A l g Or 1 [h 1IMSs ROBERT SEDGEWICK | KEVIN WAYNE

3.4 HASH TABLES

» hash functions
» separate chaining
» linear probing

» context

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Symbol table implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
delete delete

sequential search

equals()
(unordered list) i i i i l & <
binary search 1 1 v compareTo()
(ordered array) 03 7t & & 08 1 " "
BST n n n log n log n Vn v compareTo()
red-black BST log n log n log n log n log n log n v compareTo()

. - . - equals()
ashing . : - ()) 0 hashCode(

Q. C do b) T under suitable technical assumptions
. Lan we do better:

A. Yes, but only with different access to the data.

Hashing: basic plan

Save key—value pairs in a key-indexed table (index is a function of the key).
Hash function: Mathematical function that maps (hashes) a key to an array index.

Collision: Two distinct keys that hash to same index.

'l IIKORII
Issue. Collisions are unavoidable.

« How to limit collisions?

/ 3 "USA"

- How to accommodate collisions? hash("USA™) = 3
4
hash("ITA") = 3

99 IIKENII

3.4 HASH TABLES

» hash functions

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Designing a hash function

Required properties.
« Deterministic.

« Each key hashes to a table index between 0 and m — 1.

Desirable properties.

key
. Very fast to compute. l
« For any subset of n input keys, each table index table index

gets approximately n/m keys.

o0 ®

@ @ o0 @ o0

® ® & o &6 o6 o o o0 o0 o0

o &6 &6 &6 &6 &6 & o o o o0 o0 o0
o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
leads to good hash-table performance leads to poor hash-table performance

(m =10, n = 20) (m =10, n = 20)

Designing a hash function

Required properties.
« Deterministic.

« Each key hashes to a table index between 0 and m — 1.

Desirable properties.

fy
l

« For any subset of n input keys, each table index table index

- Very fast to compute.

gets approximately n/m keys.

Ex 1. Last 4 digits of U.S. Social Security number.
Ex 2. Last 4 digits of phone number.

123~-45~-6789

ABLISHE R

JOHN Q PUBLIC

(@ +1 (718) 867-5309

Hash tables: quiz 1

Which is the last digit of your day of birth?

o 0

O or 1
2 or 3
4 or 5
6 or /

8or9

WELCOME BABY

y >
7y =

Y NN
&

Hash tables: quiz 2

Which is the last digit of your year of birth?

o 0

O or 1
2 or 3
4 or 5
6 or /

8or9

WELCOME BABY

y >
7y =

Y NN
&

Java’s hashCode() conventions

All Java classes inherit a method hashCode (), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).
Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

X Y
- -
| |
X .hashCode () y.hashCode ()

Customized implementations. Integer, Double, String, java.net.URL, ...

Legal (but highly undesirable) implementation. Always return 17.

User-defined types. Users are on their own.

Implementing hashCode(): integers and doubles

Java library implementations

public final class Integer

{
private final int value;
public 1nt hashCode()
{ return value; }

¥

public final class Double

{
private final double value;
public 1nt hashCode()
{
long bits = doubleTolLongBits(value);
return (int) (bits A (bits >>> 32));
} A
¥

convert to IEEE 64-bit representation;
Xor most significant 32-bits
with least significant 32-bits

10

Implementing hashCode(): arrays

31x + y rule.
« |nitialize hash to 1.

- Repeatedly multiply hash by 31 and add next integer in array.

public class Arrays

{

public static 1int hashCode(int[] a) {
1f (a == null)
return 0;

int hash = 1;

for (int 1 = 0; 1 < a.length; 1++)
hash = 31*hash + al[1];

return hash;

}

Java library implementation

11

Implementing hashCode(): user-defined types

public final class Transaction
{
private final String who;
private final Date when;
private final double amount;

public Transaction(String who, Date when, double amount)

{ ¥

public boolean equals(Object y)
{ }

public 1nt hashCode()

{
int hash = 1;
hash = 31*hash + who.hashCode(); < for reference types,
hash = 31*hash + when.hashCode(): use hashCode)
nash = 31*hash + ((Double) amount).hashCode(); < for primitive types,
return hash; use hashCode ()

} of wrapper type

Implementing hashCode(): user-defined types

public final class Transaction
{
private final String who;
private final Date when;
private final double amount;

public Transaction(String who, Date when, double amount)

{ ¥

public boolean equals(Object y)
{ }

public 1nt hashCode()
{

return Objects.hash(who, when, amount); «<—— shorthand

}

13

Implementing hashCode()

“Standard” recipe for user-defined types.
« Combine each significant field using the 31x + y rule.
« Shortcut 1: use Objects.hash() for all fields (except arrays).
« Shortcut 2: use Arrays.hashCode() for arrays of primitives.

« Shortcut 3: use Arrays.deepHashCode() for arrays of objects.

Principle. Every significant field contributes to hash.

In practice. Recipe above works reasonably well; used in Java libraries.

14

Hash tables: quiz 3

Which Java function maps hashable keys to integers between 0 and m-1 ?

C.

D.

private int hash(Key key)
{ return key.hashCode() % m; }

private 1nt hash(Key key)
{ return Math.abs(key.hashCode()) % m;

Both A and B.

Neither A nor B.

}

|
|

X .hashCode ()

-
|

hash(x)

15

Modular hashing

Hash code. An int between -23! and 23! - 1.

Hash function. An int between 0 and m—1 (for use as array index).

private int hash(Key key)
{ return key.hashCode() % m; }

bug

private 1nt hash(Key key)
{ return Math.abs(key.hashCode()) % m;

1-in-a-billion bug

}

|
|

X .hashCode ()

-
|

hash(x)

16

Modular hashing

Hash code. An int between -23! and 23! - 1.

Hash function. An int between 0 and m—1 (for use as array index).

private int hash(Key key)
{ return (key.hashCode() & Ox7fffffff) % m; }

correct

private 1nt hash(Key key)

{
int h = key.hashCode() ;

h A= (h >>> 20) A (h >>> 12) A (h >>> 7) A (h >>> 4);
return h & (m-1);

}

Java 7 (protects against poor quality hashCode())

|
|

X .hashCode ()

-
|

hash(x)

17

Uniform hashing assumption

Uniform hashing assumption. Any key is equally likely to hash to one of m possible indices.

Bins and balls. Toss n balls uniformly at random into m bins.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

Bad news.
« In a random group of 23 people, more likely than not

that two people share the same birthday.

. Expect two balls in the same bin after ~/7m /2 tosses.

Uniform hashing assumption

Uniform hashing assumption. Any key is equally likely to hash to one of m possible indices.

Bins and balls. Toss n balls uniformly at random into m bins.

®

® ®

® ® ® O ® ®| O ®
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

Good news.

 When n >> m, expect most bins to have approximately n/m balls.

« When n=m, expect most loaded bin has ~Inn/Inlnn balls.

hash value frequencies for words in Tale of Two Cities (m = 97)

19

3.4 HASH TABLES

» separate chaining

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Collisions

Collision. Two distinct keys that hash to the same index.
. Birthday problem = can’t avoid collisions.

- Load balancing = no index gets too many collisions.

= 0k to scan through all colliding keys.

/

hash("USA™) = 3/
hash("ITA") = 3

99

1 KORII

IIUSAII

"KENII

21

Separate-chaining hash table

Use an array of m linked lists.
« Hash: map key to table index i between 0 and m - 1.

» |Insert: add key-value pair at front of chain i (if not already in chain).

put(L, 11)
.. hash(L) = 3
separate-chaining hash table (m = 4)
| - > D —> null
St[]/
K —> ——> E —> A —> null
/

F 5 C > B —> null

22

Separate-chaining hash table

Use an array of m linked lists.
« Hash: map key to table index i between 0 and m - 1.

» |Insert: add key-value pair at front of chain i (if not already in chain).

« Search: perform sequential search in chain .

get(E)
o hash(E) = 1
separate-chaining hash table (m = 4)
| - > D —> null
St[]/ i
K —>] — E O—> A —> null
/

Separate-chaining hash table: Java implementation

public class SeparateChainingHashST<Key, Value>

{
private int m = 128;
private Node[]| st = new Node[m];

private static class Node

{
private Object key;
private Object val;
private Node next;:
¥

public Value get(Key key) {
int 1 = hash(key):
for (Node x = st[1]; x != null; X = x.next)
1f (key.equals(x.key)) return (Value) x.val;
return null;

Separate-chaining hash table: Java implementation

public class SeparateChainingHashST<Key, Value>
{

private int m = 128; // number of chains
private Node[] st = new Node[m]; // array of chains

private static class Node

{
private Object key;
private Object val;
private Node next;
¥

private 1nt hash(Key key)
{ /* as before */ }

public void put(Key key, Value val)

{
int 1 = hash(key);
for (Node x = st[1]; X != null; X = X.next)
1f (key.equals(x.key)) { x.val = val; return; }
st[1] = new Node(key, val, st[1]);
¥

25

Analysis of separate chaining

Recall load balancing. Under uniform hashing assumption, length of each chain is

tightly concentrated around mean = n/m.

hash value frequencies for words in Tale of Two Cities (m = 97)

calls to either
equals() or hashCode()

/

Consequence. Expected number of probes for search/insert is O/ m).
- m too small = chains too long. T
« mtoo large = too many empty chains. m times faster than

sequential search
» Typical choice: m ~ 4n = ©O(1) time for search/insert.

26

Resizing in a separate-chaining hash table

Goal. Average length of chain n/m is ©(1).
« Double length m of array when n/m = 8.
- Halve length m of array whenn/m < 2.

- Note: need to rehash all keys when resizing.

before resizing (n/m = 8)

st[]

after resizing (n/m = 4)

St[]/

T~

/P—>N—>L—>E—>

Hash tables: quiz 4

How to delete a key-value pair from a separate-chaining hash table?

A. Search for key; remove key—value pair from chain.

B. Compute hash of key; reinsert all other key-value pairs in chain.

C. Either A or B.

D. Neither A nor B.

delete C

st[]

-
—
N

28

Symbol table implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
search delete search delete

sequential search

equals
(unordered list) & & & & & & : O
binary search
(74 compareTo
(ordered array) log n n n log n n n p O
BST n n n log n log n Vn v compareTo()
red-black BST log n log n log n log n log n log n v compareTo()
haini ; : : equals()
separate chaining n n n 1 1 1 hashCode O

T under uniform hashing assumption

3.4 HASH TABLES

Al oor ithms » linear probing

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Linear-probing hash table: insert

- Maintain key—-value pairs in two parallel arrays, with one key per cell.
- Resolve collisions by probing: search successive cells until either finding the key

or an unused cell.

Inserting into a linear-probing hash table.

linear-probing hash table

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
keys[] P M A C H L E R X
put(K, 14) K
hash(K) = 7 14

vals|[]

31

Linear-probing hash table: search

- Maintain key—-value pairs in two parallel arrays, with one key per cell.
- Resolve collisions by probing: search successive cells until either finding the key

or an unused cell.

Searching in a linear-probing hash table.

linear-probing hash table

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14 15
keysfl] P M A C H L @ £ R X
get(K) get(Z) < :

hash(K) = 7 hash(Z) = 8

vals[] O

Linear-probing hash table demo

Hash. Map key to integeri between 0 and m — 1.
Insert. Put at table index i if free; if nottryi+1,i+2,

Search. Search table index i; if occupied but no match, try i+ 1,i+2,

Note. Array length m must be greater than number of key—value pairs n.

14

15

33

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value>

{

private int m = 32768;
private Value|[] vals = (Valuel]l) new Object[m];
private Key[] keys = (Key[]) new Object[m];

private 1nt hash(Key key)
{ /* as before */ }

private void put(Key key, Value val) { }

public Value get(Key key)

{
for (int 1 = hash(key); keys[1] !'= null; 1 = (1+1) % m)
1f (key.equals(keys[1]))
return vals|[1];
return null;
}

array resizing
code omitted

34

Linear-probing symbol table: Java implementation

public class LinearProbingHashST<Key, Value>

{

private int m = 32768;
private Value[] vals = (Valuel[]) new Object[m];
private Key[] keys = (Key[]) new Object[m];

private 1nt hash(Key key)
{ /* as before */ }

public Value get(Key key) { /* prev slide */ }

public void put(Key key, Value val)

{
int 1;
for (1 = hash(key); keys[1] !'= null; 1 = (3+1) % m)
1T (keys[1].equals(key))
break;
keys[1] = key;
vals[1] = val;
}

35

Hash tables: quiz 5

Under the uniform hashing assumption, where is the next key most likely to be added

in this linear-probing hash table (no resizing)?

0 1 2 3 4 5 6 / 8 9 10 11 12 13 14 15 16 17 18 19

A. Index 7.

B. Index 14.
C. Either index 4 or 14.

D. All open indices are equally likely.

36

Clustering

Cluster. A contiguous block of keys.

Observation. New keys disproportionately likely to hash into big clusters.

A

OIDO0 @O | DOoOEcOn

37

Analysis of linear probing

Proposition. Under uniform hashing assumption, the average # of probes in a linear-probing

hash table of size m that contains n = o m keys is at most

L] L. 1
2\ 1-—« 2\ (1—a)?
search hit search miss / insert

Pf. [beyond course scope]

i i T rza"“fﬁm,.. S i
E '.f:fé.,*‘.‘“’?f.*“"““" ; “ m, M'“f ‘? a 3 54'

..':.'.-'.NOTBS O "OPE" ADDRESSTNG. ST o “12a/63

DN .
LA - PR

o 1. Intrcduction an&”ﬁéfiditiﬁés Ap81 aad“essing is a wldely-used technrigque

- for keeping “symbol tables,” The pethod was first used in 1954 by Samuel, Awdshl,
and Bochme in an assembly propgram for the IHEM T0l., An extensive diScussion of
the method was given by Peterson in 1957 {1], und {requent references have been
made te it ever since (e.g. Schey and Spruth {2], Iversen [31). However, the
tluwing characteristics pave apparently never bean exectliy established, ana indeed
the awthor has heard reports of seversl reputable mathematieiana whao failea %0
find the aolution after some trial. Tharefore it is the purpsse of this note to
indicate one way by which the solu.ion cen be obiained,

Parameters.
 mtoo large = too many empty array entries.

« mtoo small = search time blows up.

probes for search hit is about 3/2

: g _ ~ 1h e
Typlcal choice: a = n/m 2. # probes for search miss is about 5/2

38

Resizing in a linear-probing hash table

Goal. Average length of listn/m < .

« Double length of array m when n/m = %.

- Halve length of array m when n/m < 1.

« Need to rehash all keys when resizing.

before resizing

0 1 2 3 4
keys[] E S
vals[]
after resizing
0 1 2 3 4
keys[] A

vals[]

10

11

12

13

14

15

39

Hash tables: quiz 6

How to delete a key-value pair from a linear-probing hash table?

A. Search for key; remove key-value pair from arrays.

B. Search for key; remove key-value pair from arrays.

Shift all keys in cluster after deleted key 1 position to left.

C. Either A and B.

D. Neither A nor B.

cluster after deleted key
before deleting S

0 1 2 3 4 8 9 10 11 12

5 3 7
keys[1 —~p M A CH L E

vals[]

13

14

15

40

ST implementations: summary

guarantee average case
ordered

implementation
ops?
mm

sequential search

(unordered list) & & " " " "
binary search 1 1 v
(ordered array) 05 7t " " OE T " "
BST n n n log n log n Vn 4
red-black BST log n log n log n log n log n log n 4
separate chaining n n n 1 17 17
linear probing n n n 17 17 17

key
interface

equals()

compareTo()

compareTo()

compareTo()

equals()
hashCode ()

equals()
hashCode ()

T under uniform hashing assumption

41

3-SUM (REVISITED)

3-SuM. Given n distinct integers, find three such that a+ b5 + ¢ =0.

Goal. ©(n?) expected time; ©(n) extra space.

42

3.4 HASH TABLES

Algorithms
» confext

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?
Al. Yes: aircraft control, nuclear reactor, pacemaker, HFT, ...

A2. Yes: denial-of-service (DoS) attacks.

st[]

/

malicious adversary learns your hash function

(e.g., by reading Java APIl) and causes a big pile-up

in single slot that grinds performance to a halt

N OO o AW NN O BRr O

Real-world exploits.
e Linux 2.4.20 kernel: save files with carefully chosen names.
- Bro server: send carefully chosen packets to DoS the server,

using less bandwidth than a dial-up modem.

44

War story: algorithmic complexity attacks

A Java bug report.

Jan Lieskovsky 2011-11-01 14:13:47 UTC Description

Julian Walde and Alexander Klink reported that the String.hashCode() hash function is not

sufficiently collision resistant. hashCode() value is used in the implementations of HashMap and
Hashtable classes:

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

A specially-crafted set of keys could trigger hash function collisions, which can degrade
performance of HashMap or Hashtable by changing hash table operations complexity from an
expected/average 0(1) to the worst case 0(n). Reporters were able to find colliding strings
efficiently using equivalent substrings and meet in the middle techniques.

This problem can be used to start a(denial of service attack)against Java applications that use
untrusted inputs as HashMap or Hashtable keys. An example of such application is web application
server (such as tomcat, see bug#758521) that may fill hash tables with data from HTTP request
(such as GET or POST parameters). A remote attack could use that to make JVM use excessive amount

of CPU time by sending a POST request with large amount of parameters which hash to the same
value.

This problem is similar to the issue that was previously reported for and fixed
in e.g. perl:
http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003.pdf

https://bugzilla.redhat.com/show_bug.cgi?id=750533

Hashing: file verification

When downloading a file from the web:
« Vendor publishes hash of file.
e Client checks whether hash of downloaded file matches.

 |If mismatch, file corrupted.

Download IntelliJ IDEA

Windows Mac Linux

Ultimate Community

For web and enterprise development For JVM and Android development

Version: 2019.3.3

Build: 193.6494.35
10 February 2020

Release notes Free trial Free, open-source
M-+
. . - ‘
Download and verify the flleCSHA—256 checksum)
%

c62ed2df891ccbb40d890e8a0074781801f086a3091a4a2a592a96afaba31270

sha256sum 1dealIC-2019.3.3.dmg

c62ed2df891ccbb40d890e8a0074781801f086a3091ad4a2a592a96ataba31270

46

Hashing: cryptographic applications

One-way hash function. “Hard” to find a key that will hash to a desired value

(or two keys that hash to same value).

Ex. MD5, SHA-1, SHA-256, SHA-512, Whirlpool,

B
W,

de758e98d49123c3af9115226221641d

fixed-length hash

Applications. File verification, digital signatures, cryptocurrencies,

password authentication, blockchain, Git commit identifiers,

47

Separate chaining vs. linear probing

Separate chaining.

« Performance degrades gracefully.
st[]

« Clustering less sensitive to poorly-designed hash function.

A~ w NN B O

AN

Linear probing.
e Less memory.
- Better cache performance.

- More probes because of clustering.

keys[] | P | M Al C|S | HI|L E R | X

vals|[]

null

48

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing.
« Hash to two positions, insert key in shorter of the two chains.

« Reduces expected length of the longest chain to ®(log log n).

Double hashing.
- Resolve collisions by probing, but skip a variable amount instead of +1.
- Effectively eliminates clustering.
« Can allow table to become nearly full.

- More difficult to implement delete.

Cuckoo hashing.

- Hash key to two positions; insert key into either position;
if occupied, reinsert displaced key into its alternative position (and recur).

* O(1) time for search in worst case.

49

Hash tables vs. balanced search trees

Hash tables.
- Simpler to code. P e
- Typically faster in practice. [) SN) SN

- No effective alternative for unordered keys. I

Balanced search trees.
« Stronger performance guarantee.
« Support for ordered ST operations.

« Easier to implement compareTo() than hashCode().

Java includes both.
« BSTs: java.util.TreeMap, java.util.TreeSet. «—— red-black BST

« Hash tables: java.util.HashMap, java.util.HashSet, java.util.IdentityHashMap.

T T

separate chaining linear probing
(Java 8: if chain gets too long,
use red-black BST for chain)

50

© Copyright 2021 Robert Sedgewick and Kevin Wayne

