
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 3/2/21 6:25 AM

3.1 SYMBOL TABLES

‣ API

‣ elementary implementations

‣ ordered operations

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

3.1 SYMBOL TABLES

‣ API

‣ elementary implementations

‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Why are telephone books obsolete?

Unsupported operations.

・Add a new name and associated number.

・Remove a given name and associated number.

・Change the number associated with a given name.

3

 key = word
value = definition

 key = time and channel
value = TV show

 key = math function and input
value = function output

 key = name
value = phone number

 key = term
value = article

Symbol tables

Key–value pair abstraction.

・Insert a value with specified key.

・Given a key, search for the corresponding value.

Ex. DNS lookup.

・Insert domain name with specified IP address.

・Given domain name, find corresponding IP address.

4
key

domain name IP address

www.cs.princeton.edu 128.112.136.61

goprincetontigers.com 67.192.28.17

wikipedia.com 208.80.153.232

google.com 172.217.11.46

value

http://wikipedia.com
http://google.com

Symbol table applications

5

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address domain name IP address

reverse DNS find domain name IP address domain name

genomics find markers DNA string known positions

file system find file on disk filename location on disk

Symbol tables: context

Also known as: maps, dictionaries, associative arrays.

Generalizes arrays. Keys need not be integers between 0 and n – 1.

Language support.

・External libraries: C, VisualBasic, Standard ML, bash, ...

・Built-in libraries: Java, C#, C++, Scala, ...

・Built-in to language: Awk, Perl, PHP, Tcl, JavaScript, Python, Ruby, Lua.

6

has_nice_syntax_for_dictionaries['Python'] = True

has_nice_syntax_for_dictionaries['Java'] = False

legal Python code

Basic symbol table API

Associative array abstraction. Associate key–value pairs.

 public class ST<Key extends Comparable<Key>, Value>

ST() create an empty symbol table

void put(Key key, Value val) insert key–value pair

Value get(Key key) value paired with key

Iterable<Key> keys() all the keys in the symbol table

boolean contains(Key key) is there a value paired with key?

void delete(Key key) remove key (and associated value)

boolean isEmpty() is the symbol table empty?

int size() number of key–value pairs

7

a[key] = val;

a[key]

two generic type parameters

Conventions

・Method put() overwrites old value with new value.

・Method get() returns null if key not present.

・Values are not null.

8

java.util.Map allows null values

https://code.google.com/p/guava-libraries/wiki/UsingAndAvoidingNullExplained

 “ Careless use of null can cause a staggering variety of bugs.
 Studying the Google code base, we found that something like
 95% of collections weren’t supposed to have any null values
 in them, and having those fail fast rather than silently accept
 null would have been helpful to developers. ”

https://code.google.com/p/guava-libraries/wiki/UsingAndAvoidingNullExplained

Key and value types

Value type. Any generic type.

Key type: different assumptions.

・This lecture: keys are Comparable; use compareTo().

・Hashing lecture: keys are any generic type;

use equals() to test equality and hashCode() to scramble key.

Best practices. Use immutable types for symbol-table keys.

・Immutable in Java: String, Integer, Double, Color, …

・Mutable in Java: StringBuilder, Stack, URL, arrays, ...

9

specify Comparable in API

“ Classes should be immutable unless there’s a very good reason

 to make them mutable.… If a class cannot be made immutable,

 you should still limit its mutability as much as possible. ”

 — Joshua Bloch (Java architect)

Frequency counter. Read a sequence of strings from standard input;

print one that occurs most often.

~/Desktop/st> more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

~/Desktop/st> java FrequencyCounter 3 < tinyTale.txt
the 10

~/Desktop/st> java FrequencyCounter 8 < tale.txt
business 10

~/Desktop/st> java FrequencyCounter 10 < leipzig1M.txt
government 24763

ST test client for analysis

10

tiny example
(60 words, 20 distinct)

real example
(135,635 words, 10,769 distinct)

real example
(21,191,455 words, 534,580 distinct)

public class FrequencyCounter
{
 public static void main(String[] args)
 {
 int minLength = Integer.parseInt(args[0]);

 ST<String, Integer> st = new ST<>();
 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (word.length() < minLength) continue;
 if (!st.contains(word)) st.put(word, 1);
 else st.put(word, st.get(word) + 1);
 }

 String max = "";
 st.put(max, 0);
 for (String word : st.keys())
 if (st.get(word) > st.get(max))
 max = word;
 StdOut.println(max + " " + st.get(max));

 }
}

Frequency counter implementation

11

print a string with max frequency

read string and
update frequency

create ST

iterate over key–value pairs

compute frequencies

3.1 SYMBOL TABLES

‣ API

‣ elementary implementations

‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key–value pairs.

Search. Scan through all keys until find a match.

Insert. Scan through all keys until find a match; if no match add to front.

Proposition. In the worst case, search and insert take Θ(n) time.

13

get("A")

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

put("M", 9)

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Elementary symbol tables: quiz 1

Data structure. Maintain parallel arrays for keys and values, sorted by key.

 
 
 
 
 
What are the worst-case running times for search and insert?

A. Θ(log n) and Θ(log n)

B. Θ(n) and Θ(log n)

C. Θ(log n) and Θ(n)

D. Θ(n) and Θ(n)

14

8 4 2 5 11 9 10 3 0 7

vals[]

0 1 2 3 4 5 6 7 8 9

A C E H L M P R S Z

keys[]

0 1 2 3 4 5 6 7 8 9

Binary search in a sorted array

Data structure. Maintain parallel arrays for keys and values, sorted by key.

Search. Use binary search to find key.

Insert. Use binary search to find place to insert; shift all larger keys over.

15

8 4 2 5 11 9 10 3 0 7

vals[]

0 1 2 3 4 5 6 7 8 9

A C E H L M P R S Z

keys[]

0 1 2 3 4 5 6 7 8 9

get("P")

10P 8 4 6 5 9A C E H M

vals[]

0 1 2 3 4 5 6 7 8 9

keys[]

0 1 2 3 4 5 6 7 8 9

put("P", 10)

R S X - - 3 0 7 - -

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

16

implementation
guarantee average case

operations
on keys

search insert search hit insert

sequential search
(unordered list) n n n n equals()

binary search
(sorted array) log n n † log n n † compareTo()

† can do with Θ(log n) compares, but still requires Θ(n) array accesses

3.1 SYMBOL TABLES

‣ API

‣ elementary implementations

‣ ordered operations

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Examples of ordered symbol table API

18

keys values

9:00:00 Chicago

9:00:03 Phoenix

9:00:13 Houston

9:00:59 Chicago

9:01:10 Houston

9:03:13 Chicago

9:10:11 Seattle

9:10:25 Seattle

9:14:25 Phoenix

9:19:32 Chicago

9:19:46 Chicago

9:21:05 Chicago

9:22:43 Seattle

9:22:54 Seattle

9:25:52 Chicago

9:35:21 Chicago

9:36:14 Seattle

9:37:44 Phoenix

min()

max()

select(7)

get(9:00:13)

floor(9:05:00)

ceiling(9:30:00)

rank(9:10:25) = 7

Ordered symbol table API

19

 public class ST<Key extends Comparable<Key>, Value>

 ⋮

Key min() smallest key

Key max() largest key

Key floor(Key key) largest key less than or equal to key

Key ceiling(Key key) smallest key greater than or equal to key

int rank(Key key) number of keys less than key

Key select(int k) key of rank k

 ⋮

RANK IN A SORTED ARRAY

Problem. Given a sorted array of n distinct keys,

find the number of keys strictly less than a given query key.

20

 public Value get(Key key)
 {
 int lo = 0, hi = n-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0) hi = mid - 1;
 else if (cmp > 0) lo = mid + 1;
 else return vals[mid];
 }
 return null;
 }

public int rank(Key key)

mid

lo

easy modification to binary search

Challenge. Efficient implementations of all operations.

sequential  
search

binary 
search

search n log n

insert n n

min / max n 1

floor / ceiling n log n

rank n log n

select n 1

Ordered symbol table operations: summary

21

order of growth of the running time for ordered symbol table operations

