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2.3  QUICKSORT

‣ quicksort 

‣ selection 

‣ duplicate keys 

‣ system sorts
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Two classic sorting algorithms: mergesort and quicksort

Critical components in the world’s computational infrastructure. 

・Full scientific understanding of their properties has enabled us 

to develop them into practical system sorts. 

・Quicksort honored as one of top 10 algorithms of 20th century 

in science and engineering. 

 

Mergesort.  [last lecture] 

 

 

 

 

Quicksort.  [this lecture]

2

...

...



Quicksort t-shirt

3



A brief history

Tony Hoare. 

・Invented quicksort in 1960 to translate Russian into English. 

・Learned Algol 60 (and recursion) to implement it. 

 

 

 

 

 

 

 

 

Bob Sedgewick. 

・Refined and popularized quicksort in 1970s. 

・Analyzed many versions of quicksort.
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Tony Hoare 
1980 Turing Award

Bob Sedgewick
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A L G O R I T H M  61 
P R O C E D U R E S  F O R  R A N G E  A R I T H M E T I C  
ALLAN GIBB* 
U n i v e r s i t y  of A l b e r t a ,  C a l g a r y ,  A l b e r t a ,  C a n a d a  

b e g i n  
p r o c e d u r e  RANGESUM (a, b, c, d, e, f); 

rea l  a , b , c , d , e , f ;  
c o m m e n t  The term "range number"  was used by P. S. Dwyer, 
Linear Computations (Wiley, 1951). Machine procedures for 
range ari thmetic were developed about 1958 by Ramon Moore, 
"Automatic  Error  Analysis in Digital Computa t ion ,"  LMSD 
Report  48421, 28 Jan. 1959, Lockheed Missiles and Space Divi- 
sion, Palo Alto, California, 59 pp. If a _< x -< b and c ~ y ~ d, 
then RANGESUM yields an interval  [e, f] such tha t  e =< (x + y) 

f. Because of machine operation (truncation or rounding) the 
machine sums a -4- c and b -4- d may not provide safe end-points  
of the output  interval.  Thus RANGESUM requires a non-local 
real procedure ADJUSTSUM which will compensate for the 
machine ari thmetic.  The body of ADJUSTSUM will be de- 
pendent  upon the type of machine for which it is wri t ten and so 
is not given here. (An example, however, appears below.) I t  
is assumed tha t  ADJUSTSUM has as parameters  real v and w, 
and integer i, and is accompanied by a non-local real procedure 
CORRECTION which gives an upper bound to the magnitude 
of the error involved in the machine representat ion of a number. 
The output  ADJUSTSUM provides the left end-point  of the 
output  interval of RANGESUM when ADJUSTSUM is called 
with i = --1, and the right end-point  when called with i = 1 
The procedures RANGESUB, RANGEMPY,  and RANGEDVD 
provide for the remaining fundamental  operations in range 
ari thmetic.  RANGESQR gives an interval within which the 
square of a range nmnber  must lie. RNGSUMC, RNGSUBC, 
RNGMPYC and RNGDVDC provide for range ari thmetic with 
complex range arguments,  i.e. the real and imaginary parts 
are range numbers~ 
b e g i n  

e :=  ADJUSTSUM (a, c, - 1 ) ;  
f : =  ADJUSTSUM (b, d, 1) 

end  RANGESUM; 
p r o c e d u r e  RANGESUB (a, b, c, d, e, f) ; 

real  a, b ,c ,  d ,e ,  f; 
c o m m e n t  RANGESUM is a non-local procedure; 
b e g i n  

RANGESUM (a, b, - d ,  --c, e, f) 
end  RANGESUB ; 
p r o c e d u r e  RANGEMPY (a, b, c, d, e, f); 

real  a, b, c, d, e, f; 
c o m m e n t  ADJUSTPROD,  which appears at the end of this 
procedure, is analogous to ADJUSTSUM above and is a non- 
local real procedure. MAX and MIN find the maximum and 
minimum of a set of real numbers and are non-local; 
b e g i n  

rea l  v, w; 
i f  a < 0 A  c => 0 t h e n  

1: b e g i n  
v : = c ;  c : = a ;  a : = v ;  w : = d ;  d : = b ;  b : = w  

end  1; 
i f  a => O t h e n  

2: b e g i n  
i f  c >= 0 t h e n  

3 :beg in  
e : =  a X e ; f  :=  b X d ; g o t o 8  

end  3 ; 
e : = b X c ;  
i f d  ~ 0 t h e n  

4: b e g i n  
f : = b X d ;  g o t o 8  

end  4; 
f : = a X d ;  g o t o 8  

5: end  2; 
i f b  > 0 t h e n  

6: b e g i n  
i f  d > 0 t h e n  
b e g i n  

e :=  MIN(a  X d, b X c); 
f : =  MAX(a X c , b  X d); go t o 8  

e n d  6; 
e : =  b X  c; f : =  a X  c; go t o 8  

end  5; 
f : = a X c ;  
i f  d _-< O t h e n  

7: b e g i n  
e : = b X d ;  g o t o 8  

end  7 ; 
e : = a X d ;  

8: e : =  ADJUSTPROD (e, - 1 ) ;  
f := ADJUSTPROD (f, 1) 

end  RANGEMPY;  
p r o c e d u r e  RANGEDVD (a, b, c, d, e, f) ; 

real  a, b, c, d, e, f; 
c o m m e n t  If the range divisor includes zero the program 
exists to a non-local label "zerodvsr" .  RANGEDVD assumes a 
non-local real procedure ADJUSTQUOT which is analogous 
(possibly identical) to ADJUSTPROD;  
b e g i n  

i f  c =< 0 A d ~ 0 t h e n  go to zer0dvsr; 
i f  c < 0 t h e n  

1: b e g i n  
i f b  > 0 t h e n  

2: b e g i n  
e : =  b /d ;  go t o 3  

e n d  2; 
e : =  b /c ;  

3: i f a  -->_ 0 t h e n  
4: b e g i n  

f : =  a /c ;  go to  8 
e n d  4; 
f : =  a /d ;  go to  8 

end  1 ; 
i f  a < 0 t h e n  

5: b e g i n  
e : =  a/c;  go t o 6  

end  5 ; 
e : =  a /d ;  

6: i f b  > 0 t h e n  
7: b e g i n  

f : =  b/c ;  go t o 8  
e n d  7 ; 
f : =  b /d ;  

8: e :=  ADJUSTQUOT (e, - 1 ) ;  f : =  ADJUSTQUOT (f,1) 
end  RANGEDVD ; 
p r o c e d u r e  RANGESQR (a, b, e, f); 

rea l  a, b, e, f; 
c o m m e n t  ADJUSTPROD is a non-10cal procedure; 
b e g i n  

i f  a < 0 t h e n  
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n u m b e r ) .  9.9 X 10 45 is u sed  to r e p r e s e n t  inf in i ty .  I m a g i n a r y  
v a l u e s  of x m a y  no t  be n e g a t i v e  a n d  reM v a l u e s  of x m a y  n o t  be 
s m a l l e r  t h a n  1. 

Va lues  of Qd~'(x) m a y  be ca l cu l a t ed  eas i ly  by h y p e r g e o m e t r i c  
ser ies  if x is n o t  too  sma l l  no r  (n - m)  too  large.  Q~m(x) can  be 
c o m p u t e d  f rom an  a p p r o p r i a t e  se t  of v a l u e s  of Pnm(X) if X is nea r  
1.0 or ix is n ea r  0. Loss  of s ign i f i can t  d ig i t s  occurs  for  x as sm a l l  as 
1.1 if n is l a rge r  t h a n  10. Loss  of s ign i f i can t  d ig i t s  is a m a j o r  diffi- 
cu l t y  in u s i n g  finite p o l y n o m i M  r e p r e s e n t a t i o n s  also if n is l a rge r  
t h a n  m.  How ev e r ,  Q L E G  h a s  been  t e s t e d  in reg ions  of x a n d  n 
b o t h  large  a n d  smal l ;  
p r o c e d u r e  Q L E G ( m ,  n m a x ,  x, ri, R,  Q);  v a l u e  In, n m a x ,  x, ri ;  

r e a l  In, m n a x ,  x, ri ;  r e a l  a r r a y  R ,  Q; 
b e g i n  r e a l  t ,  i, n,  q0, s ;  

n : =  20; 
i f  n m a x  > 13 t h e n  

n : =  n m a x  + 7 ;  
i f  ri = 0 t h e n  

b e g i n  i f m  = 0 t h e n  
Q[0] : =  0.5 X 10g((x + 1 ) / (x  - 1)) 
e l s e  

b e g i n  t : =  - - 1 . 0 / s q r t ( x  X x - -  1); 
q0 : =  0; 
Q[O] : = t ;  
fo r  i : = 1 s t e p  1 u n t i l  m d o  

b e g i n  s : =  ( x + x ) X ( i - 1 ) X t  
×Q [ 0 ] +  ( 3 i - i× i - 2 )×q 0 ;  
q0 : =  Q[0]; 
Q[0] : =  s e n d  e n d ;  

i f  x = 1 t h e n  
Q[0] : =  9.9 I" 45; 

R[n  + 1] : =  x - s q r t ( x  X x - 1); 
for i : =  n s t e p  --1 u n t i l  1 d o  

R[i] : =  (i + m ) / ( ( i  + i + 1) X x 
+ ( m - i -  1) X R [ i + l ] ) ;  

go  to  t h e  e n d ;  
i f  m = 0 t h e n  

b e g i n  i f  x < 0.5 t b e n  
Q[0] : =  a r c t a n ( x )  - 1.5707963 e l s e  
Q[0] : =  - a r e t a n ( 1 / x ) e n d  e l s e  

b e g i n  t : =  1 / s q r t ( x  X x + 1); 
q0 : =  0; 
q[0] := t; 
f o r  i : = 2 s t e p  1 u n t i l  m do  

b e g i n  s : =  (x + x) X (i -- 1) X t X Q[0I 
+ ( 3 i + i X  i -- 2) × q0; 
qO : =  Q[0]; 
Q[0] := s e n d  e n d ;  

R[n  + 1] : =  x - s q r t ( x  × x + 1); 
for  i : =  n s t e p  - 1 u n t i l  1 do  

R[i] : =  (i + m ) / ( ( i  -- m + 1) × R[i  + 1] 
- - ( i + i +  1) X x);  

f o r  i : = 1 s t e p  2 u n t i l  n m a x  do  
Ril l  : =  -- Ri l l ;  

t h e :  f o r  i : = 1 s t e p  1 u n t i l  n n m x  d o  
Q[i] : =  Q[i - 1] X R[i] 

e n d  Q L E G ;  

* T h i s  p r o c e d u r e  was  deve loped  in p a r t  u n d e r  t he  s p o n s o r s h i p  
of t h e  Air  Force  C a m b r i d g e  R e s e a r c h  C en t e r .  

ALGORITHM 63 
PARTITION 
C. A. R. HOARE 
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. 
p r o c e d u r e  p a r t i t i o n  ( A , M , N , I , J ) ;  v a l u e  M , N ;  

a r r a y  A; i n t e g e r  M , N , 1 , J ;  

c o n u n e n t  I and  J are  o u t p u t  va r i ab le s ,  a n d  A is t h e  a r r a y  (wi th  
s u b s c r i p t  b o u n d s  M : N )  wh ich  is o p e r a t e d  u p o n  by  th i s  p rocedure .  
P a r t i t i o n  t a k e s  t h e  va lue  X of a r a n d o m  e l e m e n t  of the  a r r a y  A, 
a n d  r e a r r a n g e s  t he  va lue s  of t he  e l e m e n t s  of t he  a r r a y  in s u c h  a 
w ay  t h a t  t he r e  ex is t  i n t ege r s  I a n d  J w i t h  t he  fo l lowing p ro p e r t i e s  : 

M _-< J < I =< N p r o v i d e d M  < N 
A[R] =< X f o r M  =< R _-< J 
A[R] = X f o r J  < R < I 
A[R] ~ X f o r  I =< R ~ N 

T h e  p r oc e du r e  uses  an  in tege r  p roc edu re  r a n d o m  (M,N)  wh ich  
chooses  e q u i p r o b a b l y  a r a n d o m  in t ege r  F b e t w e e n  M an d  N,  a n d  
also a p roc edu re  exchange ,  wh i ch  e x c h a n g e s  t he  v a lu e s  of i t s  two  
p a r a m e t e r s  ; 
b e g i n  r e a l  X ;  i n t e g e r  F;  

F : =  r a n d o m  ( M , N ) ;  X : =  A[F]; 
I : = M ;  J : = N ;  

up :  for  I : = I s t e p  1 u n t i l  N d o  
i f  X < A [I] t h e n  g o  to  do wn ;  

I : = N ;  
down:  f o r J  : =  J s t e p  --1 u n t i l  M d o  

i f  A [ J ] < X  t h e n  g o  t o  c h a n g e ;  
J : = M ;  

c ha nge :  i f  I < J t h e n  b e g i n  e x c h a n g e  (A[IL A[J]) ;  
I : =  I +  1 ; J : =  J - 1; 
g o  to  up  

e n d  
e l s e  i f  [ < F t h e n  b e g i n  e x c h a n g e  (A[IL A[F])  i 

I : = I + l  
e n d  

e l s e  i f  F < J t l l e n  b e g i n  e x c h a n g e  (A[F], A[J]) ; 
J : = J - 1  

e n d  ; 
e n d  p a r t i t i o n  

ALGORITHM 64 
QUICKSORT 
C. A. R. HOARE 
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. 

p r o c e d u r e  q u i c k s o r t  ( A , M , N ) ;  v a l u e  M , N ;  
a r r a y  A; i n t e g e r  M , N ;  

c o m m e n t  Q u i c k s o r t  is a v e r y  f a s t  a n d  c o n v e n i e n t  m e t h o d  of 
s o r t i n g  an  a r r a y  in t he  r a n d o m - a c c e s s  s tore  of a c o m p u t e r .  T h e  
en t i r e  c o n t e n t s  of t he  s tore  m a y  be so r t ed ,  s ince  no e x t r a  space  is  
r equ i red .  T h e  a ve r age  n u m b e r  of c o m p a r i s o n s  m a d e  is 2 ( M - - N )  In 
( N - - M ) ,  a n d  t he  ave r age  n m n b e r  of e x c h a n g e s  is one s ix th  th i s  
a m o u n t .  Su i t ab le  r e f inemen t s  of th i s  m e t h o d  will be des i rab le  for  
i t s  i m p l e m e n t a t i o n  on any  a c tua l  c o m p u t e r ;  
b e g i n  i n t e g e r  1,J ; 

i f  M < N t h e n  b e g i n  p a r t i t i o n  ( A , M , N , I , J ) ;  
q u i c k s o r t  (A,M,J )  ; 
q u i c k s o r t  (A, I,  N)  

e n d  
e n d  q u i e k s o r t  

ALGORITHM 65 
FIND 
C. A. R. HOARE 
Elliott Brothers Ltd., Borehamwood, Hertfordshire, Eng. 
p r o c e d u r e  f ind ( A , M , N , K ) ;  v a l u e  M , N , K ;  

a r r a y  A; i n t e g e r  M , N , K ;  
c o m m e n t  F i n d  will a s s ign  to A [K] t he  va lu e  wh ich  it  would  
h a v e  if t he  a r r a y  A [M:N]  h a d  been  sor ted .  T h e  a r r a y  A will be  
p a r t l y  so r t ed ,  a n d  s u b s e q u e n t  en t r i e s  will be f a s t e r  t h a n  t h e  f i rs t ;  

C o m m u n i c a t i o n s  o f  t h e  A C M  321 

Programming 
Techniques 

S. L. Graham, R. L. Rivest 
Editors 

Implementing 
Quicksort Programs 
Robert Sedgewick 
Brown University 

This paper is a practical study of how to implement 
the Quicksort sorting algorithm and its best variants on 
real computers, including how to apply various code 
optimization techniques. A detailed implementation 
combining the most effective improvements to 
Quicksort is given, along with a discussion of how to 
implement it in assembly language. Analytic results 
describing the performance of the programs are 
summarized. A variety of special situations are 
considered from a practical standpoint to illustrate 
Quicksort's wide applicability as an internal sorting 
method which requires negligible extra storage. 

Key Words and Phrases: Quicksort, analysis of 
algorithms, code optimization, sorting 

CR Categories: 4.0, 4.6, 5.25, 5.31, 5.5 

Introduction 

One of the most widely studied practical problems in 
computer science is sorting: the use of a computer to put 
files in order. A person wishing to use a computer to sort 
is faced with the problem of determining which of the 
many available algorithms is best suited for his purpose. 
This task is becoming less difficult than it once was for 
three reasons. First, sorting is an area in which the 
mathematical analysis of algorithms has been particu- 
larly successful: we can predict the performance of many 
sorting methods and compare them intelligently. Second, 
we have a great deal of experience using sorting algo- 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

This work was supported in part by the Fannie and John Hertz 
Foundation and in part by NSF Grants. No. GJ-28074 and MCS75- 
23738. 

Author's address: Division of Applied Mathematics and Computer 
Science Program, Brown University, Providence, RI 02912. 
© 1978 ACM 0001-0782/78/1000-0847 $00.75 
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rithms, and we can learn from that experience to separate 
good algorithms from bad ones. Third, if the tile fits into 
the memory of the computer, there is one algorithm, 
called Quicksort, which has been shown to perform well 
in a variety of situations. Not only is this algorithm 
simpler than many other sorting algorithms, but empir- 
ical [2, ll ,  13, 21] and analytic [9] studies show that 
Quicksort can be expected to be up to twice as fast as its 
nearest competitors. The method is simple enough to be 
learned by programmers who have no previous experi- 
ence with sorting, and those who do know other sorting 
methods should also find it profitable to learn about 
Quicksort. 

Because of its prominence, it is appropriate to study 
how Quicksort might be improved. This subject has 
received considerable attention (see, for example, [1, 4, 
11, 13, 14, 18, 20]), but few real improvements have been 
suggested beyond those described by C.A.R. Hoare, the 
inventor of Quicksort, in his original papers [5, 6]. Hoare 
also showed how to analyze Quicksort and predict its 
running time. The analysis has since been extended to 
the improvements that he suggested, and used to indicate 
how they may best be implemented [9, 15, 17]. The 
subject of the careful implementation of Quicksort has 
not been studied as widely as global improvements to 
the algorithm, but the savings to be realized are as 
significant. The history of Quicksort is quite complex, 
and [15] contains a full survey of the many variants 
which, have been proposed. 

The purpose of this paper is to describe in detail how 
Quicksort can best be implemented to handle actual 
applications on real computers. A general description of 
the algorithm is followed by descriptions of the most 
effective improvements that have been proposed (as 
demonstrated in [15]). Next, an implementation of 
Quicksort in a typical high level language is presented, 
and assembly language implementation issues are con- 
sidered. This discussion should easily translate to real 
languages on real machines. Finally, a number of special 
issues are considered which may be of importance in 
particular sorting applications. 

This paper is intended to be a self-contained overview 
of the properties of Quicksort for use by those who need 
to actually implement and use the algorithm. A compan- 
ion paper [17] provides the analytical results which su- 
port much of the discussion presented here. 

The Algofithm 

Quicksort is a recursive method for sorting an array 
A[1], A[2] .. . . .  A[N] by first "partitioning" it so that the 
following conditions hold: 

(i) Some key v is in its final position in the array. (If it 
is thejth smallest, it is in position A[j].) 

(ii) All elements to the left of A[j] are less than or equal 
to it. (These elements A [ 1 ], A [2] . . . . .  A [ j  - 1 ] are 
called the "left subtile.") 

Communications October 1978 
of Volume 21 
the ACM Number 10 
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The Analysis of Quicksort Programs* 
Robert Sedgewick 

Received January 19, t976 

Summary. The Quicksort sorting algorithm and its best variants are presented 
and analyzed. Results are derived which make it possible to obtain exact formulas de- 
scribing the total expected running time of particular implementations on real com- 
puters of Quick, sort and an improvement called the median-of-three modification. 
Detailed analysis of the effect of an implementation technique called loop unwrapping 
is presented. The paper is intended not only to present results of direct practical utility, 
but also to illustrate the intriguing mathematics which arises in the complete analysis 
of this important algorithm. 

1. Introduction 

In t96t-62 C.A.R. Hoare presented a new algorithm called Quicksort [7, 8] 
which is suitable for putting files into order by computer. This method combines 
elegance and efficiency, and it remains today the most useful general-purpose 
sorting method for computers. The practical utility of the algorithm has meant 
not only that  it has been sfibjected to countless modifications (though few real 
improvements have been suggested beyond those described by Hoare), but also 
that  it has been used .in countless applications, often to sort very large, f i les .  
Consequently, it is important to be able to estimate how long an implementation 
of Quicksort can be expected to run, in order to be able to compare variants or 
estimate expenses. Fortunately, as we shall see, this is an algorithm which can be 
analyzed. (Hoare recognized this, and gave some analytic results in [8].) I t  is 
possible to derive exact formulas describing the average performance of real 
implementations of the algorithm. 

The history of Quicksort is quite complex, and a full survey of the many variants 
which have been proposed is given in [t 7]. In addition, [t 7] gives analytic results 
describing many of the improvements which have been suggested for the purpose 
of determining which are the most effective. There are many examples in [~ 7] 
which illustrate that  the simplicity of Quicksort is deceiving. The algorithm has 
hidden subtleties which can have significant effects on performance. Furthermore, 
as we shall see, simple changes to the algorithm or its implementation can radically 
change the analysis. In this paper, we shall consider in detail how practical 
implementations of the best versions of Quicksort may be analyzed. 

In this paper, we will deal with the analysis of: (i) the basic Quicksort algo- 
ri thm; (ii) an improvement called the "median-of-three" modification which 
reduces the average number of comparisons required; and (iii) an implementation 
technique called "loop unwrapping" which reduces the amount of overhead per 
comparison. These particular methods not only represent the most effective vari- 

* This work was supported in part by the Fannie and John Hertz Foundation, and 
in part by the National Science Foundation Grants No. GJ-28074 and MCS75-23738. 
22 Acta Informatica,  Vol. 7 
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Quicksort overview

Step 1.  Shuffle the array. 

Step 2.  Partition the array so that, for some index j : 

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j. 

Step 3.  Sort each subarray recursively.

6

Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E

K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

not greater not less

partitioning item

input

shu!e

partition

sort left

sort right

result

Quicksort overview

“pivot” or “partitioning item”



Quicksort partitioning demo

Repeat until i and j pointers cross: 

・Scan i from left to right so long as (a[i] < a[lo]). 

・Scan j from right to left so long as (a[j] > a[lo]). 

・Exchange a[i] with a[j].

7

lo

K R A T E L E P U I M Q C X O S

i j

stop i scan because a[i] >= a[lo]



Quicksort partitioning demo

Repeat until i and j pointers cross: 

・Scan i from left to right so long as (a[i] < a[lo]). 

・Scan j from right to left so long as (a[j] > a[lo]). 

・Exchange a[i] with a[j].

8

lo

E C A I E E L P U T M Q R X O S

hij

partitioned!

K

When pointers cross.  Exchange a[lo] with a[j].

≤ K ≥ K



The music of quicksort partitioning (by Brad Lyon)

9

https://learnforeverlearn.com/pivot_music

https://learnforeverlearn.com/pivot_music


Quicksort partitioning:  Java implementation

10

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

private static int partition(Comparable[] a, int lo, int hi) 
{ 
   int i = lo, j = hi+1; 
   while (true) 
   { 
      while (less(a[++i], a[lo])) 
         if (i == hi) break; 

      while (less(a[lo], a[--j])) 
         if (j == lo) break; 
      
      if (i >= j) break; 
      exch(a, i, j); 
   } 

   exch(a, lo, j); 
   return j; 
} 

swap with pivot

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

https://algs4.cs.princeton.edu/23quick/Quick.java.html

https://algs4.cs.princeton.edu/23quick/Quick.java.html


Quicksort quiz 2

In the worst case, how many compares and exchanges does partition() 
make to partition a subarray of length n?

A. ~ ½ n  and  ~ ½ n 

B. ~ ½ n  and  ~ n 

C. ~ n  and  ~ ½ n 

D. ~ n  and  ~ n

11

M A B C D E V W X Y Z

0 1 2 3 4 5 6 7 8 9 10

scan until ≥ M

scan until ≤ M

n+1 compares in worst case
(E and V are each compared with M twice)

⎡n/2⎤ exchanges in worst case
(each exchange in while loop gets 2 items in final position)



Quicksort:  Java implementation

12

public class Quick 
{ 
   private static int partition(Comparable[] a, int lo, int hi) 
   {  /* see previous slide */  } 

   public static void sort(Comparable[] a) 
   { 
      StdRandom.shuffle(a); 
      sort(a, 0, a.length - 1); 
   } 

   private static void sort(Comparable[] a, int lo, int hi) 
   { 
      if (hi <= lo) return; 
      int j = partition(a, lo, hi); 
      sort(a, lo, j-1); 
      sort(a, j+1, hi); 
  } 
} 

shuffle needed for 
performance guarantee 

(stay tuned)

https://algs4.cs.princeton.edu/23quick/Quick.java.html

https://algs4.cs.princeton.edu/23quick/Quick.java.html


Quicksort trace

13

 lo   j  hi   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
              Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E
              K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S 
  0   5  15   E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  0   3   4   E  C  A  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   2   2   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   0   1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  1       1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  4       4   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  6   6  15   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  7   9  15   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  7   7   8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  8       8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
 10  13  15   A  C  E  E  I  K  L  M  O  P  S  Q  R  T  U  X  
 10  12  12   A  C  E  E  I  K  L  M  O  P  R  Q  S  T  U  X  
 10  11  11   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 10      10   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 14  14  15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 15      15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 
  
              A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 

no partition
 for subarrays

 of size 1

initial values

random shu!e

result

Quicksort trace (array contents after each partition)



Quicksort animation
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http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order

http://www.sorting-algorithms.com/quick-sort
http://www.sorting-algorithms.com/quick-sort


Quicksort:  implementation details

Partitioning in-place.  Using an extra array makes partitioning easier (and stable), 

but it is not worth the cost. 

 

Loop termination.  Terminating the loop is more subtle than it appears. 

 

Equal keys.  Handling duplicate keys is trickier that it appears.  [stay tuned] 

 

Preserving randomness.  Shuffling is needed for performance guarantee. 

Equivalent alternative.  Pick a random pivot in each subarray.

15



Quicksort:  empirical analysis

Running time estimates: 

・Home PC executes 108 compares/second. 

・Supercomputer executes 1012 compares/second. 

 

 

 

 

 

 

 

 

 

 

 

Lesson 1.  Good algorithms are better than supercomputers. 

Lesson 2.  Great algorithms are better than good ones.

16

insertion sort (n2) mergesort (n log n) quicksort (n log n)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant



Quicksort quiz 3

Why is quicksort typically faster than mergesort in practice?

A. Fewer compares. 

B. Fewer array acceses. 

C. Both A and B. 

D. Neither A nor B.

17

and good cache locality



Quicksort:  worst-case analysis

Worst case.  Number of compares is ~ ½ n2.

18

after random shuffle



Quicksort:  worst-case analysis

Worst case.  Number of compares is ~ ½ n2. 

 

 

 

 

 

 

Good news.  Worst case for quicksort is mostly irrelevant in practice. 

・Exponentially small chance of occurring. 

(unless bug in shuffling or no shuffling) 

・More likely that computer is struck by lightning bolt during execution.

19

after random shuffle



Quicksort:  probabilistic analysis

Proposition.  The expected number of compares Cn to quicksort an array of 

n distinct keys is ~ 2n ln n (and the number of exchanges is ~ ⅓ n ln n ). 

Recall.  Any algorithm with the following structure takes Θ(n log n) time. 

 

 

 

 

 

 

 

Intuition.  Each partitioning step divides the problem into two subproblems, 

each of approximately one-half the size.

20

public static void f(int n) 
{ 
    if (n == 0) return; 
    f(n/2); 
    f(n/2); 
    linear(n); 
}

solve two problems 
of half the size

do Θ(n) work

probabilistically “close enough”



Quicksort:  probabilistic analysis

Proposition.  The expected number of compares Cn to quicksort an array of 

n distinct keys is ~ 2n ln n (and the number of exchanges is ~ ⅓ n ln n ). 

Pf.  Cn satisfies the recurrence C0 = C1 = 0 and for n  ≥  2: 

 

 

・Multiply both sides by n and collect terms: 

 

・Subtract from this equation the same equation for n - 1:  

 

・Rearrange terms and divide by n (n + 1):

21

partitioning probability

left right
partitioning

Cn = (n + 1) +

�
C0 + Cn�1

n

�
+

�
C1 + Cn�2

n

�
+ . . . +

�
Cn�1 + C0

n

�

nCn � (n � 1) Cn�1 = 2n + 2 Cn�1

Cn

n + 1
=

Cn�1

n
+

2

n + 1

nCn = n(n + 1) + 2(C0 + C1 + . . . + Cn�1)

analys is beyond 

scope of this course



Quicksort:  probabilistic analysis

・Repeatedly apply previous equation: 

 

 

 

 

 

 

・Approximate sum by an integral: 

 

 

 

 

・Finally, the desired result:

22

substitute previous equation

Cn

n + 1
=

Cn�1

n
+

2

n + 1

Cn � 2 (n + 1) ln n � 1.39n lg n

� 2 (n + 1)

� n+1

3

1

x
dx

Cn = 2 (n + 1)

�
1

3
+

1

4
+

1

5
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1

n + 1

�

=
2

3
+

2

4
+

2

5
+ . . . +

2

n + 1

=
Cn�3

n � 2
+

2

n � 1
+

2

n
+

2

n + 1

=
Cn�2
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+

2

n
+

2

n + 1



Quicksort properties

Quicksort analysis summary. 

・Expected number of compares is ~ 1.39 n log2 n. 

[ standard deviation is ~ 0.65 n ] 

・Expected number of exchanges is ~ 0.23 n log2 n. 

・Min number of compares is ~  n log2 n. 

・Max number of compares is ~ ½ n2. 

 

 

 

 

Context.  Quicksort is a (Las Vegas) randomized algorithm. 

・Guaranteed to be correct. 

・Running time depends on outcomes of random coin flips (shuffle).

23

39% more than mergesort

never fewer than mergesort

but never happens

fewer array accesses than mergesort



Quicksort properties

Proposition.  Quicksort is an in-place sorting algorithm. 

・Partitioning:  Θ(1) extra space. 

・Function-call stack:  Θ(log n) extra space (with high probability). 

 

 

 

 

Proposition.  Quicksort is not stable. 

Pf.  [ by counterexample ]

24

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee Θ(log n) depth by recurring 
on smaller subarray before larger subarray 
(but this requires using an explicit stack)



Quicksort:  practical improvements

Insertion sort small subarrays. 

・Even quicksort has too much overhead for tiny subarrays. 

・Cutoff to insertion sort for ≈ 10 items.

25

private static void sort(Comparable[] a, int lo, int hi) 
{ 
   if (hi <= lo + CUTOFF - 1) 
   { 
      Insertion.sort(a, lo, hi); 
      return; 
   } 

   int j = partition(a, lo, hi); 
   sort(a, lo, j-1); 
   sort(a, j+1, hi); 
}



Quicksort:  practical improvements

Median of sample. 

・Best choice of pivot item = median. 

・Estimate true median by taking median of sample. 

・Median-of-3 (random) items.

26

~  12/7   n ln n compares (14% fewer)  
~  12/35 n ln n exchanges (3% more)

private static void sort(Comparable[] a, int lo, int hi) 
{ 
   if (hi <= lo) return; 

   int median = medianOf3(a, lo, lo + (hi - lo)/2, hi); 
   swap(a, lo, median); 

   int j = partition(a, lo, hi); 
   sort(a, lo, j-1); 
   sort(a, j+1, hi); 
}



2.3  QUICKSORT

‣ quicksort 

‣ selection 

‣ duplicate keys 

‣ system sorts
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Selection

Goal.  Given an array of n items, find item of rank k. 

Ex.  Min (k = 0), max (k = n − 1), median (k = n / 2). 

 

Applications. 

・Order statistics. 

・Find the “top k.” 

 

Use complexity theory as a guide. 

・Easy O(n log n) algorithm.  How? 

・Easy O(n) algorithm for k = 0, 1, 2.  How? 

・Easy Ω(n) lower bound.  Why? 

 

Which is true? 

・O(n) algorithm?   [ is there a linear-time algorithm? ]  

・Ω(n log n) lower bound?   [ is selection as hard as sorting? ]

28



Quickselect demo

Partition array so that for some j: 

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j. 

Repeat in one subarray, depending on j; stop when j equals k.

29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

50 21 28 65 39 59 56 22 95 12 90 53 32 77 33

select element of rank k = 5

k = 5



Quickselect

Partition array so that for some j: 

・Entry a[j] is in place. 

・No larger entry to the left of j. 

・No smaller entry to the right of j. 

Repeat in one subarray, depending on j; stop when j equals k.

30

public static Comparable select(Comparable[] a, int k) 
{ 
    StdRandom.shuffle(a); 
    int lo = 0, hi = a.length - 1; 
    while (hi > lo) 
    { 
       int j = partition(a, lo, hi); 
       if      (j < k) lo = j + 1; 
       else if (j > k) hi = j - 1; 
       else            return a[k]; 
    } 
    return a[k]; 
}

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here 
set hi to j-1

if a[k] is here 
set lo to j+1



Quickselect:  probabilistic analysis

Proposition.  The expected number of compares Cn to quickselect the item of rank k 

in an array of length n is Θ(n). 

 

Intuition.  Each partitioning step approximately halves the length of the array. 

Recall.  Any algorithm with the following structure takes Θ(n) time. 

 

 

 

 

 

 

 

Careful analysis yields:

31

public static void f(int n) 
{ 
   if (n == 0) return; 
   linear(n); 
   f(n/2); 
}

solve one subproblem of half the size

do Θ(n) work
n + n / 2 + n / 4 + … + 1  ~  2n

probabilistically “close enough”

Cn   ~  2 n  + 2 k ln (n / k)  + 2 (n – k) ln (n / (n – k))

       ≤  (2 + 2 ln 2) n

       ≈  3.38 n max occurs for median (k = n / 2)



Theoretical context for selection

Q.  Compare-based selection algorithm that makes Θ(n) compares in the worst case? 

A.  Yes!   [ingenious divide-and-conquer] 

 

 

 

 

 

 

 

 

Caveat.  Constants are high  ⇒  not used in practice. 

 

 

Use theory as a guide. 

・Open problem:  practical algorithm that makes Θ(n) compares in the worst case. 

・Until one is discovered, use quickselect (if you don’t need a full sort).

32

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 4 4 8 - 4 6 1  (1973) 

Time Bounds for Selection* 

MANUEL BLUM, ROBERT W.  FLOYD, VAUGHAN PRATT, 
RONALD L.  RIVEST, AND ROBERT E. TARJAN 

Department of Computer Science, Stanford University, Stanford, California 94305 

Received November 14, 1972 

The number of comparisons required to select the i-th smallest of n numbers is shown 
to be at most a linear function of n by analysis of a new selection algori thm--PICK. 
Specifically, no more than 5.4305 n comparisons are ever required. This bound is 
improved for extreme values of i, and a new lower bound on the requisite number 
of comparisons is also proved. 

1. INTRODUCTION 

In this paper we present a new selection algorithm, PICK, and derive by an analysis 
of its efficiency the (surprising) result that the cost of selection is at most a linear 
function of the number of input items. In addition, we prove a new lower bound 
for the cost of selection. 

The selection problem is perhaps best exemplified by the computation of medians. 
In general, we may wish to select the i-th smallest of a set of n distinct numbers, 
or the element ranking closest to a given percentile level. 

Interest in this problem may be traced to the realm of sports and the design of 
(traditionally, tennis) tournaments to select the first- and second-best players. In 
1883, Lewis Carroll published an article [1] denouncing the unfair method by which 
the second-best player is usually determined in a "knockout tournament" -- the loser 
of the final match is often not the second-best! (Any of the players who lost only 
to the best player may be second-best.) Around 1930, Hugo Steinhaus brought the 
problem into the realm of algorithmic complexity by asking for the minimum number 
of matches required to (correctly) select both the first- and second-best players 
from a field of n contestants. In 1932, J. Schreier [8] showed that no more than 
n + [logg(n)]- 2 matches are required, and in 1964, S. S. Kislitsin [6] proved 
this number to be necessary as well. Schreier's method uses a knockout tournament 
to determine the winner, followed by a second knockout tournament among the 

* This work was supported by the National Science Foundation under grant GJ-992. 
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T(n)   =   T(n / 5)   +   T(7n / 10)   +   Θ(n)

find pivot that eliminates 
30% of items



2.3  QUICKSORT

‣ quicksort 

‣ selection 

‣ duplicate keys 

‣ system sorts
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Duplicate keys

Often, purpose of sort is to bring items with equal keys together. 

・Sort population by age. 

・Remove duplicates from mailing list. 

・Sort job applicants by college attended. 

 Typical characteristics of such applications. 

・Huge array. 

・Small number of key values.

34

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key



Quicksort quiz 4

When partitioning, how to handle keys equal to pivot?  
 
 

A.   

 

 

 

B.  

 

C.   Either A or B.

35

P G E P A Q B P C O U P Z S

scan until ≥ P scan until ≤ P

P G E P A Q B P C O U P Z S

scan until > P scan until < P



War story (system sort in C)

Bug.  A qsort() call in C that should have taken seconds was taking minutes 

to sort a random array of 0s and 1s.

36

Why is qsort() so slow?

i j

skip over equal keys

i j

stop scan on equal keys

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11A0

A6 A7A5 A8A4A3 A9A2 A10 A11A1A0



Duplicate keys:  partitioning strategies

Bad.  Don’t stop scans on equal keys. 

          [ Θ(n2) compares when all keys equal ] 

 

 

 

 

Good.  Stop scans on equal keys. 

          [ ~ n log2 n compares when all keys equal ] 

 

 

 

 

Better.  Put all equal keys in place. How? 

          [ ~ n compares when all keys equal ]

37

B A A B A B B B C C C        A A A A A A A A A A A

B A A B A B C C B C B        A A A A A A A A A A A

A A A B B B B B C C C        A A A A A A A A A A A



DUTCH NATIONAL FLAG PROBLEM

Problem.  [Edsger Dijkstra]  Given an array of n buckets, each containing 

a red, white, or blue pebble, sort them by color. 

 

 

 

 

 

Operations allowed. 

・swap(i, j):  swap the pebble in bucket i with the pebble in bucket j. 

・getColor(i):  determine the color of the pebble in bucket i. 

 

Performance requirements. 

・Exactly n calls to getColor(). 

・At most n calls to swap(). 

・Θ(1) extra space.
38

input

sorted



3-way partitioning

Goal.  Use pivot v = a[lo] to partition array into three parts so that: 

・Red:  smaller entries to the left of lt. 

・White:  equal entries between lt and gt. 

・Blue:  larger entries to the right of gt.

39

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning



Dijkstra’s 3-way partitioning algorithm: demo

・Let v = a[lo] be pivot. 

・Scan i from left to right and compare a[i] to v. 

– less:  exchange a[i] with a[lt]; increment both lt and i 

– greater:  exchange a[i] with a[gt]; decrement gt 

– equal:  increment i

40

P1 D B X W P2 P3 V P4 A P5 C Y ZP1

lt gtilo hi



Dijkstra’s 3-way partitioning algorithm: demo

・Let v = a[lo] be pivot. 

・Scan i from left to right and compare a[i] to v. 

– less:  exchange a[i] with a[lt]; increment both lt and i 

– greater:  exchange a[i] with a[gt]; decrement gt 

– equal:  increment i

41

D B C A P5 P2 P3 P1 P4 V W Y Z X

lt gt

equalless greater

hilo



private static void sort(Comparable[] a, int lo, int hi)  
{  
   if (hi <= lo) return;  
   int lt = lo, gt = hi; 
   Comparable v = a[lo];  
   int i = lo + 1;  
   while (i <= gt)  
   {  
      int cmp = a[i].compareTo(v);  
      if      (cmp < 0) exch(a, lt++, i++);  
      else if (cmp > 0) exch(a, i, gt--);  
      else              i++;  
   } 

   sort(a, lo, lt - 1);  
   sort(a, gt + 1, hi);  
} 

3-way quicksort:  Java implementation

42

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning



Quicksort quiz 5

What is the worst-case number of compares to 3-way quicksort an array of length n 
containing only 7 distinct values?

A. Θ(n) 

B. Θ(n log n) 

C. Θ(n2)

D. Θ(n7)

43

input

sorted



Sorting summary

44

inplace? stable? best average worst remarks

selection ✔ ½ n2 ½ n2 ½ n2 n exchanges

insertion ✔ ✔ n ¼ n 2 ½ n2 use for small n 
or partially sorted arrays

merge ✔ ½ n log2 n n log2 n n log2 n Θ(n log n) guarantee; 
stable

timsort ✔ n n log2 n n log2 n
improves mergesort 

when pre-existing order

quick ✔ n log2 n 2 n ln n ½ n2 Θ(n log n) probabilistic guarantee; 
fastest in practice

3-way quick ✔ n 2 n ln n ½ n2
improves quicksort 
when duplicate keys

? ✔ ✔ n n log2 n n log2 n holy sorting grail

number of compares to sort an array of n elements



2.3  QUICKSORT

‣ quicksort 

‣ selection 

‣ duplicate keys 

‣ system sorts
ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu


Sorting applications

Sorting algorithms are essential in a broad variety of applications: 

・Sort a list of names. 

・Organize an MP3 library. 

・Display Google PageRank results. 

・List RSS feed in reverse chronological order. 

・Find the median.  

・Identify statistical outliers. 

・Binary search in a database. 

・Find duplicates in a mailing list. 

・Data compression. 

・Computer graphics.  

・Computational biology. 

・Load balancing on a parallel computer. 

. . .
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obvious applications

problems become easy once 
items are in sorted order

non-obvious applications



Engineering a system sort (in 1993)

Bentley–McIlroy quicksort. 

・Cutoff to insertion sort for small subarrays. 

・Pivot selection:  median of 3 or Tukey’s ninther. 

・Partitioning scheme:  Bentley–McIlroy 3-way partitioning. 

 

 

 

 

 

 

 

 

 

 

 

In the wild.  C, C++, Java 6, ….
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SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(11), 1249–1265 (NOVEMBER 1993)

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY
We recount the history of a new qsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

KEY WORDS Quicksort Sorting algorithms Performance tuning Algorithm design and implementation Testing

INTRODUCTION
C libraries have long included a qsort function to sort an array, usually implemented by
Hoare’s Quicksort.1 Because existing qsorts are flawed, we built a new one. This paper
summarizes its evolution.
Compared to existing library sorts, our new qsort is faster—typically about twice as

fast—clearer, and more robust under nonrandom inputs. It uses some standard Quicksort
tricks, abandons others, and introduces some new tricks of its own. Our approach to build-
ing a qsort is relevant to engineering other algorithms.
The qsort on our home system, based on Scowen’s ‘Quickersort’,2 had served faith-

fully since Lee McMahon wrote it almost two decades ago. Shipped with the landmark Sev-
enth Edition Unix System,3 it became a model for other qsorts. Yet in the summer of
1991 our colleagues Allan Wilks and Rick Becker found that a qsort run that should have
taken a few minutes was chewing up hours of CPU time. Had they not interrupted it, it
would have gone on for weeks.4 They found that it took n 2 comparisons to sort an ‘organ-
pipe’ array of 2n integers: 123..nn.. 321.
Shopping around for a better qsort, we found that a qsort written at Berkeley in 1983

would consume quadratic time on arrays that contain a few elements repeated many
times—in particular arrays of random zeros and ones.5 In fact, among a dozen different
Unix libraries we found no qsort that could not easily be driven to quadratic behavior; all
were derived from the Seventh Edition or from the 1983 Berkeley function. The Seventh

0038-0644/93/111249–17$13.50 Received 21 August 1992
 1993 by John Wiley & Sons, Ltd. Revised 10 May 1993

similar to Dijkstra 3-way partitioning 
(but fewer exchanges when not many equal keys)

sample 9 items



A Java mailing list post (Yaroslavskiy, September 2009)
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Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Hello All, 

I'd like to share with you new Dual-Pivot Quicksort which is faster than the 
known implementations (theoretically and experimental). I'd like to propose 
to replace the JDK's Quicksort implementation by new one. 

... 

The new Dual-Pivot Quicksort uses *two* pivots elements in this manner: 

1. Pick an elements P1, P2, called pivots from the array. 
2. Assume that P1 <= P2, otherwise swap it. 
3. Reorder the array into three parts: those less than the smaller pivot, 
   those larger than the larger pivot, and in between are those elements 
   between (or equal to) the two pivots. 
4. Recursively sort the sub-arrays. 

The invariant of the Dual-Pivot Quicksort is: 

[ < P1 | P1 <= & <= P2 } > P2 ] 

...

https://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html

https://mail.openjdk.java.net/pipermail/core-libs-dev/2009-September/002630.html


Another Java mailing list post (Yaroslavskiy–Bloch–Bentley)
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Replacement of quicksort in java.util.Arrays with new dual-pivot quicksort

Date: Thu, 29 Oct 2009 11:19:39 +0000 
Subject: Replace quicksort in java.util.Arrays with dual-pivot implementation 

Changeset: b05abb410c52 
Author:    alanb 
Date:      2009-10-29 11:18 +0000 
URL:       http://hg.openjdk.java.net/jdk7/tl/jdk/rev/b05abb410c52 

6880672: Replace quicksort in java.util.Arrays with dual-pivot implementation 
Reviewed-by: jjb 
Contributed-by: vladimir.yaroslavskiy at sun.com, joshua.bloch at google.com, 
jbentley at avaya.com 

! src/share/classes/java/util/Arrays.java 
+ src/share/classes/java/util/DualPivotQuicksort.java

https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt

https://mail.openjdk.java.net/pipermail/compiler-dev/2009-October.txt


Dual-pivot quicksort

Use two pivots p1 and p2 and partition into three subarrays: 

・Keys less than p1. 

・Keys between p1 and p2. 

・Keys greater than p2. 

 

 

 

 

 

 

Recursively sort three subarrays (skip middle subarray if p1 = p2). 

 

 

 

 

In the wild.  Java 8, Python unstable sort, Android, …
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<  p1 p1 ≥  p1  and  ≤  p2 p2 >  p2

lo hilt gt

degenerates to Dijkstra’s 3-way partitioning



SYSTEM SORT

Suppose you are the lead architect of a new programming language.
Which sorting algorithm(s) would you use for the system sort?  Defend your answer.
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System sorts in Java 8 and Java 11

Arrays.sort() and Arrays.parallelSort(). 

・Has one method for Comparable objects. 

・Has an overloaded method for each primitive type. 

・Has an overloaded method for use with a Comparator. 

・Has overloaded methods for sorting subarrays. 

 

Algorithms. 

・Timsort for reference types. 

・Dual-pivot quicksort for primitive types. 

・Parallel mergesort for Arrays.parallelSort(). 

 

Q.  Why use different algorithms for primitive and reference types? 

 

 

Bottom line.  Use the system sort!
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