5SDBfv3jZoV1s6L1DsL5i7tptaSd2njyuUHk1qosnKo+HJQXklwGtr8IRMGuZNzDxg3wr8V+CUzjDv/S2tTFr1L5Gub1LNKCa4z3GClmznDGp/ibVTwf3A26Eef+vT7sHd8sMpzi7wm78gHEpHP5Jh8I6dkRDi5CV4Fb4K34TD8GbKQL61hsLrzkqxVKP8A83XNFg==</latexit>

Fi =

8
><

>:

0 B7 i = 0

1 B7 i = 1

Fi�1 + Fi�2 B7 i > 1

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs

‣ seam carvingROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Goal. Install WiFi routers in a row of n houses so that:

・Minimize total cost, where cost(i) = cost to install a router at house i.

・Requirement: no two consecutive houses without a router.

i 1 2 3 4 5 6

cost(i) 1 4 12 8 9 11

ROUTER INSTALLATION PROBLEM

16

cost to install router at house i
(4 + 8 + 9 = 21)

ROUTER INSTALLATION PROBLEM: DYNAMIC PROGRAMMING FORMULATION

Goal. Install WiFi routers in a row of n houses so that:

・Minimize total cost, where cost(i) = cost to install a router at house i.

・Requirement: no two consecutive houses without a router.

Subproblems.

・yes(i) = min cost to install router at houses 1, …, i with router at i.

・no(i) = min cost to install router at houses 1, …, i with no router at i.

・Optimal cost = min { yes(n), no(n) }.

Dynamic programming recurrence.

・yes(0) = no(0) = 0

・yes(i) = cost(i) + min { yes(i − 1), no(i − 1) }

・no(i) = yes(i − 1)

17

“optimal substructure”
(optimal solution can be constructed from
optimal solutions to smaller subproblems)

ROUTER INSTALLATION: NAÏVE RECURSIVE IMPLEMENTATION

A mutually recursive implementation.

18

private int yes(int i)
{
 if (i == 0) return 0;
 return cost[i] + Math.min(yes(i-1), no(i-1));
}

private int no(int i)
{
 if (i == 0) return 0;
 return yes(i-1);
}

public int minCost()
{
 return Math.min(yes(n), no(n));
}

no(i) = yes(i − 1)

yes(i) = cost(i) + min { yes(i − 1), no(i − 1) }

What is running time of the naïve recursive algorithm as a function of n?

A. Θ(n)

B. Θ(n2)

C. Θ(cn) for some c > 1.

D. Θ(n!)

Y3

Y2

Y1 N1

N2

Y1

N3

Y2

Y1 N1

Y3

Y2

Y1 N1

N2

Y1

Dynamic programming: quiz 2

19

Y4 N4

Y5

yes(5)

yes(4) no(4)
“overlapping subproblems”

Y3 Y3

running time = # subproblems × cost per subproblem

Y2 Y2 Y2

Y1 Y1 Y1 Y1 Y1

Y4

20

“ Those who cannot remember the
 past are condemned to repeat it. ”

(Jorge Agustín Nicolás Ruiz de Santayana y Borrás)

— Dynamic Programming

Dynamic programming aphorism

ROUTER INSTALLATION: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.

Proposition. Takes Θ(n) time and uses Θ(n) extra space.

Remark. Could eliminate the no[] array by substituting identity no[k] = yes[k-1].
21

int[] yes = new int[n+1];
int[] no = new int[n+1];

for (int i = 1; i <= n; i++)
{
 yes[i] = cost[i] + Math.min(yes[i-1], no[i-1]);
 no[i] = yes[i-1];
}

return Math.min(yes[n], no[n]);

yes(i) = cost(i) + min { yes(i − 1), no(i − 1) }
no(i) = yes(i − 1)

no(6) = yes(5)yes(5) = cost(5) + min { yes(4), no(4) }yes(4) = cost(4) + min { yes(3), no(3) }no(3) = yes(2)yes(2) = cost(2) + min { yes(1), no(1) }no(1) = yes(0)

So far: we’ve computed the value of the optimal solution.

Still need: the solution itself (where to install routers).

i 0 1 2 3 4 5 6

yes(i) 0 1 4 13 12 21 23

no(i) 0 0 1 4 13 12 21

ROUTER INSTALLATION: RECONSTRUCTING THE SOLUTION (BACKTRACE)

22

yes(i) = cost to install routers at houses 1, 2, …, i with router at house i
no(i) = cost to install routers at houses 1, 2, …, i with router not at house i

COIN CHANGING

Problem. Given n coin denominations { d1, d2, …, dn } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Ex. Coin denominations = {1, 10, 25, 100 }, V = 130.

Greedy (8 coins). 131¢ = 100 + 25 + 1 + 1 + 1 + 1 + 1 + 1.

Optimal (5 coins). 131¢ = 100 + 10 + 10 + 10 + 1.

Remark. Greedy algorithm is optimal for U.S. coin denominations {1, 5, 10, 25, 100 }.
23

vending machine
(out of nickels)

5 coins
(131¢)

8 coins
(131¢)

Problem. Given n coin denominations { d1, d2, …, dn } and a target value V,

find the fewest coins needed to make change for V (or report impossible).

Subproblems. OPT(v) = fewest coins needed to make change for amount v.

Optimal value. OPT(V).

Multiway choice. To compute OPT(v),

・Select a coin of denomination di ≤ v for some i.

・Use fewest coins to make change for v − di.

Dynamic programming recurrence.

COIN CHANGING: DYNAMIC PROGRAMMING FORMULATION

24

optimal substructure

take best

<latexit sha1_base64="o2H80UrmBhbkbDptSOy+lmYiU7M=">AAAC93icbVFNbxMxEPUuXyV8peXIZUQEKkJEuxSViqioEhduBKlpi+Io8npnEyte78r2Roms/S3cEFd+CD+Af4N3mwNJGcn205s3nudxUkphbBT9CcJbt+/cvbd3v/Pg4aPHT7r7BxemqDTHES9koa8SZlAKhSMrrMSrUiPLE4mXyeJTk79cojaiUOd2XeIkZzMlMsGZ9dS0+/vL8Pxw+Qro4JQOOjTBmVCO+wtN3aEDiABeArW4suBAZFDDEk49S+m4f4z5xGtoLhSVIhfWTB01VWIs4wtHl6ZkHF0/OhKq9gUgfBP40Gzp1GOJsKzr5swsUNfwMbyG1g+8aTSNK6BazOZeUN808rE10qGo0o3labcX9aM24CaIN6BHNjGc7gcHNC14laOyXDJjxnFU2olj2gou0c+gMujfsWAzHHuoWI5m4tq51/DCMylkhfZLWWjZfyscy41Z54lX5szOzW6uIf+XG1c2O5k4ocrKouLXjbJKgi2g+URIhUZu5doDxrXwXoHPmWbc+q/e6tLeXSLfeolbVUrwIsUdVtqV1ayZYrw7s5vg4m0/Pu7HX9/1zk4289wjz8hzckhi8p6ckc9kSEaEB0fBtyAJeLgOv4c/wp/X0jDY1DwlWxH++gu83+dK</latexit>

OPT (v) =

8
><

>:

0 B7 v = 0

min
i : div

{ 1 +OPT (v � di) } B7 v > 0

Dynamic programming: quiz 3

In which order to compute OPT(v) in bottom-up DP ?  

A. Increasing i.

B. Decreasing i.

C. Either A or B.

D. Neither A nor B.

25

for (int v = 1; v <= V; v++)
 opt[v] = ...

for (int v = V; v >= 1; v--)
 opt[v] = ...

<latexit sha1_base64="o2H80UrmBhbkbDptSOy+lmYiU7M=">AAAC93icbVFNbxMxEPUuXyV8peXIZUQEKkJEuxSViqioEhduBKlpi+Io8npnEyte78r2Roms/S3cEFd+CD+Af4N3mwNJGcn205s3nudxUkphbBT9CcJbt+/cvbd3v/Pg4aPHT7r7BxemqDTHES9koa8SZlAKhSMrrMSrUiPLE4mXyeJTk79cojaiUOd2XeIkZzMlMsGZ9dS0+/vL8Pxw+Qro4JQOOjTBmVCO+wtN3aEDiABeArW4suBAZFDDEk49S+m4f4z5xGtoLhSVIhfWTB01VWIs4wtHl6ZkHF0/OhKq9gUgfBP40Gzp1GOJsKzr5swsUNfwMbyG1g+8aTSNK6BazOZeUN808rE10qGo0o3labcX9aM24CaIN6BHNjGc7gcHNC14laOyXDJjxnFU2olj2gou0c+gMujfsWAzHHuoWI5m4tq51/DCMylkhfZLWWjZfyscy41Z54lX5szOzW6uIf+XG1c2O5k4ocrKouLXjbJKgi2g+URIhUZu5doDxrXwXoHPmWbc+q/e6tLeXSLfeolbVUrwIsUdVtqV1ayZYrw7s5vg4m0/Pu7HX9/1zk4289wjz8hzckhi8p6ckc9kSEaEB0fBtyAJeLgOv4c/wp/X0jDY1DwlWxH++gu83+dK</latexit>

OPT (v) =

8
><

>:

0 B7 v = 0

min
i : div

{ 1 +OPT (v � di) } B7 v > 0

COIN CHANGING: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.

Proposition. DP algorithm takes Θ(n V) time and uses Θ(V) extra space.

Note. Not polynomial in input size; underlying problem is NP-complete.

26

int[] opt = new int[V+1];
opt[0] = 0;

for (int v = 1; v <= V; v++)
{
 // opt[v] = min_i { 1 + opt[v - d[i]] }
 opt[v] = INFINITY;
 for (int i = 1; i <= n; i++)
 if (d[i] <= v)
 opt[v] = Math.min(opt[v], 1 + opt[v - d[i]]);
}

n, log V

<latexit sha1_base64="o2H80UrmBhbkbDptSOy+lmYiU7M=">AAAC93icbVFNbxMxEPUuXyV8peXIZUQEKkJEuxSViqioEhduBKlpi+Io8npnEyte78r2Roms/S3cEFd+CD+Af4N3mwNJGcn205s3nudxUkphbBT9CcJbt+/cvbd3v/Pg4aPHT7r7BxemqDTHES9koa8SZlAKhSMrrMSrUiPLE4mXyeJTk79cojaiUOd2XeIkZzMlMsGZ9dS0+/vL8Pxw+Qro4JQOOjTBmVCO+wtN3aEDiABeArW4suBAZFDDEk49S+m4f4z5xGtoLhSVIhfWTB01VWIs4wtHl6ZkHF0/OhKq9gUgfBP40Gzp1GOJsKzr5swsUNfwMbyG1g+8aTSNK6BazOZeUN808rE10qGo0o3labcX9aM24CaIN6BHNjGc7gcHNC14laOyXDJjxnFU2olj2gou0c+gMujfsWAzHHuoWI5m4tq51/DCMylkhfZLWWjZfyscy41Z54lX5szOzW6uIf+XG1c2O5k4ocrKouLXjbJKgi2g+URIhUZu5doDxrXwXoHPmWbc+q/e6tLeXSLfeolbVUrwIsUdVtqV1ayZYrw7s5vg4m0/Pu7HX9/1zk4289wjz8hzckhi8p6ckc9kSEaEB0fBtyAJeLgOv4c/wp/X0jDY1DwlWxH++gu83+dK</latexit>

OPT (v) =

8
><

>:

0 B7 v = 0

min
i : div

{ 1 +OPT (v � di) } B7 v > 0

DYNAMIC PROGRAMMING

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs

‣ seam carvingROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Problem. Given a DAG with positive edge weights, find shortest path from s to t .

Subproblems. distTo(v) = length of shortest s↝v path.

Goal. distTo(t).

Multiway choice. To compute distTo(v) :

・Select an edge e = u→v entering v.

・Combine with shortest s↝u path.

Dynamic programming recurrence.

Shortest paths in directed acyclic graphs: dynamic programming formulation

28

u3

u1

vu 2

optimal substructure

take best
u2

10s

<latexit sha1_base64="cETBrH0OFzew3BYtWq8OoQ6R8og=">AAADIHicbVHLattAFB2pr8R9xEmX3VxqGhxajFxaajCBQDddphAnAY8xo9GVPUQaqTMjx2bQptv2K/o13ZUu0w/puiNZi9jphYHDuWfOfYV5IrQJghvPv3f/wcNHO7utx0+ePttr7x+c66xQHEc8SzJ1GTKNiZA4MsIkeJkrZGmY4EV49bHKXyxQaZHJM7PKcZKymRSx4Mw4atr+26IpM3NhbOSKnWVld3EEdHhMh9CiIc6EtNzZ67JFh44L4JCmYba0IoYS6nDsAo5BA6XjoDfAdLKW0kJGrjAai41hAVSJ2dwwpbJrWJS2Lq1SmwpZlpURTTA2QC3QN7DdV1H19boSNYlrrMzKLh7V8toaaAmHcKvFujsq8QvoFkUZNdNM252gF9QBd0G/AR3SxOl03zugUcaLFKXhCdN63A9yM7FMGcETdOspNOaMX7EZjh2ULEU9sfWBSnjlmAjiTLknDdTs7R+WpVqv0tApq+H0dq4i/5cbFyYeTKyQeWFQ8nWhuEjAZFBdGyKhkJtk5QDjSrhegc+ZYty402xUqb1z5BuT2GUhBc8i3GITszSKVVvsb+/sLjh/2+u/7wWf33VOBs0+d8gL8pJ0SZ98ICfkEzklI8I96n31vnnf/R/+T/+X/3st9b3mz3OyEf6ff4ZQ+yc=</latexit>

distTo(v) =

8
<

:

0 B7 v = s

min
e = u!v

{ distTo(u) + weight(e) } B7 v 6= s

Shortest paths in directed acyclic graphs: bottom-up solution

Bottom-up DP algorithm. Takes Θ(E + V) time with two tricks:

・Solve subproblems in topological order.

・Form reverse digraph GR (to support iterating over edges incident to vertex v).

Equivalent (but simpler) computation. Relax vertices in topological order.

Remark. Can find the shortest paths themselves by maintaining edgeTo[] array.

29

Topological topological = new Topological(G);
for (int v : topological.order())
 for (DirectedEdge e : G.adj(v))
 relax(e);

ensures that “small” subproblems are solved before “large” ones

u3

u1

vuu2

Given a DAG, how to find longest path from s to t in Θ(E + V) time?
 
 
 
 
 
 
 
 

A. Negate edge weights; use DP algorithm to find shortest path.

B. Replace min with max in DP recurrence.

C. Either A or B.

D. No poly-time algorithm is known (NP-complete).

Dynamic programming: quiz 4

30

0 1 2 3 4 5 6 71

1

1

longest path from s to t in a DAG (all edge weights = 1)

0 2 4 5 6 7

1

s t

DP subproblem dependency digraph.

・Vertex v for each subproblem v .

・Edge v→w , if subproblem v must be solved before subproblem w .

・Digraph must be a DAG. Why?

Ex 1. Modeling the coin changing problem as a shortest path problem in a DAG.

Shortest paths in DAGs and dynamic programming

31

0 1 2 3 4 5 6 7 8 91

1

coin denominations = { 1, 5, 8 }

10
1

1

1

1

0 5

1

10

1

s t

V = 10;

DP subproblem dependency digraph.

・Vertex v for each subproblem v .

・Edge v→w , if subproblem v must be solved before subproblem w .

・Digraph must be a DAG. Why?

Ex 2. Modeling the router installation problem as a shortest path problem in a DAG.

Shortest paths in DAGs and dynamic programming

32

s t

1

0

1

2 3 4 5 6
cost to install

router at house 1

04

0 0

12

12 8

9 11

11

cost to install
router at house 2

s t

0

4
0

0

8

0

9

4.4 SHORTEST PATHS

‣ introduction

‣ Fibonacci numbers

‣ interview problems

‣ shortest paths in DAGs

‣ seam carvingROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Content-aware resizing

Seam carving. [Avidan–Shamir] Resize an image without distortion for display

on cell phones and web browsers.

34
https://www.youtube.com/watch?v=vIFCV2spKtg

https://www.youtube.com/watch?v=vIFCV2spKtg

Content-aware resizing

Seam carving. [Avidan–Shamir] Resize an image without distortion for display

on cell phones and web browsers.

In the wild. Photoshop, ImageMagick, GIMP, ...

35

To find vertical seam in a picture:

・Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.

・Weight of pixel = “energy function” of 8 neighboring pixels.

Content-aware resizing

36

Content-aware resizing

To find vertical seam in a picture:

・Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.

・Weight of pixel = “energy function” of 8 neighboring pixels.

・Seam = shortest path (sum of vertex weights) from top to bottom.

37

seam

To remove vertical seam in a picture:

・Delete pixels on seam (one in each row).

Content-aware resizing

38

seam

Content-aware resizing: dynamic programming formulation

Problem. Find a min energy path from top to bottom.

Subproblems. distTo(col, row) = energy of min energy path from any top pixel to pixel (col, row).

Goal. min { distTo(col, H−1) }.

39

seam

Summary

How to design a dynamic programming algorithm.

・Find good subproblems.

・Develop DP recurrence for optimal value.

– optimal substructure

– overlapping subproblems

・Determine order in which to solve subproblems.

・Cache computed results to avoid unnecessary re-computation.

・Reconstruct the solution: backtrace or save extra state.

40

© Copyright 2021 Robert Sedgewick and Kevin Wayne

41

