
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 4/22/21 9:39 AM

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization
https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Algorithm design

Algorithm design patterns.

・Analysis of algorithms.

・Greed.

・Reduction.

・Dynamic programming.

・Divide-and-conquer.

・Randomization.

Want more? See COS 340, COS 343, COS 423, COS 445, COS 451, COS 488, .…

2

INTERVIEW QUESTIONS

3

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

EGG DROP

Goal. Find T using fewest drops.

5

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

threshold floor

EGG DROP

Goal. Find T using fewest drops.

Variant 0. 1 egg.

Solution. Use sequential search: drop on floors

1, 2, 3, … until egg breaks.

Analysis. 1 egg and T drops.

6

n

.

.

.

T

.

.

.

.

3

2

1

running time depends upon
a parameter that you don’t know a priori

breaks

does not
break

EGG DROP

Goal. Find T using fewest drops.

Variant 1. ∞ eggs.

Solution. Binary search for T.

・Initialize [lo, hi] = [0, n+1].

・Maintain invariant: egg breaks on floor hi but not on lo.

・Repeat until length of interval is 1:

– drop on floor mid = ⎣(lo + hi) / 2⎦.

– if it breaks, update hi = mid.

– if it doesn’t break, update lo = mid.

Analysis. ~ log2 n eggs, ~ log2 n drops.

7

Suppose T is much smaller than n.
Can you guarantee Θ(log T) drops?

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

EGG DROP

Goal. Find T using fewest drops.

Variant 1′. ∞ eggs and Θ(log T) drops.

Solution. Use repeated doubling; then binary search.

・Drop on floors 1, 2, 4, 8, 16, …, x to find a floor

x such that the egg breaks on floor x but not on ½ x.

・Binary search in interval [½ x, x].

Analysis. ~ log2 T eggs, ~ 2 log2 T drops.

・Repeated doubling: 1 egg and 1 + log2 x drops.

・Binary search: ~ log2 x eggs and ~ log2 x drops.

・Note that T ≤ x < 2T.

8

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

Algorithm design: quiz 1

Goal. Find T using fewest drops.

Variant 2. 2 eggs.

In worst case, how many drops needed as a 
function of n?

A. Θ(1)

B. Θ(log n)

C. Θ()

D. Θ(n)

9

p
n

<latexit sha1_base64="19RJT8B+LATTAWXFMhiGPyaBiaI=">AAACMHicbVDLTsJAFJ36RHwBLt00EhNXpPURWZK4cYmJPBJoyHR6CxOm0zpzayANP+FWv8Kv0ZVx61dYShcCnmSSk3PunXvvcSPBNVrWp7GxubW9s1vYK+4fHB4dl8qVtg5jxaDFQhGqrks1CC6hhRwFdCMFNHAFdNzx3dzvPIPSPJSPOI3ACehQcp8ziqnU7esnhYmcDUpVq2ZlMNeJnZMqydEclI1K3wtZHIBEJqjWPduK0EmoQs4EzIr9WENE2ZgOoZdSSQPQTpItPDPPU8Uz/VClT6KZqX87EhpoPQ3ctDKgONKr3lz8z+vF6NedhMsoRpBsMciPhYmhOb/e9LgChmKaEsoUT3c12YgqyjDNaGlK9ncEbOmSZBJLzkIPVlSBE1R0nqK9mtk6aV/W7KvazcN1tVHP8yyQU3JGLohNbkmD3JMmaRFGBHkhr+TNeDc+jC/je1G6YeQ9J2QJxs8vvDGrAA==</latexit>

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

EGG DROP (ASYMMETRIC SEARCH)

Goal. Find T using fewest drops.

Variant 2. 2 eggs.

Solution. Use gridding; then sequential search.

・Drop at floors

until first egg breaks, say at floor .

・Sequential search in interval .

Analysis. At most drops.

・First egg: ≤ drops.

・Second egg: ≤ drops.

Signing bonus 1. Use 2 eggs and at most drops.

Signing bonus 2. Use 3 eggs and at most 3 n1/3 drops.
10

p
2n

<latexit sha1_base64="Ar6eiC74UkVQbsb3vW7Do6Zen0I=">AAACMXicbVDLTsJAFJ36RHwBLt00EhNXpEWNLEncuMREHgYaMh0uMGE6rTO3BtLwFW71K/wadsatP2FbuhDwJJOcnHPv3HuPGwiu0bIWxtb2zu7efu4gf3h0fHJaKJZa2g8Vgybzha86LtUguIQmchTQCRRQzxXQdif3id9+BaW5L59wFoDj0ZHkQ84oxtJzT78ojKpy3i+UrYqVwtwkdkbKJEOjXzRKvYHPQg8kMkG17tpWgE5EFXImYJ7vhRoCyiZ0BN2YSuqBdqJ047l5GSsDc+ir+Ek0U/VvR0Q9rWeeG1d6FMd63UvE/7xuiMOaE3EZhAiSLQcNQ2GibybnmwOugKGYxYQyxeNdTTamijKMQ1qZkv4dAFu5JJqGkjN/AGuqwCkqmqRor2e2SVrVin1duX28KddrWZ45ck4uyBWxyR2pkwfSIE3CiEfeyDv5MD6NhfFlfC9Lt4ys54yswPj5BTzyqzw=</latexit>

p
n, 2

p
n, 3

p
n, . . .

<latexit sha1_base64="23CrmC8HrhMb6VmU/t9u0Q2tPm4=">AAACYHicbVDLSgMxFE3HV62vVne6CRbBhZQZFS24Edy4VLC20Cklk7nVYCYZkztiGfonfo1b/QG3folp7cJOPRA499xX7olSKSz6/lfJW1hcWl4pr1bW1jc2t6q17XurM8OhxbXUphMxC1IoaKFACZ3UAEsiCe3o6Wqcb7+AsUKrOxym0EvYgxIDwRk6qV89C+2zwVyNjmh4EV7Q40J8UohpKGONtl+t+w1/AjpPgimpkylu+rXSdhhrniWgkEtmbTfwU+zlzKDgEkaVMLOQMv7EHqDrqGIJ2F4+OXBED5wS04E27imkE/VvR84Sa4dJ5CoTho+2mBuL/+W6GQ6avVyoNENQ/HfRIJMUNR27RWNhgKMcOsK4Ee6vlD8ywzg6T2e2TGanwGcuyV8zJbiOoaBKfEXDRs7FoOjZPLk/bgSnjebtaf2yOfWzTPbIPjkkATknl+Sa3JAW4eSNvJMP8ln69srellf7LfVK054dMgNv9wfhQLfy</latexit>

p
n

<latexit sha1_base64="NNWQZ0wyzQNdMZP8L0uenrvxvNE=">AAACMHicbVDLTsJAFJ3iC/EFuHTTSExckdaQyJLEjUtM5JEAIdPpLUyYTuvMrYE0/IRb/Qq/RlfGrV9hW7oQ8CSTnJxz79x7jxMKrtGyPo3Czu7e/kHxsHR0fHJ6Vq5UuzqIFIMOC0Sg+g7VILiEDnIU0A8VUN8R0HNmd6nfewaleSAfcRHCyKcTyT3OKCZSf6ifFMZyOS7XrLqVwdwmdk5qJEd7XDGqQzdgkQ8SmaBaD2wrxFFMFXImYFkaRhpCymZ0AoOESuqDHsXZwkvzKlFc0wtU8iSamfq3I6a+1gvfSSp9ilO96aXif94gQq85irkMIwTJVoO8SJgYmOn1pssVMBSLhFCmeLKryaZUUYZJRmtTsr9DYGuXxPNIcha4sKEKnKOiaYr2ZmbbpHtTtxv15kOj1mrmeRbJBbkk18Qmt6RF7kmbdAgjgryQV/JmvBsfxpfxvSotGHnPOVmD8fMLvXurBA==</latexit>

2
p
n

<latexit sha1_base64="g+fFUiQPr9x2nqHJnZkmZQJ4Yjo=">AAACMnicbVDLTgJBEJzFF+IL8OhlIjHxRHYJiRxJvHjERB4RNmR2aGDC7Ow602sgG/7Cq36FP6M349WPcFk4CFjJJJWq7unu8kIpDNr2h5XZ2d3bP8ge5o6OT07P8oViywSR5tDkgQx0x2MGpFDQRIESOqEG5nsS2t7kduG3n0EbEagHnIXg+mykxFBwhon0WKE986QxVvN+vmSX7RR0mzgrUiIrNPoFq9gbBDzyQSGXzJiuY4foxkyj4BLmuV5kIGR8wkbQTahiPhg3Tlee06tEGdBhoJOnkKbq346Y+cbMfC+p9BmOzaa3EP/zuhEOa24sVBghKL4cNIwkxYAu7qcDoYGjnCWEcS2SXSkfM804JimtTUn/DoGvXRJPIyV4MIANVeIUNVuk6Gxmtk1albJTLdfuq6V6bZVnllyQS3JNHHJD6uSONEiTcKLIC3klb9a79Wl9Wd/L0oy16jkna7B+fgGbzqtq</latexit>

p
n

<latexit sha1_base64="NNWQZ0wyzQNdMZP8L0uenrvxvNE=">AAACMHicbVDLTsJAFJ3iC/EFuHTTSExckdaQyJLEjUtM5JEAIdPpLUyYTuvMrYE0/IRb/Qq/RlfGrV9hW7oQ8CSTnJxz79x7jxMKrtGyPo3Czu7e/kHxsHR0fHJ6Vq5UuzqIFIMOC0Sg+g7VILiEDnIU0A8VUN8R0HNmd6nfewaleSAfcRHCyKcTyT3OKCZSf6ifFMZyOS7XrLqVwdwmdk5qJEd7XDGqQzdgkQ8SmaBaD2wrxFFMFXImYFkaRhpCymZ0AoOESuqDHsXZwkvzKlFc0wtU8iSamfq3I6a+1gvfSSp9ilO96aXif94gQq85irkMIwTJVoO8SJgYmOn1pssVMBSLhFCmeLKryaZUUYZJRmtTsr9DYGuXxPNIcha4sKEKnKOiaYr2ZmbbpHtTtxv15kOj1mrmeRbJBbkk18Qmt6RF7kmbdAgjgryQV/JmvBsfxpfxvSotGHnPOVmD8fMLvXurBA==</latexit>

c
p
n

<latexit sha1_base64="gKZIZiRaXyXJQGIPFLjmc5keuEo=">AAACMnicbVDLTsJAFJ3iC/EFuHQzkZi4Iq0xkSWJG5eYyCNCQ6bTC0yYTuvMrYE0/IVb/Qp/RnfGrR9hgS4EPMkkJ+fcO/fe40VSGLTtDyu3tb2zu5ffLxwcHh2fFEvllgljzaHJQxnqjscMSKGgiQIldCINLPAktL3x7dxvP4M2IlQPOI3ADdhQiYHgDFPpkdOeedKYqFm/WLGr9gJ0kzgZqZAMjX7JKvf8kMcBKOSSGdN17AjdhGkUXMKs0IsNRIyP2RC6KVUsAOMmi5Vn9CJVfDoIdfoU0oX6tyNhgTHTwEsrA4Yjs+7Nxf+8boyDmpsIFcUIii8HDWJJMaTz+6kvNHCU05QwrkW6K+UjphnHNKWVKYu/I+ArlySTWAke+rCmSpygZvMUnfXMNknrqupcV2v315V6LcszT87IObkkDrkhdXJHGqRJOFHkhbySN+vd+rS+rO9lac7Kek7JCqyfX/Q8q5s=</latexit>

⇥
c
p
n�

p
n, c

p
n
⇤

<latexit sha1_base64="4DzM7D3ExWGqpy3rCv3dtAQreeY=">AAACZ3icbVBdSxtBFJ1sv9R+GC1IoS/XhkIfbNgtggERhL74aMGokF3C7M3dZHB2dp25K4Ylv6a/xld96k/ov3ASg5jogYEz59w7d+5JS60ch+G/RvDq9Zu371ZW195/+PhpvbmxeeqKyiJ1sdCFPU+lI60MdVmxpvPSksxTTWfpxe+pf3ZF1qnCnPC4pCSXQ6MyhZK91G8exJoyhh7EO4AQu0vLtZnAz0e6AxDvx/uAj56/xFYNRwxJv9kK2+EM8JxEc9IScxz3Nxqb8aDAKifDqKVzvSgsOamlZYWaJmtx5aiUeCGH1PPUyJxcUs/2nMB3rwwgK6w/hmGmPu2oZe7cOE99ZS555Ja9qfiS16s46yS1MmXFZPBhUFZp4AKmocFAWULWY08kWuX/CjiSViL7aBemzN4uCRc2qa8ro7AY0JKq+ZqtnPgUo+XMnpPTX+1ot935s9s67MzzXBFfxTfxQ0RiTxyKI3EsugLFX3EjbsVd43+wHmwFXx5Kg8a857NYQLB9D3epuog=</latexit>

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Greedy algorithms

Make locally optimal choices at each step.

Familiar examples.

・Prim’s algorithm. [for MST]

・Kruskal’s algorithm. [for MST]

・Dijkstra’s algorithm. [for shortest paths]

・Huffman’s algorithm. [for data compression]

More classic examples.

・A* search algorithm.

・Gale–Shapley stable marriage.

・Greedy algorithm for matroids.

・...

Caveat. Greedy algorithms rarely lead to provably optimal solutions.

 [but often used anyway in practice, especially for intractable problems]

12

COIN CHANGING PROBLEM AND CASHIER’S ALGORITHM

Goal. Given U. S. coin denominations { 1, 5, 10, 25, 100 },

devise a method to pay amount to customer using fewest coins.

Ex. 34¢.

Cashier’s (greedy) algorithm. Repeatedly add the coin of the largest value

that does not exceed the remaining amount to be paid.

Ex. $2.89.

13

6 coins

10 coins

Algorithm design: quiz 2

Is the cashier’s algorithm optimal for U.S. coin denominations { 1, 5, 10, 25, 100 } ?

A. Yes, greedy algorithms are always optimal.

B. Yes, for any set of coin denominations d1 < d2 < … < dn provided d1 = 1.

C. Yes, because of special properties of U.S. coin denominations.

D. No.

14

Properties of any optimal solution (for U.S. coin denominations)

Property 1. Number of pennies P ≤ 4.

Pf. Replace 5 pennies with 1 nickel.

Property 2. Number of nickels N ≤ 1.

Property 3. Number of dimes D ≤ 2.

Property 4. Number of quarters Q ≤ 3.

Property 5. N + D ≤ 2.

Pf.

・Properties 2 and 3 ⇒ N ≤ 1 and D ≤ 2.

・If N = 1 and D = 2, replace with 1 quarter.

Property 6. P + 5 N + 10 D + 25 Q ≤ 99.

15

exchange argument

P1 ⇒ contributes
at most 4

P5 ⇒ contributes
at most 20

P4 ⇒ contributes
at most 75

Optimality of cashier’s algorithm (for U.S. coin denominations)

Proposition. Cashier’s algorithm yields unique optimal solution for denominations { 1, 5, 10, 25, 100 }.

Pf. [for dollar coins]

・Suppose we are changing amount $x.yz.

・Cashier’s algorithm takes x dollar coins.

・Suppose (for the sake of contradiction) that an optimal solution takes fewer than x dollar coins.

・Then, optimal solution satisfies P + 5 N + 10 D + 25 Q ≥ 100.

・This contradicts Property 6:

[similar arguments justify greedy strategy for quarters, dimes, and nickels]

16

must make change for ≥ 100¢
using only pennies, nickels, dimes, and quarters P + 5 N + 10 D + 25 Q ≤ 99

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Reductions

Problem X reduces to problem Y if you can solve X by using an algorithm for Y.

Ex 1. Finding the median reduces to sorting.

Ex 2. Bipartite matching reduces to maxflow.

Many many problems reduce to:

・Sorting.

・Maxflow.

・Suffix array.

・Shortest path.

・Minimum spanning tree.

・Linear/semidefinite programming.

・...

Note. Reductions also play central role in computational complexity (e.g., NP-completeness).

18

instance I
(of problem X) solution to I

Algorithm for problem X

Algorithm
for problem Y

see ORF 307 or ORF 363

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is orange or black,

find shortest path from s to t that uses at most k orange edges.

19

k = 0: s→1→t (17)
k = 1: s→3→t (13)
k = 2: s→2→3→t (11)
k = 3: s→2→1→3→t (10)
k = 4: s→2→1→3→t (10)

s

2 3

1G

t

8

21

4 3

9

7

10

Goal. Given a digraph, where each edge has a positive weight and is orange or black,

find shortest path from s to t that uses at most k orange edges.

SHORTEST PATH WITH ORANGE AND BLACK EDGES

Goal. Given a digraph, where each edge has a positive weight and is orange or black,

find shortest path from s to t that uses at most k orange edges.

Solution.

・Create k+1 copies of the vertices in digraph G, labeled G0, G1, …, Gk.

・For each black edge v→w : add edge from vertex v in graph Gi to vertex w in Gi.

・For each orange edge v→w : add edge from vertex v in graph Gi to vertex w in Gi+1.

・Compute shortest path from s to any copy of t.

20

2 3

1

t

s′

2′ 3′

1′

t′

s"

2" 3"

1"G0 G1 G2

k = 2

t"

8 8 8

3

s

2 3

1G

t

8

21

4 3

9

7

10

s

3

Algorithm design: quiz 3

What is worst-case running time of algorithm as a function of k, the number of vertices V, 
and the number of edges E? Assume E ≥ V.

A. Θ(E log V)

B. Θ(k E)

C. Θ(k E log V)

D. Θ(k2 E log V)

21

(k E) log ((k+1) V)

number
of edges

number
of vertices

Dijkstra: E log V

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Dynamic programming

・Break up problem into a series of overlapping subproblems.

・Build up solutions to larger and larger subproblems.

[caching solutions to subproblems in a table for later reuse]

Familiar examples.

・Bellman–Ford.

・Seam carving.

・Shortest paths in DAGs.

More classic examples.

・Unix diff.

・Viterbi algorithm for hidden Markov models.

・CKY algorithm for parsing context-free grammars.

・Needleman–Wunsch/Smith–Waterman for DNA sequence alignment.

・...

23

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

Richard Bellman, *46

HOUSE COLORING PROBLEM

Goal. Paint a row of n houses red, green, or blue so that:

・Minimize total cost, where cost(i, color) is cost to paint i given color.

・No two adjacent houses have the same color.

24

1 2 3 4 5 6

cost(i, red) 7 6 7 8 9 20

cost(i, green) 3 8 9 22 12 8

cost(i, blue) 16 10 4 2 5 7

cost to paint house i the given color
(3 + 6 + 4 + 8 + 5 + 8 = 34)

HOUSE COLORING PROBLEM: DYNAMIC PROGRAMMING FORMULATION

Goal. Paint a row of n houses red, green, or blue so that:

・Minimize total cost, where cost(i, color) is cost to paint i given color.

・No two adjacent houses have the same color.

Subproblems.

・R(i) = min cost to paint houses 1, …, i with i red.

・G(i) = min cost to paint houses 1, …, i with i green.

・B(i) = min cost to paint houses 1, …, i with i blue.

・Optimal cost = min { R(n), G(n), B(n) }.

Dynamic programming recurrence.

・R(0) = G(0) = B(0) = 0

・R(i) = cost(i, red) + min { G(i − 1), B(i − 1) }

・G(i) = cost(i, green) + min { B(i − 1), R(i − 1) }

・B(i) = cost(i, blue) + min { R(i − 1), G(i − 1) }
25

“optimal substructure”
(optimal solution can be constructed from
optimal solutions to smaller subproblems)

R(6) = cost(6, red) + min { G(5), B(5) }
 = 20 + min { 32, 26 }
 = 46

G(6) = cost(6, green) + min { R(5), B(5) }
 = 8 + min { 29, 26 }
 = 34

B(6) = cost(6, blue) + min { R(5), G(5) }
 = 7 + min { 29, 32 }
 = 36

Bottom-up DP trace. Given R(i), G(i), and B(i), easy to compute R(i+1), G(i+1), and B(i+1).

6

46

34

36

HOUSE COLORING: TRACE

26

0 1 2 3 4 5

R(i) 0 7 9 20 21 29

G(i) 0 3 15 18 35 32

B(i) 0 16 13 13 20 26

cost to paint houses 1, 2, …, i with house i the given color

HOUSE COLORING: BOTTOM-UP IMPLEMENTATION

Bottom-up DP implementation.

Proposition. Takes Θ(n) time and uses Θ(n) extra space.
27

int[] r = new int[n+1];
int[] g = new int[n+1];
int[] b = new int[n+1];

for (int i = 1; i <= n; i++) {
 r[i] = cost[i][RED] + Math.min(g[i-1], b[i-1]);
 g[i] = cost[i][GREEN] + Math.min(b[i-1], r[i-1]);
 b[i] = cost[i][BLUE] + Math.min(r[i-1], g[i-1]);
}

return min3(r[n], g[n], b[n]);

R(i) = cost(i, red) + min { G(i − 1), B(i − 1) }

G(i) = cost(i, green) + min { B(i − 1), R(i − 1) }

B(i) = cost(i, blue) + min { R(i − 1), G(i − 1) }

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Divide and conquer

・Break up problem into two or more independent subproblems.

・Solve each subproblem recursively.

・Combine solutions to subproblems to form solution to original problem.

Familiar examples.

・Mergesort.

・Quicksort.

More classic examples.

・Closest pair.

・Convolution and FFT.

・Matrix multiplication.

・Integer multiplication.

…

Prototypical usage. Turn brute-force Θ(n2) algorithm into Θ(n log n) one.

29

needs to take COS 226?

Personalized recommendations

Music site tries to match your song preferences with others.

・Your ranking of songs: 0, 1, …, n−1.

・My ranking of songs: a0, a1, …, an−1.

・Music site consults database to find people with similar tastes.

Kendall-tau distance. Number of inversions between two rankings.

Inversion. Songs i and j are inverted if i < j, but ai > aj.

30

A B C D E F G H

you 0 1 2 3 4 5 6 7

me 0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

COUNTING INVERSIONS

Problem. Given a permutation of length n, count the number of inversions.

Brute-force Θ(n2) algorithm. For each i < j, check if ai > aj .

A bit better. Run insertion sort; return number of exchanges.

Goal. Θ(n log n) time (or better).

31

0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

COUNTING INVERSIONS: DIVIDE-AND-CONQUER

32

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray

0 3 4 7 9 1 5 8 2 6 1

count inversions  
in right subarray 0 3 4 7 9 1 2 5 6 8 3

count inversions
with one element
in each subarray

0 3 4 7 9 1 2 5 6 8 13

4-3

5-2 8-2 8-6

3-1 3-2 4-1 4-2 7-1 7-2 7-5 7-6 9-1 9-2 9-5 9-6 9-8

1 + 3 + 13 = 17output 0 1 2 3 4 5 6 7 8 9

this step seems to
require Θ(n2) time

COUNTING INVERSIONS: DIVIDE-AND-CONQUER

33

0 4 3 7 9 1 5 8 2 6input

count inversions  
in left subarray

and sort

0 3 4 7 9 1 5 8 2 6 1

count inversions  
in right subarray

and sort

0 3 4 7 9 1 2 5 6 8 3

count inversions
with one element in

each sorted subarray

0 3 4 7 9 1 2 5 6 8 13

1 + 3 + 13 = 17and merge into 
sorted whole

0 1 2 3 4 5 6 7 8 9

Algorithm design: quiz 5

What is running time of algorithm as a function of n?

A. Θ(n)

B. Θ(n log n)

C. Θ(n log2 n)

D. Θ(n2)

34

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Randomized algorithms

Algorithm whose performance (or output) depends on the results of random coin flips.

Familiar examples.

・Quicksort.

・Quickselect.

More classic examples.

・Miller–Rabin primality testing.

・Rabin–Karp substring search.

・Polynomial identity testing.

・Volume of convex body.

・Universal hashing.

・Global min cut.

…

36

NUTS AND BOLTS

Problem. A disorganized carpenter has a mixed pile of n nuts and n bolts.

・The goal is to find the corresponding pairs of nuts and bolts.

・Each nut fits exactly one bolt; each bolt fits exactly one nut.

・By fitting a nut and a bolt together, the carpenter can determine which is bigger.

Brute-force algorithm. Compare each bolt to each nut: Θ(n2) compares.

Challenge. Design an algorithm that makes O(n log n) compares.
37

but cannot directly compare
two nuts or two bolts

NUTS AND BOLTS

Shuffle. Shuffle the nuts and bolts.

Partition.

・Pick leftmost bolt i and compare against all nuts;

divide nuts smaller than i from those that are larger than i.

・Let i ʹ be the nut that matches bolt i. Compare i ʹ against all bolts;

divide bolts smaller than i ʹ from those that are larger than i ʹ.

Divide-and-conquer. Recursively solve two subproblems.

38

3 0 1 4 2 5 6 9 8 7bolts

2′ 1′ 4′ 0′ 3′ 5′ 7′ 8′ 9′ 6′nuts

5 3 6 0 9 1 4 8 2 7

7′ 2′ 8′ 1′ 5′ 9′ 4′ 0′ 6′ 3′

bolts

nuts

smaller nuts larger nuts

smaller bolts larger bolts

Algorithm design: quiz 6

What is the expected running time of the randomized algorithm as a function of n?

A. Θ(n)

B. Θ(n log n)

C. Θ(n log2 n)

D. Θ(n2)

39

same analysis as quicksort
(but ~ 2n compares per partition instead of ~ n)

NUTS AND BOLTS

Hiring bonus. Algorithm that takes O(n log n) time in the worst case.

40

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time

(Extended Abstract)

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(logn) t ime on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

1 Introduction

Given a set of n nuts of distinct widths and a set of n
bolts such that each nut corresponds to a unique bolt
of the same width, how should we match every nut with

‘Department of Mathematics, Rutgers University, P&&away,
NJ 08855. Email: komlos&nath.rutgem.edu.

‘Department of Computer Science, Stanford University,
CA 94305. Supported by an NSF Mathematical Sciences Post-
doctoral Research Fellowship. Part of the work was done
while the author was visiting DIMACS, and part of work
was done while he was at MIT and supported by DARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
yuanOcs.stanford.edu.

3Department of Computer Science, Rutgers University, Pis-
CataWay, NJ 08855. Part of the work was done while the au-
thor was at University of Paderborn, Germany. Email: sse-
mered@cs.rutgers.edu.

‘The work presented here is part of the “Hypercomputing &
Design” (HPCD) project; and it is supported (partly) by ARPA
under contract DABT-63-93-C-0064. ‘The content of the infor-
mation herein does not necessarily reflect the position of the
Government and official endorsement should not be inferred.

its corresponding bolt by comparing nuts with bolts (no
comparison is allowed between two nuts or between two
bolts)?

This problem can be naturally viewed as a variant
of the classic sorting problem as follows. Given two
lists of n numbers each such that one list is a permu-
tation of the other, how should we sort the lists by
comparisons only between numbers in different lists?
In fact, the following simple reasoning illustrates that
the problem of matching nuts and bolts and the prob-
lem of sorting them have the same complexity, up to
a constant factor. On one hand, if the nuts and bolts
are sorted, then a nut and a bolt at the same position
in the sorted order certainly match with each other.
On the other hand, if the nuts and bolts are matched,
we can sort them by any optimal sorting algorithm in
O(n log n) time. Hence, the complexity equivalence of
sorting and matching them follows from the simple in-
formation lower bound of R(nlogn) on the matching
problem, which can be easily derived from the fact that
there are n! possible ways to match the nuts and bolts.
So in this paper, we will consider the problem of how
to sort the nuts and bolts, instead of matching them.

The problem of sorting nuts and bolts has a sim-
ple randomized algorithm (e.g., a simple variant of
the QUICKSORT algorithm) that runs in the opti-
mal O(n logn) expected time [8]. However, finding
a nontrivial (say, o(n2)-time) deterministic algorithm
has appeared to be highly nontrivial. Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3] designed an
O(n log4 n)-time deterministic algorithm based on ex-
pander graphs, and they posed the open question of de-
signing an optimal deterministic algorithm to the prob-
lem. Recently, Bradford and Fleischer [6] improved the
running time to O(n log’ n), but the question remains
open if O(n log n) can be achieved.

Since the classic sorting problem has been inten-
sively studied, it is natural to ask if any existing
O(n log n)-time deterministic sorting algorithm can be
easily adapted to sort nuts and bolts. In a certain sense,

232

Chapter 27
Matching Nuts and Bolts in O(nlogn) Time

(Extended Abstract)

Jinos KomMs ‘t4 Yuan Ma 2 Endre Szemerkdi 3y4

Abstract

Given a set of n nuts of distinct widths and a set of n bolts
such that each nut corresponds to a unique bolt of the same
width, how should we match every nut with its correspond-
ing bolt by comparing nuts with bolts (no comparison is
allowed between two nuts or between two bolts)? The prob-
lem can be naturally viewed as a variant of the classic sort-
ing problem as follows. Given two lists of n numbers each
such that one list is a permutation of the other, how should
we sort the lists by comparisons only between numbers in
different lists? We give an O(n log n)-time deterministic al-
gorithm for the problem. This is optimal up to a constant
factor and answers an open question posed by Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3]. Moreover, when
copies of nuts and bolts are allowed, our algorithm runs in
optimal O(logn) t ime on n processors in Valiant’s parallel
comparison tree model. Our algorithm is based on the AKS
sorting algorithm with substantial modifications.

1 Introduction

Given a set of n nuts of distinct widths and a set of n
bolts such that each nut corresponds to a unique bolt
of the same width, how should we match every nut with

‘Department of Mathematics, Rutgers University, P&&away,
NJ 08855. Email: komlos&nath.rutgem.edu.

‘Department of Computer Science, Stanford University,
CA 94305. Supported by an NSF Mathematical Sciences Post-
doctoral Research Fellowship. Part of the work was done
while the author was visiting DIMACS, and part of work
was done while he was at MIT and supported by DARPA
Contracts N00014-91-J-1698 and N00014-92-J-1799. Email:
yuanOcs.stanford.edu.

3Department of Computer Science, Rutgers University, Pis-
CataWay, NJ 08855. Part of the work was done while the au-
thor was at University of Paderborn, Germany. Email: sse-
mered@cs.rutgers.edu.

‘The work presented here is part of the “Hypercomputing &
Design” (HPCD) project; and it is supported (partly) by ARPA
under contract DABT-63-93-C-0064. ‘The content of the infor-
mation herein does not necessarily reflect the position of the
Government and official endorsement should not be inferred.

its corresponding bolt by comparing nuts with bolts (no
comparison is allowed between two nuts or between two
bolts)?

This problem can be naturally viewed as a variant
of the classic sorting problem as follows. Given two
lists of n numbers each such that one list is a permu-
tation of the other, how should we sort the lists by
comparisons only between numbers in different lists?
In fact, the following simple reasoning illustrates that
the problem of matching nuts and bolts and the prob-
lem of sorting them have the same complexity, up to
a constant factor. On one hand, if the nuts and bolts
are sorted, then a nut and a bolt at the same position
in the sorted order certainly match with each other.
On the other hand, if the nuts and bolts are matched,
we can sort them by any optimal sorting algorithm in
O(n log n) time. Hence, the complexity equivalence of
sorting and matching them follows from the simple in-
formation lower bound of R(nlogn) on the matching
problem, which can be easily derived from the fact that
there are n! possible ways to match the nuts and bolts.
So in this paper, we will consider the problem of how
to sort the nuts and bolts, instead of matching them.

The problem of sorting nuts and bolts has a sim-
ple randomized algorithm (e.g., a simple variant of
the QUICKSORT algorithm) that runs in the opti-
mal O(n logn) expected time [8]. However, finding
a nontrivial (say, o(n2)-time) deterministic algorithm
has appeared to be highly nontrivial. Alon, Blum,
Fiat, Kannan, Naor, and Ostrovsky [3] designed an
O(n log4 n)-time deterministic algorithm based on ex-
pander graphs, and they posed the open question of de-
signing an optimal deterministic algorithm to the prob-
lem. Recently, Bradford and Fleischer [6] improved the
running time to O(n log’ n), but the question remains
open if O(n log n) can be achieved.

Since the classic sorting problem has been inten-
sively studied, it is natural to ask if any existing
O(n log n)-time deterministic sorting algorithm can be
easily adapted to sort nuts and bolts. In a certain sense,

232

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greed

‣ reduction

‣ dynamic programming

‣ divide-and-conquer

‣ randomization

‣ credits

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Credits

Co-instructors

Precept facilitators. Aliya, Alkin, Allison, Ananya, Justin, Harvey, Ryan, and Tejas.

Undergrad graders and and lab TAs. Apply to be one next semester!

42

and graduate student AIs.

A final thought

43

A farewell video (from P04, Fall 2018)

A final thought

44

“ Algorithms and data structures are love.

 Algorithms and data structures are life. ”

 — anonymous COS 226 student

