

1.4 Analysis of Algorithms

- introduction
- running time (experimental analysis)
- running time (mathematical models)
- memory usage

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

1.4 ANALYsIS OF Algorithms

- introduction

- running time (experimental analysis)

Algorithms

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Cast of characters

programmer needs to develop a working solution

client wants to solve problem efficiently

theoretician seeks to understand

Running time

" As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise - By what course of calculation can these results be arrived at by the machine in the shortest time?" - Charles Babbage (1864)

Running time

" As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise - By what course of calculation can these results be arrived at by the machine in the shortest time?" - Charles Babbage (1864)

Rare book containing the world's first computer algorithm earns \$125,000 at auction

By Matt Kennedy
July 25,2018

Ada Lovelace's algorithm to compute Bernoulli numbers
on Analytic Engine (1843)

An algorithmic success story

N -body simulation.

- Simulate gravitational interactions among n bodies.
- Applications: cosmology, fluid dynamics, semiconductors, ...
- Brute force: n^{2} steps.
- Barnes-Hut algorithm: $n \log n$ steps, enables new research.

Andrew Appel PU '81

The challenge

Q. Will my program be able to solve a large practical input?

Our approach. Combination of experiments and mathematical modeling.

Example: 3-SuM

3-Sum. Given n distinct integers, how many triples sum to exactly zero?

```
~/Desktop/3sum> more 8ints.txt
8
30-40 -20 -10 40 0 10 5
~/Desktop/3sum> java ThreeSum 8ints.txt
4
```

	a[i]	a[j]	a[k]	sum	
1	30	-40	10	0	\checkmark
2	30	-20	-10	0	\checkmark
3	-40	40	0	0	\checkmark
4	-10	0	10	0	\checkmark

Context. Related to problems in computational geometry.

3-SUM: brute-force algorithm

```
public class ThreeSum
{
    public static int count(int[] a)
    {
        int n = a.length;
        int count = 0;
        for (int i = 0; i < n; i++) \longleftarrow
            for (int j = i+1; j < n; j++)
                        for (int k = j+1; k < n; k++)
                if (a[i] + a[j] + a[k] == 0)
                        count++;
            return count;
    }
    public static void main(String[] args)
    {
        In in = new In(args[0]);
        int[] a = in.readA11Ints();
        StdOut.println(count(a));
    }
}
```


1.4 ANALYsIS OF Algorithms

- introduction
- running time (experimental analysis)

Algorithms

- rumning time (mathemátical modets),

```
- memory usage
```

Robert Sedgewick | Kevin Wayne
https://algs4.cs.princeton.edu

Measuring the running time

Q. How to time a program?
A. Manual.

\% java ThreeSum 1Kints.txt

tick tick tick

70
\% java ThreeSum 2Kints.txt

528
\% java ThreeSum 4Kints.txt

tick tic tick t tick tick tick tick tict tick tick tick tick tick tick tiok tick ektick tick ik rick tick ick tick tick

Measuring the running time

Q. How to time a program?
A. Automatic.
import edu.princeton.cs.algs4.StdOut;

```
import edu.princeton.cs.algs4.Stopwatch;
```

public static void main(String[] args)
\{
In in = new In(args[0]);
int[] a = in.readAl1Ints();
Stopwatch stopwatch = new Stopwatch();
StdOut. println(ThreeSum.count(a));
double time = stopwatch.elapsedTime() ;
StdOut. println("elapsed time = " + time);
\}

Empirical analysis

Run the program for various input sizes and measure running time.
\%

Empirical analysis

Run the program for various input sizes and measure running time.

n	time (seconds) t
250	0
500	0
1,000	0.1
2,000	0.8
4,000	6.4
8,000	51.1
16,000	$?$

† on a 2.8 GHz Intel PU-226 with 64GB DDR E3 memory and 32MB L3 cache; running Oracle Java 1.7.0_45-b18 on Springdale Linux v. 6.5

Data analysis

Standard plot. Plot running time $T(n)$ vs. input size n.

Hypothesis (power law). $T(n)=a n^{b}$.
Questions. How to validate hypothesis? How to estimate a and b ?

Data analysis

Log-log plot. Plot running time $T(n)$ vs. input size n using log-log scale.

Regression. Fit straight line through data points.
Hypothesis. The running time is about $1.006 \times 10^{-10} \times n^{2.999}$ seconds.

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times n^{2.999}$ seconds.
"order of growth"
of running time is about n^{3}
[stay tuned]

- 51.0 seconds for $n=8,000$.
- 408.1 seconds for $n=16,000$.

Observations.

n	time (seconds) +
8,000	51.1
8,000	51.0
8,000	51.1
16,000	410.8
validates hypothesis!	

Doubling hypothesis

Doubling hypothesis. Quick way to estimate exponent b in a power-law relationship.

Run program, doubling the size of the input.

Hypothesis. Running time is about $a n^{b}$ with $b=\log _{2}$ ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

Doubling hypothesis

Doubling hypothesis. Quick way to estimate exponent b in a power-law relationship.
Q. How to estimate a (assuming we know b) ?
A. Run the program (for a sufficient large value of n) and solve for a.

n	time (seconds) \dagger	
8,000	51.1	
8,000	51.0	
8,000	51.1	

Hypothesis. Running time is about $0.998 \times 10^{-10} \times n^{3}$ seconds.

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size $\boldsymbol{n} \mathbf{= 9 6 , 0 0 0}$.

A. 39 seconds
B. 52 seconds
C. 117 seconds
D. 350 seconds

n	time (seconds)
1,000	0.02
2,000	0.05
4,000	0.20
8,000	0.81
16,000	3.25
32,000	13.01

Experimental algorithmics

System independent effects.

- Algorithm. determines exponent b
- Input data.
in power law $a n^{b}$

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

Bad news. Sometimes difficult to get accurate measurements.

Experimental algorithmics is an example of the scientific method.

Good news. Experiments are easier and cheaper than other sciences.

1.4 ANALYsIS OF Algorithms

- introduction
- running time (experimental Zanalysis)
- running time (mathematical models)

```
- memory usage
```

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Mathematical models for running time

Total running time: sum of cost \times frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

Ebe Alew Hork Eimes

Donald Knuth, master of algorithms, reflects on 50 years of his opus-in-progress, "The Art of Computer Programming."

※\%	(xawesw	5xaswem	\%asweme
The Art of Programming \qquad	The Art of Programmin \qquad	The Art of Programming \qquad	The Art of Programmin \qquad
Doxide ki	Doxul	,	doxat erm

Warning. No general-purpose method (e.g., halting problem).

Example: 1-SUM

Q. How many operations as a function of input size n ?

```
int count = 0;
for (int i = 0; i < n; i++)
    if (a[i] == 0)
        count++;
exactly \(n\) array accesses
```


[^0]
Analysis of algorithms: quiz 2

How many array accesses as a function of n ?

```
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        if (a[i] + a[j] == 0)
            count++;
```

A. $1 / 2 n(n-1)$
B. $n(n-1)$
C. $2 n^{2}$
D. $2 n(n-1)$

Example: 2-SUM

Q. How many operations as a function of input size n ?

Simplification 1: cost model

Cost model. Use some elementary operation as a proxy for running time.

```
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        if (a[i] + a[j] == 0)
                count++;
```

operation	cost (ns)	frequency	
variable declaration	2/5	$n+2$	
assignment statement	1/5	$n+2$	
less than compare	1/5	$1 / 2(n+1)(n+2)$	
equal to compare	1/10	$1 / 2 n(n-1)$	
array access	1/10	$n(n-1)$	cost model = array accesses
increment	1/10	$1 / 2 n(n+1)$ to n^{2}	(we're assuming compiler/JVM does not optimize any array accesses away!)

Simplification 2: asymptotic notations

Tilde notation. Discard lower-order terms.
Big Theta notation. Also discard leading coefficient.

formal definitions

involve limits

function	tilde	big Theta
$4 n^{5}+20 n+16$	$\sim 4 n^{5}$	$\Theta\left(n^{5}\right)$
$7 n^{2}+100 n^{4 / 3}+56$	$\sim 7 n^{2}$	$\Theta\left(n^{2}\right)$
$1 / 6 n^{3} \underbrace{-1 / 2 n^{2}+1 / 3 n}$	$\sim 1 / 6 n^{3}$	$\Theta\left(n^{3}\right)$
discard lower-order terms		
(e.g., $n=1,000: 166.67$ million vs. 166.17 million)		

Rationale.

- When n is large, lower-order terms are negligible.
- When n is small, we don't care.

Common order-of-growth classifications

order of growth	name	typical code framework	description	example	$T(2 n) / T(n)$
$\Theta(1)$	constant	$\mathrm{a}=\mathrm{b}+\mathrm{c}$;	statement	add two numbers	1
$\Theta(\log n)$	logarithmic	$\left\{\begin{array}{l} \text { while }(\mathrm{n}>1) \\ \mathrm{n}=\mathrm{n} / 2 ; \quad \ldots \end{array}\right\}$	divide in half	binary search	~ 1
$\Theta(n)$	linear	for (int $\mathbf{i}=0 ; i<n ; i++$) \{ ... \}	single loop	find the maximum	2
$\Theta(n \log n)$	linearithmic	see mergesort lecture	divide and conquer	mergesort	~ 2
$\Theta\left(n^{2}\right)$	quadratic	for (int $i=0 ; i<n ; i++$) for (int $j=0 ; j<n ; j++$) \{ ... \}	double loop	check all pairs	4
$\Theta\left(n^{3}\right)$	cubic	```for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) for (int k = 0; k < n; k++) { ... }```	triple loop	check all triples	8
$\Theta\left(2^{n}\right)$	exponential	see combinatorial search lecture	exhaustive search	check all subsets	2^{n}

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size n ?

```
int count = 0;
for (int i = 0; i < n; i++)
        for (int j = i+1; j < n; j++)
        if (a[i]+a[j]== 0) «
            count++
\[
\begin{aligned}
0+1+2+\ldots+(n-1) & =\frac{1}{2} n(n-1) \\
& =\binom{n}{2}
\end{aligned}
\]
```

A. $\sim n^{2}$ array accesses.

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size n ?

Bottom line. Use cost model and asymptotic notation to simplify analysis.

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take a discrete mathematics course (COS 340).

Estimating a discrete sum

Q. How to estimate a discrete sum?

A2. Replace the sum with an integral; use calculus!

Ex 1. $1+2+\ldots+n$.
(triangular sum)

$$
\sum_{i=1}^{n} i \sim \int_{x=1}^{n} x d x \sim \frac{1}{2} n^{2}
$$

Ex 2. $1+1 / 2+1 / 3+\ldots+1 / n$.

$$
\sum_{i=1}^{n} \frac{1}{i} \sim \int_{x=1}^{n} \frac{1}{x} d x \sim \ln n
$$

Ex 3. 3-sum triple loop. $\quad \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=j+1}^{n} 1 \sim \int_{x=1}^{n} \int_{y=x+1}^{n} \int_{z=y+1}^{n} d z d y d x \sim \frac{1}{6} n^{3}$

Ex $4.1+1 / 2+1 / 4+1 / 8+\ldots$

$$
\begin{aligned}
\int_{x=0}^{\infty}\left(\frac{1}{2}\right)^{x} d x=\frac{1}{\ln 2} & \approx 1.4427 \\
\sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i} & =2 \underset{\text { doesn't always work! }}{\text { integral trick }}
\end{aligned}
$$

(geometric sum)

Estimating a discrete sum

Q. How to estimate a discrete sum?

A3. Use Maple or Wolfram Alpha.

疑WolframAlpha

$\operatorname{sum}(\operatorname{sum}(\operatorname{sum}(1, \mathrm{k}=\mathrm{j}+1 . . \mathrm{n}), \mathrm{j}=\mathrm{i}+1 . . \mathrm{n}), \mathrm{i}=1 . . \mathrm{n})$
Sum:
$\sum_{i=1}^{n}\left(\sum_{j=i+1}^{n}\left(\sum_{k=j+1}^{n} 1\right)\right)=\frac{1}{6} n\left(n^{2}-3 n+2\right)$

Analysis of algorithms: quiz 3

How many array accesses as a function of n ?

```
int count = 0;
for (int i = 0; i < n; i++)
    for (int j = i+1; j < n; j++)
        for (int k = 1; k <= n; k = k*2)
            if (a[i] + a[j] >= a[k])
            count++;
```

A. $\sim n^{2} \log _{2} n$
B. $\sim 3 / 2 n^{2} \log _{2} n$
C. $\sim 1 / 2 n^{3}$
D. $\sim 3 / 2 n^{3}$

Analysis of algorithms: quiz 4

What is order of growth of running time as a function of n ?

```
int count = 0;
for (int i = n; i >= 1; i = i/2)
    for (int j = 1; j <= i; j++)
        count++; \longleftarrow "inner loop"
```

A. $\quad \Theta(n)$
B. $\quad \Theta(n \log n)$
C. $\Theta\left(n^{2}\right)$
D. $\Theta\left(2^{n}\right)$

1.4 ANALYsIS OF Algorithms

- introduction
\rightarrow running time (experimental analysis)
- running time (mathemátical modets)
- memory usage

Robert Sedgewick I Kevin Wayne
https://algs4.cs.princeton.edu

Basics

Bit. 0 or 1.
Byte. 8 bits.
NIST most computer scientists

Megabyte (MB). 1 million or 2^{20} bytes.
Gigabyte (GB). 1 billion or 2^{30} bytes.

64-bit machine. We assume a 64-bit machine with 8 -byte pointers.
some JVMs "compress" ordinary object
pointers to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

primitive types

type	bytes
boolean[]	$1 n+24$
int[]	$4 n+24$
doub7e[]	$8 n+24$
one-dimensional arrays (length \mathbf{n})	
type	bytes
boolean[][]	$\sim 1 n^{2}$
int[][]	$\sim 4 n^{2}$
doub7e[][]	$\sim 8 n^{2}$
two-dimensional arrays (n -by-n)	

Typical memory usage for objects in Java

Object overhead. 16 bytes.
Reference. 8 bytes.
Padding. Memory of each object rounded up to use a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

```
public class Date
{
    private int day;
        private int month;
        private int year;
}
```


16 bytes (object overhead)

4 bytes (int)
4 bytes (int)
4 bytes (int)
4 bytes (padding)
32 bytes

Typical memory usage summary

Total memory usage for a data type value in Java:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up memory of each object to be a multiple of 8 bytes.

Note. Depending on application, we often count the memory for any referenced objects (recursively).
"deep memory"

Analysis of algorithms: quiz 5

How much memory does a WeightedQuickUnionUF use as a function of \boldsymbol{n} ?

A. $\sim 4 n$ bytes
B. $\sim 8 n$ bytes
C. $\sim 4 n^{2}$ bytes
D. $\sim 8 n^{2}$ bytes

```
public class WeightedQuickUnionUF
{
    private int[] parent;
    private int[] size;
    private int count;
    public WeightedQuickUnionUF(int n)
    {
        parent = new int[n];
        size = new int[n];
        count = 0;
        for (int i = 0; i < n; i++)
            parent[i] = i;
        for (int i = 0; i < n; i++)
            size[i] = 1;
    }
}
```


Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law.
- Formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde and big-Theta notations to simplify analysis.

$$
\sum_{h=0}^{\lfloor\lg n\rfloor}\left\lceil n / 2^{h+1}\right\rceil h \sim n
$$

- Model enables us to explain behavior.

This course. Learn to use both.
© Copyright 2021 Robert Sedgewick and Kevin Wayne

[^0]: \dagger representative estimates (with some poetic license)

