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1 ABOUT THIS DOCUMENT 

1.1 Change control 

1.1.1 Current status and anticipated changes  
This document is a beta release specification and further changes to correct defects and improve clarity should be 
expected.  

1.1.2 Change history 

Issue Date By Change 

  NJS Previous releases tracked in Domino 

7.0 17th December 2010 NJS Beta0 release 

8.0 25th February 2011 NJS Beta0 update 1 

9.0 20th April 2011 NJS Beta1 release 

10.0 14th July 2011 NJS Beta2 release 

11.0 9th September 2011 NJS Beta2 update 1 

12.0 28th September 2011 NJS Beta3 release 

13.0 28th October 2011 NJS Beta3 update 1 

14.0 28th October 2011 NJS Restructured and incorporated new AArch32 instructions. 

15.0 11th November 2011 NJS First non-confidential release. Describe partial deprecation of the 
IT instruction. Rename DRET to DRPS and clarify its behavior. 

1.2 References 
This document refers to the following documents. 

Referenc
e  

Author Document number Title 

[v7A] ARM ARM DDI 0406 ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R 
edition 

[AES] NIST FIPS 197 Announcing the Advanced Encryption Standard (AES) 

[SHA] NIST FIPS 180-2 Announcing the Secure Hash Standard (SHA) 

[GCM] McGrew and 
Viega 

n/a The Galois/Counter Mode of Operation (GCM) 
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1.3 Terms and abbreviations 
This document uses the following terms and abbreviations. 

Term Meaning 

AArch64 The 64-bit general purpose register width state of the ARMv8 architecture. 

AArch32 The 32-bit general purpose register width state of the ARMv8 architecture, broadly 
compatible with the ARMv7-A architecture. 

 Note: The register width state can change only upon a change of exception level. 

A64 The new instruction set available when in AArch64 state, and described in this 
document. 

A32 The instruction set named ARM in the ARMv7 architecture, which uses 32-bit 
instructions. The new A32 instructions added by ARMv8 are described in §6. 

T32 The instruction set named Thumb in the ARMv7 architecture, which uses 16-bit 
and 32-bit instructions. The new T32 instructions added by ARMv8 are described 
in §6. 

UNALLOCATED Describes an opcode or combination of opcode fields which do not select a valid 
instruction at the current privilege level. Executing an UNALLOCATED encoding will 
usually result in taking an Undefined Instruction exception. 

RESERVED Describes an instruction field value within an otherwise allocated instruction which 
should not be used within this specific instruction context, for example a value 
which selects an unsupported data type or addressing mode. An instruction 
encoding which contains a RESERVED field value is an UNALLOCATED encoding. 
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2 INTRODUCTION 
This document provides an overview of the ARMv8 instruction sets. Most of the document forms a description of 
the new A64 instruction set used when the processor is operating in AArch64 register width state, and defines its 
preferred architectural assembly language.  

 

Section 6 below lists the extensions introduced by ARMv8 to the A32 and T32 instruction sets – known in ARMv7 
as the ARM and Thumb instruction sets respectively – which are available when the processor is operating in 
AArch32 register width state. The A32 and T32 assembly language syntax is unchanged from ARMv7. 

 

In the syntax descriptions below the following conventions are used: 
 
UPPER UPPER-CASE text is fixed, while lower-case text is variable. So register name Xn indicates that the `X’ 

is required, followed by a variable register number, e.g. X29.   
< >  Any item bracketed by < and > is a short description of a type of value to be supplied by the user in that 

position. A longer description of the item is normally supplied by subsequent text.  
{ } Any item bracketed by curly braces { and } is optional. A description of the item and of how its presence 

or absence affects the instruction is normally supplied by subsequent text. In some cases curly braces 
are actual symbols in the syntax, for example surrounding a register list, and such cases will be called 
out in the surrounding text. 

[ ] A list of alternative characters may be bracketed by [ and ]. A single one of the characters can be used 
in that position and the the subsequent text will describe the meaning of the alternatives. In some cases 
the symbols [ and ] are part of the syntax itself, such as addressing modes and vector elements, and 
such cases will be called out in the surrounding text.  

a | b Alternative words are separated by a vertical bar | and may be surrounded by parentheses to delimit 
them, e.g. U(ADD|SUB)W represents UADDW or USUBW.   

+/- This indicates an optional + or - sign. If neither is coded, then + is assumed. 
 

3 A64 OVERVIEW 
The A64 instruction set provides similar functionality to the A32 and T32 instruction sets in AArch32 or ARMv7. 
However just as the addition of 32-bit instructions to the T32 instruction set rationalized some of the ARM ISA 
behaviors, the A64 instruction set includes further rationalizations. The highlights of the new instruction set are as 
follows: 

• A clean, fixed length instruction set – instructions are 32 bits wide, register fields are contiguous bit fields 
at fixed positions, immediate values mostly occupy contiguous bit fields. 

• Access to a larger general-purpose register file with 31 unbanked registers (0-30), with each register 
extended to 64 bits. General registers are encoded as 5-bit fields with register number 31 (0b11111) 
being a special case representing: 

• Zero Register: in most cases register number 31 reads as zero when used as a source register, and 
discards the result when used as a destination register. 

• Stack Pointer: when used as a load/store base register, and in a small selection of arithmetic 
instructions, register number 31 provides access to the current stack pointer. 

• The PC is never accessible as a named register. Its use is implicit in certain instructions such as PC-
relative load and address generation. The only instructions which cause a non-sequential change to the 
PC are the designated Control Flow instructions (see §5.1) and exceptions. The PC cannot be specified 
as the destination of a data processing instruction or load instruction. 
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• The procedure call link register (LR) is unbanked, general-purpose register 30; exceptions save the restart 
PC to the target exception level’s ELR system register. 

• Scalar load/store addressing modes are uniform across all sizes and signedness of scalar integer, floating 
point and vector registers.  

• A load/store immediate offset may be scaled by the access size, increasing its effective offset range.  

• A load/store index register may contain a 64-bit or 32-bit signed/unsigned value, optionally scaled by the 
access size.  

• Arithmetic instructions for address generation which mirror the load/store addressing modes, see §3.3. 

• PC-relative load/store and address generation with a range of ±4GiB is possible using just two instructions 
without the need to load an offset from a literal pool. 

• PC-relative offsets for literal pool access and most conditional branches are extended to ±1MiB, and for 
unconditional branches and calls to ±128MiB.  

• There are no multiple register LDM, STM, PUSH and POP instructions, but load-store of a non-contiguous 
pair of registers is available.  

• Unaligned addresses are permitted for most loads and stores, including paired register accesses, floating 
point and SIMD registers, with the exception of exclusive and ordered accesses (see §3.5.2). 

• Reduced conditionality. Fewer instructions can set the condition flags. Only conditional branches, and a 
handful of data processing instructions read the condition flags. Conditional or predicated execution is not 
provided, and there is no equivalent of T32’s IT instruction (see §3.2). 

• A shift option for the final register operand of data processing instructions is available: 

o Immediate shifts only (as in T32). 

o No RRX shift, and no ROR shift for ADD/SUB. 

o The ADD/SUB/CMP instructions can first sign or zero-extend a byte, halfword or word in the final 
register operand, followed by an optional left shift of 1 to 4 bits. 

• Immediate generation replaces A32’s rotated 8-bit immediate with operation-specific encodings: 

o Arithmetic instructions have a simple 12-bit immediate, with an optional left shift by 12.  

o Logical instructions provide sophisticated replicating bit mask generation. 

o Other immediates may be constructed inline in 16-bit “chunks”, extending upon the MOVW and 
MOVT instructions of AArch32. 

• Floating point support is similar to AArch32 VFP but with some extensions, as described in §3.6. 

• Floating point and Advanced SIMD processing share a register file, in a similar manner to AArch32, but 
extended to thirty-two 128-bit registers.  Smaller registers are no longer packed into larger registers, but 
are mapped one-to-one to the low-order bits of the 128-bit register, as described in §4.4.2.   

• There are no SIMD or saturating arithmetic instructions which operate on the general purpose registers, 
such operations being available only as part of the Advanced SIMD processing, described in §5.7.  

• There is no access to CPSR as a single register, but new system instructions provide the ability to 
atomically modify individual processor state fields, see §5.8.2.  

• The concept of a “coprocessor” is removed from the architecture. A set of system instructions described in 
§5.8 provides:  

o System register access 

o Cache/TLB management 

o VA�PA translation 

o Barriers and CLREX 

o Architectural hints (WFI, etc) 

o Debug 



ARMv8 Instruction Set Overview  

 
PRD03-GENC-010197 Copyright © 2009-2011 ARM Limited. All rights reserved. Page 10 of 112 

3.1 Distinguishing 32-bit and 64-bit Instructions 
Most integer instructions in the A64 instruction set have two forms, which operate on either 32-bit or 64-bit values 
within the 64-bit general-purpose register file. Where a 32-bit instruction form is selected, the following holds true: 

• The upper 32 bits of the source registers are ignored; 

• The upper 32 bits of the destination register are set to ZERO; 

• Right shifts/rotates inject at bit 31, instead of bit 63; 

• The condition flags, where set by the instruction, are computed from the lower 32 bits. 

This distinction applies even when the result(s) of a 32-bit instruction form would be indistinguishable from the 
lower 32 bits computed by the equivalent 64-bit instruction form. For example a 32-bit bitwise ORR could be 
performed using a 64-bit ORR, and simply ignoring the top 32 bits of the result. But the A64 instruction set includes 
separate 32 and 64-bit forms of the ORR instruction. 

Rationale: The C/C++ LP64 and LLP64 data models – expected to be the most commonly used on AArch64 – 
both define the frequently used int, short and char types to be 32 bits or less. By maintaining this semantic 
information in the instruction set, implementations can exploit this information to avoid expending energy or cycles 
to compute, forward and store the unused upper 32 bits of such data types. Implementations are free to exploit 
this freedom in whatever way they choose to save energy.  

As well as distinct sign/zero-extend instructions, the A64 instruction set also provides the ability to extend and shift 
the final source register of an ADD, SUB or CMP instruction and the index register of a load/store instruction. This 
allows for an efficient implementation of array index calculations involving a 64-bit array pointer and 32-bit array 
index. 

The assembly language notation is designed to allow the identification of registers holding 32-bit values as distinct 
from those holding 64-bit values. As well as aiding readability, tools may be able to use this to perform limited type 
checking, to identify programming errors resulting from the change in register size.  

3.2 Conditional Instructions 
The A64 instruction set does not include the concept of predicated or conditional execution. Benchmarking shows 
that modern branch predictors work well enough that predicated execution of instructions does not offer sufficient 
benefit to justify its significant use of opcode space, and its implementation cost in advanced implementations.  

A very small set of “conditional data processing” instructions are provided. These instructions are unconditionally 
executed but use the condition flags as an extra input to the instruction. This set has been shown to be beneficial 
in situations where conditional branches predict poorly, or are otherwise inefficient. 

The conditional instruction types are: 

• Conditional branch: the traditional ARM conditional branch, together with compare and branch if register 
zero/non-zero, and test single bit in register and branch if zero/non-zero – all with increased displacement. 

• Add/subtract with carry: the traditional ARM instructions, for multi-precision arithmetic, checksums, etc. 

• Conditional select with increment, negate or invert: conditionally select between one source register and a 
second incremented/negated/inverted/unmodified source register. Benchmarking reveals these to be the 
highest frequency uses of single conditional instructions, e.g. for counting, absolute value, etc. These 
instructions also implement: 

o Conditional select (move): sets the destination to one of two source registers, selected by the 
condition flags. Short conditional sequences can be replaced by unconditional instructions 
followed by a conditional select. 

o Conditional set: conditionally select between 0 and 1 or -1, for example to materialize the 
condition flags as a Boolean value or mask in a general register. 

• Conditional compare: sets the condition flags to the result of a comparison if the original condition was 
true, else to an immediate value. Permits the flattening of nested conditional expressions without using 
conditional branches or performing Boolean arithmetic within general registers. 
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3.3 Addressing Features 
The prime motivation for a 64-bit architecture is access to a larger virtual address space. The AArch64 memory 
translation system supports a 49-bit virtual address (48 bits per translation table). Virtual addresses are sign-
extended from 49 bits, and stored within a 64-bit pointer. Optionally, under control of a system register, the most 
significant 8 bits of a 64-bit pointer may hold a “tag” which will be ignored when used as a load/store address or 
the target of an indirect branch.  

3.3.1 Register Indexed Addressing  
The A64 instruction set extends on 32-bit T32 addressing modes, allowing a 64-bit index register to be added to 
the 64-bit base register, with optional scaling of the index by the access size. Additionally it provides for sign or 
zero-extension of a 32-bit value within an index register, again with optional scaling.  

These register index addressing modes provide a useful performance gain if they can be performed within a single 
cycle, and it is believed that at least some implementations will be able to do this. However, based on 
implementation experience with AArch32, it is expected that other implementations will need an additional cycle to 
execute such addressing modes. 

Rationale: The architects intend that implementations should be free to fine-tune the performance trade-offs 
within each implementation, and note that providing an instruction which in some implementations takes two 
cycles, is preferable to requiring the dynamic grouping of two independent instructions in an implementation that 
can perform this address arithmetic in a single cycle.  

3.3.2 PC-relative Addressing  
There is improved support for position-independent code and data addressing: 

• PC-relative literal loads have an offset range of ±1MiB. This permits fewer literal pools, and more sharing 
of literal data between functions – reducing I-cache and TLB pollution. 

• Most conditional branches have a range of ±1MiB, expected to be sufficient for the majority of conditional 
branches which take place within a single function. 

• Unconditional branches, including branch and link, have a range of ±128MiB. Expected to be sufficient to 
span the static code segment of most executable load modules and shared objects, without needing 
linker-inserted trampolines or “veneers”. 

• PC-relative load/store and address generation with a range of ±4GiB may be performed inline using only 
two instructions, i.e. without the need to load an offset from a literal pool. 

3.4 The Program Counter (PC) 
The current Program Counter (PC) cannot be referred to by number as if part of the general register file and 
therefore cannot be used as the source or destination of arithmetic instructions, or as the base, index or transfer 
register of load/store instructions. The only instructions which read the PC are those whose function is to compute 
a PC-relative address (ADR, ADRP, literal load, and direct branches), and the branch-and-link instructions which 
store it in the link register (BL and BLR). The only way to modify the Program Counter is using explicit control flow 
instructions: conditional branch, unconditional branch, exception generation and exception return instructions. 

Where the PC is read by an instruction to compute a PC-relative address, then its value is the address of the 
instruction, i.e. unlike A32 and T32 there is no implied offset of 4 or 8 bytes. 

3.5 Memory Load-Store  

3.5.1 Bulk Transfers 
The LDM, STM, PUSH and POP instructions do not exist in A64, however bulk transfers can be constructed 
using the LDP and STP instructions which load and store a pair of independent registers from consecutive 
memory locations, and which support unaligned addresses when accessing normal memory. The LDNP and 
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STNP instructions additionally provide a “streaming” or ”non-temporal” hint that the data does not need to be 
retained in caches. The PRFM (prefetch memory) instructions also include hints for “streaming” or “non-temporal” 
accesses, and allow targeting of a prefetch to a specific cache level. 

3.5.2 Exclusive Accesses 
Exclusive load-store of a byte, halfword, word and doubleword. Exclusive access to a pair of doublewords permit 
atomic updates of a pair of pointers, for example circular list inserts. All exclusive accesses must be naturally 
aligned, and exclusive pair access must be aligned to twice the data size (i.e. 16 bytes for a 64-bit pair). 

3.5.3 Load-Acquire, Store-Release  
Explicitly synchronising load and store instructions implement the release-consistency (RCsc) memory model, 
reducing the need for explicit memory barriers, and providing a good match to emerging language standards for 
shared memory.  The instructions exist in both exclusive and non-exclusive forms, and require natural address 
alignment. See §5.2.8 for more details. 

3.6 Integer Multiply/Divide 
Including 32 and 64-bit multiply, with accumulation: 

� 32 ± (32 � 32)  → 32 

� 64 ± (64 � 64)  → 64 

�     ± (32 � 32)  → 32 

�     ± (64 � 64)  → 64 

Widening multiply (signed and unsigned), with accumulation: 

� 64 ± (32 � 32)  → 64 

�     ± (32 � 32)  → 64 

�        (64 � 64)  → hi64 <127:64> 

Multiply instructions write a single register. A 64 � 64 to 128-bit multiply requires a sequence of two instructions to 
generate a pair of 64-bit result registers: 

�     + (64 � 64)  → <63:0> 

�        (64 � 64)  → <127:64> 

Signed and unsigned 32- and 64-bit divide are also provided. A remainder instruction is not provided, but a 
remainder may be computed easily from the dividend, divisor and quotient using an MSUB instruction. There is no 
hardware check for “divide by zero”, but this check can be performed in the shadow of a long latency division. A 
divide by zero writes zero to the destination register. 

3.7 Floating Point  
AArch64 mandates hardware floating point wherever floating point arithmetic is required – there is no “soft-float” 
variant of the AArch64 Procedure Calling Standard (PCS). 

Floating point functionality is similar to AArch32 VFP, with the following changes: 

• The deprecated “small vector” feature of VFP is removed. 

• There are 32 S registers and 32 D registers. The S registers are not packed into D registers, but occupy 
the low 32 bits of the corresponding D register. For example S31=D31<31:0>, not D15<63:32>. 

• Load/store addressing modes identical to integer load/stores.  

• Load/store of a pair of floating point registers. 

• Floating point FCSEL and FCCMP equivalent to the integer CSEL and CCMP. 
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• Floating point FCMP and FCCMP instructions set the integer condition flags directly, and do not modify the 
condition flags in the FPSR. 

• All floating-point multiply-add and multiply-subtract instructions are “fused”. 

• Convert between 64-bit integer and floating point. 

• Convert FP to integer with explicit rounding direction (towards zero, towards +Inf, towards -Inf, to nearest 
with ties to even, and to nearest with ties away from zero). 

• Round FP to nearest integral FP with explicit rounding direction (as above). 

• Direct conversion between half-precision and double-precision. 

• FMINNM & FMAXNM implementing the IEEE754-2008 minNum() and maxNum() operations, returning the 
numerical value if one of the operands is a quiet NaN. 

3.8 Advanced SIMD  
See §5.7 below for a detailed description. 
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4 A64 ASSEMBLY LANGUAGE 

4.1 Basic Structure 
The letter W is shorthand for a 32-bit word, and X for a 64-bit extended word. The letter X (extended) is used rather 
than D (double), since D conflicts with its use for floating point and SIMD “double-precision” registers and the T32 
load/store “double-register” instructions (e.g. LDRD). 

An A64 assembler will recognise both upper and lower-case variants of instruction mnemonics and register 
names, but not mixed case. An A64 disassembler may output either upper or lower-case mnemonics and register 
names. The case of program and data labels is significant. 

The fundamental statement format and operand order follows that used by AArch32 UAL assemblers and 
disassemblers, i.e. a single statement per source line, consisting of one or more optional program labels, followed 
by an instruction mnemonic, then a destination register and one or more source operands separated by commas. 

 {label:*} {opcode {dest{, source1{, source2{, source3}}}}} 

This dest/source ordering is reversed for store instructions, in common with AArch32 UAL. 

The A64 assembly language does not require the ‘#’ symbol to introduce immediate values, though an assembler 
must allow it. An A64 disassembler shall always output a ‘#’ before an immediate value for readability.  

Where a user-defined symbol or label is identical to a pre-defined register name (e.g. “X0”) then if it is used in a 
context where its interpretation is ambiguous – for example in an operand position that would accept either a 
register name or an immediate expression – then an assembler must interpret it as the register name. A symbol 
may be disambiguated by using it within an expression context, i.e. by placing it within parentheses and/or 
prefixing it with an explicit ‘#’ symbol.  

In the examples below the sequence “//” is used as a comment leader, though A64 assemblers are also 
expected to to support their legacy ARM comment syntax. 

4.2 Instruction Mnemonics 

An A64 instruction form can be identified by the following combination of attributes:  

• The operation name (e.g. ADD) which indicates the instruction semantics.  
• The operand container, usually the register type. An instruction writes to the whole container, but if it is not 

the largest in its class, then the remainder of the largest container in the class is set to ZERO.  
• The operand data subtype, where some operand(s) are a different size from the primary container.  
• The final source operand type, which may be a register or an immediate value.  

The container is one of:  

Integer Class 
W 32-bit integer 
X 64-bit integer 

SIMD Scalar & Floating Point Class 
B 8-bit scalar 
H 16-bit scalar & half-precision float 
S 32-bit scalar & single-precision float 
D 64-bit scalar & double-precision float  
Q 128-bit scalar 
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The subtype is one of:  

Load-Store / Sign-Zero Extend 
B byte  

SB signed byte  
H halfword  

SH signed halfword  
W word  

SW signed word  
Register Width Changes 

H High (dst gets top half) 
N Narrow (dst < src) 
L Long (dst > src) 
W Wide (dst == src1, src1 > src2) 

etc  

These attributes are combined in the assembly language notation to identify the specific instruction form. In order 
to retain a close look and feel to the existing ARM assembly language, the following format has been adopted: 

 <name>{<subtype>} <container> 
 
In other words the operation name and subtype are described by the instruction mnemonic, and the container size 
by the operand name(s). Where subtype is omitted, it is inherited from container. 

In this way an assembler programmer can write an instruction without having to remember a multitude of new 
mnemonics; and the reader of a disassembly listing can straightforwardly read an instruction and see at a glance 
the type and size of each operand.  

The implication of this is that the A64 assembly language overloads instruction mnemonics, and distinguishes 
between the different forms of an instruction based on the operand register names. For example the ADD 
instructions below all have different opcodes, but the programmer only has to remember one mnemonic and the 
assembler automatically chooses the correct opcode based on the operands – with the disassembler doing the 
reverse.  

   ADD   W0, W1, W2     // add 32-bit register 
   ADD   X0, X1, X2     // add 64-bit register 
   ADD   X0, X1, W2, SXTW  // add 64-bit extending register 
   ADD   X0, X1, #42    // add 64-bit immediate 

4.3 Condition Codes 

In AArch32 assembly language conditionally executed instructions are represented by directly appending the 
condition to the mnemonic, without a delimiter. This leads to some ambiguity which can make assembler code 
difficult to parse: for example ADCS, BICS, LSLS and TEQ look at first glance like conditional instructions.  

The A64 ISA has far fewer instructions which set or test condition codes. Those that do will be identified as 
follows:  

1. Instructions which set the condition flags are notionally different instructions, and will continue to be 
identified by appending an ‘S’ to the base mnemonic, e.g. ADDS.  
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2. Instructions which are truly conditionally executed (i.e. when the condition is false they have no effect on 
the architectural state, aside from advancing the program counter) have the condition appended to the 
instruction with a '.' delimiter. For example B.EQ.  

3. If there is more than one instruction extension, then the conditional extension is always last.  
4. Where a conditional instruction has qualifiers, the qualifiers follow the condition.  
5. Instructions which are unconditionally executed, but use the condition flags as a source operand, will 

specify the condition to test in their final operand position, e.g. CSEL Wd,Wm,Wn,NE  

To aid portability an A64 assembler may also provide the old UAL conditional mnemonics, so long as they have 
direct equivalents in the A64 ISA. However, the UAL mnemonics will not be generated by an A64 disassembler – 
their use is deprecated in 64-bit assembler code, and may cause a warning or error if backward compatibility is 
not explicitly requested by the programmer. 

The full list of condition codes is as follows: 

Encoding 
Name 
(& 
alias) 

Meaning (integer) Meaning (floating point) Flags 

0000 EQ Equal Equal Z==1 
0001 NE Not equal Not equal, or unordered Z==0 

0010 
HS  
(CS) 

Unsigned higher or same 
(Carry set) Greater than, equal, or unordered C==1 

0011 
LO  
(CC) 

Unsigned lower 
(Carry clear) Less than C==0 

0100 MI Minus (negative) Less than N==1 
0101 PL Plus (positive or zero) Greater than, equal, or unordered N==0 
0110 VS Overflow set Unordered V==1 
0111 VC Overflow clear Ordered V==0 
1000 HI Unsigned higher  Greater than, or unordered  C==1 && Z==0 
1001 LS Unsigned lower or same Less than or equal !(C==1 && Z==0)

1010 GE Signed greater than or 
equal Greater than or equal N==V 

1011 LT Signed less than Less than or unordered N!=V 
1100 GT Signed greater than Greater than Z==0 && N==V 
1101 LE Signed less than or equal Less than, equal, or unordered !(Z==0 && N==V)
1110 AL 
1111 NV† 

Always Always Any 

†The condition code NV exists only to provide a valid disassembly of the ‘1111b’ encoding, and otherwise behaves 
identically to AL. 
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4.4 Register Names 

4.4.1 General purpose (integer) registers 

The thirty one general purpose registers in the main integer register bank are named R0 to R30, with special 
register number 31 having different names, depending on the context in which it is used. However, when the 
registers are used in a specific instruction form, they must be further qualified to indicate the operand data size (32 
or 64 bits) – and hence the instruction’s data size.  

The qualified names for the general purpose registers are as follows, where ‘n’ is the register number 0 to 30: 

Size (bits) 32b 64b 
Name Wn Xn 

Where register number 31 represents read zero or discard result (aka the “zero register”): 

Size (bits) 32b 64b 
Name  WZR XZR

Where register number 31 represents the stack pointer: 

Size (bits) 32b 64b 
Name  WSP SP 

In more detail:  

• The names Xn and Wn refer to the same architectural register.  
• There is no register named W31 or X31.  
• For instruction operands where register 31 in interpreted as the 64-bit stack pointer, it is represented by 

the name SP. For operands which do not interpret register 31 as the 64-bit stack pointer this name shall 
cause an assembler error.  

• The name WSP represents register 31 as the stack pointer in a 32-bit context. It is provided only to allow a 
valid disassembly, and should not be seen in correctly behaving 64-bit code. 

• For instruction operands which interpret register 31 as the zero register, it is represented by the name XZR 
in 64-bit contexts, and WZR in 32-bit contexts. In operand positions which do not interpret register 31 as 
the zero register these names shall cause an assembler error.  

• Where a mnemonic is overloaded (i.e. can generate different instruction encodings depending on the data 
size), then an assembler shall determine the precise form of the instruction from the size of the first 
register operand. Usually the other operand registers should match the size of the first operand, but in 
some cases a register may have a different size (e.g. an address base register is always 64 bits), and a 
source register may be smaller than the destination if it contains a word, halfword or byte that is being 
widened by the instruction to 64 bits.  

• The architecture does not define a special name for register 30 that reflects its special role as the link 
register on procedure calls. Such software names may be defined as part of the Procedure Calling 
Standard. 
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4.4.2 FP/SIMD registers 

The thirty two registers in the FP/SIMD register bank named V0 to V31 are used to hold floating point 
operands for the scalar floating point instructions, and both scalar and vector operands for the Advanced 
SIMD instructions. As with the general purpose integer registers, when they are used in a specific instruction 
form the names must be further qualified to indicate the data shape (i.e. the data element size and number of 
elements or lanes) held within them.  

Note however that the data type, i.e. the interpretation of the bits within each register or vector element – 
integer (signed, unsigned or irrelevant), floating point, polynomial or cryptographic hash – is not described by 
the register name, but by the instruction mnemonics which operate on them. For more details see the 
Advanced SIMD description in §5.7. 

4.4.2.1 SIMD scalar register  

In Advanced SIMD and floating point instructions which operate on scalar data the FP/SIMD registers behave 
similarly to the main general-purpose integer registers, i.e. only the lower bits are accessed, with the unused 
high bits ignored on a read and set to zero on a write. The qualified names for scalar FP/SIMD names indicate 
the number of significant bits as follows, where ‘n’ is a register number 0 to 31: 

Size (bits) 8b 16b 32b 64b 128b 
Name Bn Hn Sn Dn Qn 

4.4.2.2 SIMD vector register  

When a register holds multiple data elements on which arithmetic will be performed in a parallel, SIMD 
fashion, then a qualifier describes the vector shape: i.e. the element size, and the number of elements or 
“lanes”. Where “bits�lanes” does not equal 128, the upper 64 bits of the register are ignored when read and 
set to zero on a write. 

The fully qualified SIMD vector register names are as follows, where ‘n’ is the register number 0 to 31: 

Shape (bits�lanes) 8b�8 8b�16 16b�4 16b�8 32b�2 32b�4 64b�1 64b�2 
Name Vn.8B Vn.16B Vn.4H Vn.8H Vn.2S Vn.4S Vn.1D Vn.2D 

4.4.2.3 SIMD vector element  

Where a single element from a SIMD vector register is used as a scalar operand, this is indicated by 
appending a constant, zero-based “element index” to the vector register name, inside square brackets. The 
number of lanes is not represented, since it is not encoded, and may only be inferred from the index value.  

Size (bits) 8b 16b 32b 64b 
Name Vn.B[i] Vn.H[i] Vn.S[i] Vn.D[i]

However an assembler shall accept a fully qualified SIMD vector register name as in §4.4.2.2, so long as the 
number of lanes is greater than the index value. For example the following forms will both be accepted by an 
assembler as the name for the 32-bit element in bits <63:32> of SIMD register 9: 

V9.S[1]      standard disassembly 
V9.2S[1]     optional number of lanes 
V9.4S[1]     optional number of lanes 
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Note that the vector register element name Vn.S[0] is not equivalent to the scalar register name Sn. 
Although they represent the same bits in the register, they select different instruction encoding forms, i.e. 
vector element vs scalar form. 

4.4.2.4 SIMD vector register list 

Where an instruction operates on a “list” of vector registers – for example vector load-store and table lookup – 
the registers are specified as a list within curly braces. This list consists of either a sequence of registers 
separated by commas, or a register range separated by a hyphen. The registers must be numbered in 
increasing order (modulo 32), in increments of one or two. The hyphenated form is preferred for disassembly 
if there are more than two registers in the list, and the register numbers are monotonically increasing in 
increments of one. The following are equivalent representations of a set of four registers V4 to V7, each 
holding four lanes of 32-bit elements: 

{V4.4S – V7.4S}     standard disassembly 
{V4.4S, V5.4S, V6.4S, V7.4S}  alternative representation 

4.4.2.5 SIMD vector element list 

It is also possible for registers in a list to have a vector element form, for example LD4 loading one element 
into each of four registers, in which case the index is appended to the list, as follows: 

{V4.S - V7.S}[3]       standard disassembly 
{V4.4S, V5.4S, V6.4S, V7.4S}[3]  alternative with optional number of lanes 
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4.5 Load/Store Addressing Modes 

Load/store addressing modes in the A64 instruction set broadly follows T32 consisting of a 64-bit base register 
(Xn or SP) plus an immediate or register offset.  

Type  Immediate Offset  Register Offset Extended Register Offset 

Simple register (exclusive) [base{,#0}]  n/a  n/a 

Offset [base{,#imm}]  [base,Xm{,LSL #imm}]  [base,Wm,(S|U)XTW {#imm}] 

Pre-indexed  [base,#imm]!  n/a  n/a  

Post-indexed  [base],#imm  n/a n/a  

PC-relative (literal) load label n/a  n/a 

• An immediate offset is encoded in various ways, depending on the type of load/store instruction: 

Bits Sign Scaling Write-
back? 

Load/Store Type 

0 - - - exclusive / acquire / release 
7 signed scaled option register pair 
9 signed unscaled option single register 

12 unsigned scaled no single register  

• Where an immediate offset is scaled, it is encoded as a multiple of the data access size (except PC-
relative loads, where it is always a word multiple). The assembler always accepts a byte offset, which is 
converted to the scaled offset for encoding, and a disassembler decodes the scaled offset encoding and 
displays it as a byte offset. The range of byte offsets supported therefore varies according to the type of 
load/store instruction and the data access size.  

• The "post-indexed" forms mean that the memory address is the base register value, then base plus 
offset is written back to the base register. 

• The "pre-indexed" forms mean that the memory address is the base register value plus offset, then the 
computed address is written back to the base register. 

• A “register offset” means that the memory address is the base register value plus the value of 64-bit index 
register Xm optionally scaled by the access size (in bytes), i.e. shifted left by log2(size).  

• An “extended register offset” means that the memory address is the base register value plus the value of 
32-bit index register Wm, sign or zero extended to 64 bits, then optionally scaled by the access size.  

• An assembler should accept Xm as an extended index register, though Wm is preferred. 
• The pre/post-indexed forms are not available with a register offset.  
• There is no "down" option, so subtraction from the base register requires a negative signed immediate 

offset (two's complement) or a negative value in the index register.  
• When the base register is SP the stack pointer is required to be quadword (16 byte, 128 bit) aligned prior 

to the address calculation and write-backs – misalignment will cause a stack alignment fault. The stack 
pointer may not be used as an index register. 

• Use of the program counter (PC) as a base register is implicit in literal load instructions and not permitted 
in other load or store instructions. Literal loads do not include byte and halfword forms. See section 5 
below for the definition of label. 
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5 A64 INSTRUCTION SET 
.The following syntax terms are used frequently throughout the A64 instruction set description. See also the 
syntax notation described in section 2 above. 

Xn Unless otherwise indicated a general register operand Xn or Wn interprets register 31 as the zero 
register, represented by the names XZR or WZR respectively. 

Xn|SP A general register operand of the form Xn|SP or Wn|WSP interprets register 31 as the stack pointer, 
represented by the names SP or WSP respectively. 

cond  A standard ARM condition EQ, NE, CS|HS, CC|LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, 
LE, AL or NV with the same meanings as in AArch32. Note that although AL and NV represent different 
encodings, as in AArch32 they are both interpreted as the “always true” condition. Unless stated  
AArch64 instructions do not set or use the condition flags, but those that do set all of the condition flags. 
If used in a pseudo-code expression this symbol represents a Boolean whose value is the truth of the 
specified condition test.  

invert(cond) 

 The inverse of cond, for example the inverse of GT is LE.  
uimmn  An n-bit unsigned (positive) immediate value.  
simmn  An n-bit two's complement signed immediate value (where n includes the sign bit).  
label Represents a pc-relative reference from an instruction to a target code or data location. The precise 

syntax is likely to be specific to individual toolchains, but the preferred form is “pcsym” or “pcsym±offs”, 
where pcsym is: 

a. The preferred architectural notation which is (at the choice of the disassembler) the character ‘.’ 
or string “{pc}” representing the referencing instruction’s address or offset. 

b. For a programmers’ view where the instruction’s address in memory or offset within a 
relocatable image is known and a list of symbols is available, then the symbol name whose 
value is nearest to, and preferably less than or equal to the target location’s address or offset. 

c. For a programmers’ view where the instruction’s address or offset is known but a list of symbols 
is not available, then the target address or offset as a hexadecimal constant.   

 And where in all cases “±offs” gives the byte offset from pcsym to the target location’s address or 
offset, which may be omitted if the offset is zero. 

addr  Represents an addressing mode that is some subset (documented for each class of instruction) of the 
addressing modes in section 4.5 above. 

lshift  Represents an optional shift operator performed on the final source operand of a logical instruction, 
taking chosen from LSL, LSR, ASR, or ROR, followed by a constant shift amount #imm in the range 0 to 
regwidth-1.  If omitted the default is “LSL #0”. 

ashift  Represents an optional shift operator to be performed on the final source operand of an arithmetic 
instruction chosen from LSL, LSR, or ASR, followed by a constant shift amount #imm in the range 0 to 
regwidth-1.  If omitted the default is “LSL #0”. 
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5.1 Control Flow 

5.1.1 Conditional Branch 

Unless stated, conditional branches have a branch offset range of ±1MiB from the program counter.  

B.cond label  

Branch: conditionally jumps to program-relative label if cond is true.  
CBNZ Wn, label  

Compare and Branch Not Zero: conditionally jumps to program-relative label if Wn is not equal to zero.  

CBNZ Xn, label  

Compare and Branch Not Zero (extended): conditionally jumps to label if Xn is not equal to zero.  

CBZ Wn, label  

Compare and Branch Zero: conditionally jumps to label if Wn is equal to zero.  

CBZ Xn, label  

Compare and Branch Zero (extended): conditionally jumps to label if Xn is equal to zero.  

TBNZ Xn|Wn, #uimm6, label  

Test and Branch Not Zero: conditionally jumps to label if bit number uimm6 in register Xn is not zero. 
The bit number implies the width of the register, which may be written and should be disassembled as Wn 
if uimm is less than 32. Limited to a branch offset range of ±32KiB.  

TBZ Xn|Wn, #uimm6, label  

Test and Branch Zero: conditionally jumps to label if bit number uimm6 in register Xn is zero. The bit 
number implies the width of the register, which may be written and should be disassembled as Wn if 
uimm6 is less than 32. Limited to a branch offset range of ±32KiB.  

5.1.2 Unconditional Branch (immediate) 

Unconditional branches support an immediate branch offset range of ±128MiB.  

B label  
Branch: unconditionally jumps to pc-relative label.  

BL label  
Branch and Link: unconditionally jumps to pc-relative label, writing the address of the next sequential 
instruction to register X30.  

5.1.3 Unconditional Branch (register) 
BLR Xm  

Branch and Link Register: unconditionally jumps to address in Xm, writing the address of the next 
sequential instruction to register X30.  

BR Xm  

Branch Register: jumps to address in Xm, with a hint to the CPU that this is not a subroutine return.  

RET {Xm} 

Return: jumps to register Xm, with a hint to the CPU that this is a subroutine return. An assembler shall 
default to register X30 if Xm is omitted.  
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5.2 Memory Access 
Aside from exclusive and explicitly ordered loads and stores, addresses may have arbitrary alignment unless strict 
alignment checking is enabled (SCTLR.A==1). However if SP is used as the base register then the value of the 
stack pointer prior to adding any offset must be quadword (16 byte) aligned, or else a stack alignment exception 
will be generated. 

A memory read or write generated by the load or store of a single general-purpose register aligned to the size of 
the transfer is atomic. Memory reads or writes generated by the non-exclusive load or store of a pair of general-
purpose registers aligned to the size of the register are treated as two atomic accesses, one for each register. In 
all other cases, unless otherwise stated, there are no atomicity guarantees. 

5.2.1 Load-Store Single Register 
The most general forms of load-store support a variety of addressing modes, consisting of base register Xn or SP, 
plus one of: 

• Scaled, 12-bit, unsigned immediate offset, without pre- and post-index options.  
• Unscaled, 9-bit, signed immediate offset with pre- or post-index writeback.  
• Scaled or unscaled 64-bit register offset. 
• Scaled or unscaled 32-bit extended register offset. 

If a Load instruction specifies writeback and the register being loaded is also the base register, then one of the 
following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs the load using the specified addressing mode and the base register becomes 
UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might be 
corrupted such that the instruction cannot be repeated. 

If a Store instruction performs a writeback and the register being stored is also the base register, then one of the 
following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs the stores of the register specified using the specified addressing mode but the 
value stored is UNKNOWN 

 

LDR Wt, addr  

Load Register: loads a word from memory addressed by addr to Wt.  

LDR Xt, addr  

Load Register (extended): loads a doubleword from memory addressed by addr to Xt.  

LDRB Wt, addr  

Load Byte: loads a byte from memory addressed by addr, then zero-extends it to Wt.  

LDRSB Wt, addr  

Load Signed Byte: loads a byte from memory addressed by addr, then sign-extends it into Wt.  

LDRSB Xt, addr  

Load Signed Byte (extended): loads a byte from memory addressed by addr, then sign-extends it into Xt.  

LDRH Wt, addr  

Load Halfword: loads a halfword from memory addressed by addr, then zero-extends it into Wt.  
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LDRSH Wt, addr  

Load Signed Halfword: loads a halfword from memory addressed by addr, then sign-extends it into Wt.  

LDRSH Xt, addr  

Load Signed Halfword (extended): loads a halfword from memory addressed by addr, then sign-extends 
it into Xt.  

LDRSW Xt, addr  

Load Signed Word (extended): loads a word from memory addressed by addr, then sign-extends it into 
Xt.  

STR Wt, addr  

Store Register: stores word from Wt to memory addressed by addr.  

STR Xt, addr  

Store Register (extended): stores doubleword from Xt to memory addressed by addr.  

STRB Wt, addr  

Store Byte: stores byte from Wt to memory addressed by addr.  

STRH Wt, addr  

Store Halfword: stores halfword from Wt to memory addressed by addr.  

5.2.2 Load-Store Single Register (unscaled offset) 
The load-store single register (unscaled offset) instructions support an addressing mode of base register Xn or 
SP, plus: 

• Unscaled, 9-bit, signed immediate offset, without pre- and post-index options 

These instructions use unique mnemonics to distinguish them from normal load-store instructions due to the 
overlap of functionality with the scaled 12-bit unsigned immediate offset addressing mode when the offset is 
positive and naturally aligned. 

A programmer-friendly assembler could generate these instructions in response to the standard LDR/STR 
mnemonics when the immediate offset is unambiguous, i.e. when it is negative or unaligned. Similarly a 
disassembler could display these instructions using the standard LDR/STR mnemonics when the encoded 
immediate is negative or unaligned. However this behaviour is not required by the architectural assembly 
language. 

LDUR Wt, [base,#simm9]  

Load (Unscaled) Register: loads a word from memory addressed by base+simm9 to Wt.  

LDUR Xt, [base,#simm9]  

Load (Unscaled) Register (extended): loads a doubleword from memory addressed by base+simm9 to 
Xt.  

LDURB Wt, [base,#simm9]  

Load (Unscaled) Byte: loads a byte from memory addressed by base+simm9, then zero-extends it into 
Wt.  

LDURSB Wt, [base,#simm9]  

Load (Unscaled) Signed Byte: loads a byte from memory addressed by base+simm9, then sign-extends it 
into Wt.  

LDURSB Xt, [base,#simm9]  

Load (Unscaled) Signed Byte (extended): loads a byte from memory addressed by base+simm9, then 
sign-extends it into Xt.  
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LDURH Wt, [base,#simm9]  

Load (Unscaled) Halfword: loads a halfword from memory addressed by base+simm9, then zero-extends 
it into Wt.  

LDURSH Wt, [base,#simm9]  

Load (Unscaled) Signed Halfword: loads a halfword from memory addressed by base+simm9, then sign-
extends it into Wt.  

LDURSH Xt, [base,#simm9]  

Load (Unscaled) Signed Halfword (extended): loads a halfword from memory addressed by base+simm9, 
then sign-extends it into Xt.  

LDURSW Xt, [base,#simm9]  

Load (Unscaled) Signed Word (extended): loads a word from memory addressed by base+simm9, then 
sign-extends it into Xt.  

STUR Wt, [base,#simm9]  

Store (Unscaled) Register: stores word from Wt to memory addressed by base+simm9.  

STUR Xt, [base,#simm9]  

Store (Unscaled) Register (extended): stores doubleword from Xt to memory addressed by base+simm9.  

STURB Wt, [base,#simm9]  

Store (Unscaled) Byte: stores byte from Wt to memory addressed by base+simm9.  

STURH Wt, [base,#simm9]  

Store (Unscaled) Halfword: stores halfword from Wt to memory addressed by base+simm9.   

5.2.3 Load Single Register (pc-relative, literal load) 

The pc-relative address from which to load is encoded as a 19-bit signed word offset which is shifted left by 2 and 
added to the program counter, giving access to any word-aligned location within ±1MiB of the PC.  

As a convenience assemblers will typically permit the notation “=value” in conjunction with the pc-relative literal 
load instructions to automatically place an immediate value or symbolic address in a nearby literal pool and 
generate a hidden label which references it. But that syntax is not architectural and will never appear in a 
disassembly. A64 has other instructions to construct immediate values (section 5.3.3) and addresses (section 
5.3.4) in a register which may be preferable to loading them from a literal pool. 

LDR Wt, label | =value 

Load Literal Register (32-bit): loads a word from memory addressed by label to Wt.  

LDR Xt, label | =value 

Load Literal Register (64-bit): loads a doubleword from memory addressed by label to Xt.  

LDRSW Xt, label | =value  

Load Literal Signed Word (extended): loads a word from memory addressed by label, then sign-extends 
it into Xt.  

5.2.4 Load-Store Pair 
The load-store pair instructions support an addressing mode consisting of base register Xn or SP, plus: 

• Scaled 7-bit signed immediate offset, with pre- and post-index writeback options 
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If a Load Pair instruction specifies the same register for the two registers that are being loaded, then one of the 
following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs all of the loads using the specified addressing mode and the register being 
loaded takes an UNKNOWN value 

If a Load Pair instruction specifies writeback and one of the registers being loaded is also the base register, then 
one of the following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs all of the loads using the specified addressing mode and the base register 
becomes UNKNOWN. In addition, if an exception occurs during such an instruction, the base address might 
be corrupted such that the instruction cannot be repeated. 

If a Store Pair instruction performs a writeback and one of the registers being stored is also the base register, then 
one of the following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs all of the stores of the registers specified using the specified addressing mode 
but the value stored for the base register is UNKNOWN 

 

LDP Wt1, Wt2, addr  

Load Pair Registers: loads two words from memory addressed by addr to Wt1 and Wt2.  

LDP Xt1, Xt2, addr  

Load Pair Registers (extended): loads two doublewords from memory addressed by addr to Xt1 and 
Xt2.  

LDPSW Xt1, Xt2, addr  

Load Pair Signed Words (extended) loads two words from memory addressed by addr, then sign-extends 
them into Xt1 and Xt2.  

STP Wt1, Wt2, addr  

Store Pair Registers: stores two words from Wt1 and Wt2 to memory addressed by addr. 

STP Xt1, Xt2, addr  

Store Pair Registers (extended): stores two doublewords from Xt1 and Xt2 to memory addressed by 
addr.  

5.2.5 Load-Store Non-temporal Pair 
The LDNP and STNP non-temporal pair instructions provide a hint to the memory system that an access is “non-
temporal” or “streaming” and unlikely to be accessed again in the near future so need not be retained in data 
caches. However depending on the memory type they may permit memory reads to be preloaded and memory 
writes to be gathered, in order to accelerate bulk memory transfers.  

Furthermore, as a special exception to the normal memory ordering rules, where an address dependency exists 
between two memory reads and the second read was generated by a Load Non-temporal Pair instruction then, in 
the absence of any other barrier mechanism to achieve order, those memory accesses can be observed in any 
order by other observers within the shareability domain of the memory addresses being accessed.  
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The LDNP and STNP instructions support an addressing mode of base register Xn or SP, plus: 

• Scaled 7-bit signed immediate offset, without pre- and post-index options 

If a Load Non-temporal Pair instruction specifies the same register for the two registers that are being loaded, then 
one of the following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs all of the loads using the specified addressing mode and the register being 
loaded takes an UNKNOWN value 

 

LDNP Wt1, Wt2, [base,#imm]  

Load Non-temporal Pair: loads two words from memory addressed by base+imm to Wt1 and Wt2, with a 
non-temporal hint.  

LDNP Xt1, Xt2, [base,#imm]  

Load Non-temporal Pair (extended): loads two doublewords from memory addressed by base+imm to 
Xt1 and Xt2, with a non-temporal hint.  

STNP Wt1, Wt2, [base,#imm]  

Store Non-temporal Pair: stores two words from Wt1 and Wt2 to memory addressed by base+imm, with a 
non-temporal hint. 

STNP Xt1, Xt2, [base,#imm]  

Store Non-temporal Pair (extended): stores two doublewords from Xt1 and Xt2 to memory addressed by 
base+imm, with a non-temporal hint.  

5.2.6 Load-Store Unprivileged 
The load-store unprivileged instructions may be used when the processor is at the EL1 exception level to perform 
a memory access as if it were at the EL0 (unprivileged) exception level. If the processor is at any other exception 
level, then a normal memory access for that level is performed. (The letter ‘T’ in these mnemonics is based on an 
historical ARM convention which described an access to an unprivileged virtual address as being “translated”). 

The load-store unprivileged instructions support an addressing mode of base register Xn or SP, plus: 

• Unscaled, 9-bit, signed immediate offset, without pre- and post-index options 

LDTR Wt, [base,#simm9]  

Load Unprivileged Register: loads word from memory addressed by base+simm9 to Wt, using EL0 
privileges when at EL1.  

LDTR Xt, [base,#simm9]  

Load Unprivileged Register (extended): loads doubleword from memory addressed by base+simm9 to 
Xt, using EL0 privileges when at EL1.  

LDTRB Wt, [base,#simm9]  

Load Unprivileged Byte: loads a byte from memory addressed by base+simm9, then zero-extends it into 
Wt, using EL0 privileges when at EL1.  

LDTRSB Wt, [base,#simm9]  

Load Unprivileged Signed Byte: loads a byte from memory addressed by base+simm9, then sign-extends 
it into Wt, using EL0 privileges when at EL1.  
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LDTRSB Xt, [base,#simm9]  

Load Unprivileged Signed Byte (extended): loads a byte from memory addressed by base+simm9, then 
sign-extends it into Xt, using EL0 privileges when at EL1.  

LDTRH Wt, [base,#simm9]  

Load Unprivileged Halfword: loads a halfword from memory addressed by base+simm9, then zero-
extends it into Wt, using EL0 privileges when at EL1.  

LDTRSH Wt, [base,#simm9]  

Load Unprivileged Signed Halfword: loads a halfword from memory addressed by base+simm9, then 
sign-extends it into Wt, using EL0 privileges when at EL1.  

LDTRSH Xt, [base,#simm9]  

Load Unprivileged Signed Halfword (extended): loads a halfword from memory addressed by 
base+simm9, then sign-extends it into Xt, using EL0 privileges when at EL1.  

LDTRSW Xt, [base,#simm9]  

Load Unprivileged Signed Word (extended): loads a word from memory addressed by base+simm9, then 
sign-extends it into Xt, using EL0 privileges when at EL1.  

STTR Wt, [base,#simm9]  

Store Unprivileged Register: stores a word from Wt to memory addressed by base+simm9, using EL0 
privileges when at EL1.  

STTR Xt, [base,#simm9]  

Store Unprivileged Register (extended): stores a doubleword from Xt to memory addressed by 
base+simm9, using EL0 privileges when at EL1.  

STTRB Wt, [base,#simm9]  

Store Unprivileged Byte: stores a byte from Wt to memory addressed by base+simm9, using EL0 
privileges when at EL1.  

STTRH Wt, [base,#simm9]  

Store Unprivileged Halfword: stores a halfword from Wt to memory addressed by base+simm9, using 
EL0 privileges when at EL1.  

5.2.7 Load-Store Exclusive 

The load exclusive instructions mark the accessed physical address being accessed as an exclusive access, 
which is checked by the store exclusive, permitting the construction of “atomic” read-modify-write operations on 
shared memory variables, semaphores, mutexes, spinlocks, etc.  

The load-store exclusive instructions support a simple addressing mode of base register Xn or SP only. An 
optional offset of #0 must be accepted by the assembler, but may be omitted on disassembly. 

Natural alignment is required: an unaligned address will cause an alignment fault. A memory access generated by 
a load exclusive pair or store exclusive pair must be aligned to the size of the pair, and when a store exclusive pair 
succeeds it will cause a single-copy atomic update of the entire memory location.  

LDXR Wt, [base{,#0}]  

Load Exclusive Register: loads a word from memory addressed by base to Wt. Records the physical 
address as an exclusive access.  

LDXR Xt, [base{,#0}]  

Load Exclusive Register (extended): loads a doubleword from memory addressed by base to Xt. 
Records the physical address as an exclusive access.  
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LDXRB Wt, [base{,#0}]  

Load Exclusive Byte: loads a byte from memory addressed by base, then zero-extends it into Wt. 
Records the physical address as an exclusive access.  

LDXRH Wt, [base{,#0}]  

Load Exclusive Halfword: loads a halfword from memory addressed by base, then zero-extends it into 
Wt. Records the physical address as an exclusive access.  

LDXP Wt, Wt2, [base{,#0}]  

Load Exclusive Pair Registers: loads two words from memory addressed by base, and to Wt and Wt2. 
Records the physical address as an exclusive access.  

LDXP Xt, Xt2, [base{,#0}]  

Load Exclusive Pair Registers (extended): loads two doublewords from memory addressed by base to 
Xt and Xt2. Records the physical address as an exclusive access.  

STXR Ws, Wt, [base{,#0}]  

Store Exclusive Register: stores word from Wt to memory addressed by base, and sets Ws to the returned 
exclusive access status.  

STXR Ws, Xt, [base{,#0}]  

Store Exclusive Register (extended): stores doubleword from Xt to memory addressed by base, and sets 
Ws to the returned exclusive access status.  

STXRB Ws, Wt, [base{,#0}]  

Store Exclusive Byte: stores byte from Wt to memory addressed by base, and sets Ws to the returned 
exclusive access status.  

STXRH Ws, Wt, [base{,#0}]  

Store Exclusive Halfword: stores halfword from Xt to memory addressed by base, and sets Ws to the 
returned exclusive access status.  

STXP Ws, Wt, Wt2, [base{,#0}]  

Store Exclusive Pair: stores two words from Wt and Wt2 to memory addressed by base, and sets Ws to 
the returned exclusive access status.  

STXP Ws, Xt, Xt2, [base{,#0}]  

Store Exclusive Pair (extended): stores two doublewords from Xt and Xt2 to memory addressed by 
base, and sets Ws to the returned exclusive access status.  

5.2.8 Load-Acquire / Store-Release 
A load-acquire is a load where it is guaranteed that all loads and stores appearing in program order after the load-
acquire will be observed by each observer after that observer observes the load-acquire, but says nothing about 
loads and stores appearing before the load-acquire. 
 
A store-release will be observed by each observer after that observer observes any loads or stores that appear in 
program order before the store-release, but says nothing about loads and stores appearing after the store-release. 
 
In addition, a store-release followed by a load-acquire will be observed by each observer in program order.  
  
A further consideration is that all store-release operations must be multi-copy atomic: that is, if one agent has 
seen a store-release, then all agents have seen the store-release. There are no requirements for ordinary stores 
to be multi-copy atomic.  

The load-acquire and store-release instructions support the simple addressing mode of base register Xn or SP 
only. An optional offset of #0 must be accepted by the assembler, but may be omitted on disassembly. 
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Natural alignment is required: an unaligned address will cause an alignment fault. 

5.2.8.1 Non-exclusive 
LDAR Wt, [base{,#0}]  

Load-Acquire Register: loads a word from memory addressed by base to Wt.  

LDAR Xt, [base{,#0}]  

Load-Acquire Register (extended): loads a doubleword from memory addressed by base to Xt.  

LDARB Wt, [base{,#0}]  

Load-Acquire Byte: loads a byte from memory addressed by base, then zero-extends it into Wt.  

LDARH Wt, [base{,#0}]  

Load-Acquire Halfword: loads a halfword from memory addressed by base, then zero-extends it into Wt.  

STLR Wt, [base{,#0}]  

Store-Release Register: stores a word from Wt to memory addressed by base.  

STLR Xt, [base{,#0}]  

Store-Release Register (extended): stores a doubleword from Xt to memory addressed by base.  

STLRB Wt, [base{,#0}]  

Store-Release Byte: stores a byte from Wt to memory addressed by base.  

STLRH Wt, [base{,#0}]  

Store-Release Halfword: stores a halfword from Wt to memory addressed by base.  

5.2.8.2 Exclusive 
LDAXR Wt, [base{,#0}]  

Load-Acquire Exclusive Register: loads word from memory addressed by base to Wt. Records the 
physical address as an exclusive access.  

LDAXR Xt, [base{,#0}]  

Load-Acquire Exclusive Register (extended): loads doubleword from memory addressed by base to Xt. 
Records the physical address as an exclusive access.  

LDAXRB Wt, [base{,#0}]  

Load-Acquire Exclusive Byte: loads byte from memory addressed by base, then zero-extends it into Wt. 
Records the physical address as an exclusive access.  

LDAXRH Wt, [base{,#0}]  

Load-Acquire Exclusive Halfword: loads halfword from memory addressed by base, then zero-extends it 
into Wt. Records the physical address as an exclusive access.  

LDAXP Wt, Wt2, [base{,#0}]  

Load-Acquire Exclusive Pair Registers: loads two words from memory addressed by base to Wt and Wt2. 
Records the physical address as an exclusive access.  

LDAXP Xt, Xt2, [base{,#0}]  

Load-Acquire Exclusive Pair Registers (extended): loads two doublewords from memory addressed by 
base to Xt and Xt2. Records the physical address as an exclusive access.  

STLXR Ws, Wt, [base{,#0}]  

Store-Release Exclusive Register: stores word from Wt to memory addressed by base, and sets Ws to 
the returned exclusive access status.  
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STLXR Ws, Xt, [base{,#0}]  

Store-Release Exclusive Register (extended): stores doubleword from Xt to memory addressed by base, 
and sets Ws to the returned exclusive access status.  

STLXRB Ws, Wt, [base{,#0}]  

Store-Release Exclusive Byte: stores byte from Wt to memory addressed by base, and sets Ws to the 
returned exclusive access status.  

STLXRH Ws, Xt|Wt, [base{,#0}]  

Store-Release Exclusive Halfword: stores the halfword from Wt to memory addressed by base, and sets 
Ws to the returned exclusive access status.  

STLXP Ws, Wt, Wt2, [base{,#0}]  

Store-Release Exclusive Pair: stores two words from Wt and Wt2 to memory addressed by base, and 
sets Ws to the returned exclusive access status.  

STLXP Ws, Xt, Xt2, [base{,#0}]  

Store-Release Exclusive Pair (extended): stores two doublewords from Xt and Xt2 to memory addressed 
by base, and sets Ws to the returned exclusive access status.  

5.2.9 Prefetch Memory 
The prefetch memory instructions signal the memory system that memory accesses from a specified address are 
likely in the near future. The memory system can respond by taking actions that are expected to speed up the 
memory accesses when they do occur, such as pre-loading the specified address into one or more caches. Since 
these are only hints, it is valid for the CPU to treat any or all prefetch instructions as a no-op.  
 

The prefetch instructions support a wide range of addressing modes, consisting of a base register Xn or SP, plus 
one of: 

• Scaled, 12-bit, unsigned immediate offset, without pre- and post-index options.  
• Unscaled, 9-bit, signed immediate offset, without pre- and post-index options.  
• Scaled or unscaled 64-bit register offset. 
• Scaled or unscaled 32-bit extended register offset. 

Additionally:  

• A PC-relative address or label, within ±1MB of the current PC. 
• Where an offset is scaled it is as if for an access size of 8 bytes. 

PRFM <prfop>, addr|label  

Prefetch Memory, using the <prfop> hint, where <prfop> is one of:  
PLDL1KEEP, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM  
PSTL1KEEP, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM 

 
<prfop> ::= <type><target><policy> | #uimm5 
<type>  ::= “PLD” (prefetch for load) | “PST” (prefetch for store) 
<target>  ::= “L1” (L1 cache) | “L2” (L2 cache) | “L3” (L3 cache) 
<policy>  ::= “KEEP” (retained or temporal prefetch, i.e. allocate in cache normally)  
     |“STRM” (streaming or non-temporal prefetch, i.e. memory used only once) 
#uimm5 ::= represents the unallocated hint encodings as a 5-bit immediate 
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PRFUM <prfop>, addr  

Prefetch Memory (unscaled offset), explicitly uses the 9-bit, signed, unscaled immediate offset addressing 
mode, as described in section 5.2.2 

5.3 Data Processing (immediate) 
The following instruction groups are supported: 

• Arithmetic (immediate) 

• Logical (immediate) 

• Move (immediate) 

• Bitfield (operations) 

• Shift (immediate) 

• Sign/zero extend 

5.3.1 Arithmetic (immediate) 

These instructions accept an arithmetic immediate shown as aimm, which is encoded as a 12-bit unsigned 
immediate shifted left by 0 or 12 bits. In the assembly language this may be written as:  

#uimm12, LSL #sh  
A 12-bit unsigned immediate, explicitly shifted left by 0 or 12.  

 
#uimm24  

A 24-bit unsigned immediate. An assembler shall determine the appropriate value of uimm12 with lowest 
possible shift of 0 or 12 which generates the requested value; if the value contains non-zero bits in 
bits<23:12> and in bits<11:0> then an error shall result. 
 

#nimm25  
A “programmer-friendly” assembler may accept a negative immediate between -(224-1) and -1 inclusive, 
causing it to convert a requested ADD operation to a SUB, or vice versa, and then encode the absolute 
value of the immediate as for uimm24. However this behaviour is not required by the architectural 
assembly language. 

A disassembler should normally output the arithmetic immediate using the uimm24 form, unless the encoded shift 
amount is not the lowest possible shift that could have been used (for example #0,LSL #12 could not be output 
using the uimm24 form).  

The arithmetic instructions which do not set condition flags may read and/or write the current stack pointer, for 
example to adjust the stack pointer in a function prologue or epilogue; the flag setting instructions can read the 
stack pointer, but not write it.  

ADD Wd|WSP, Wn|WSP, #aimm  

Add (immediate): Wd|WSP = Wn|WSP + aimm.  

ADD Xd|SP, Xn|SP, #aimm  

Add (extended immediate): Xd|SP = Xn|SP + aimm.  

ADDS Wd, Wn|WSP, #aimm  

Add and set flags (immediate): Wd = Wn|WSP + aimm, setting the condition flags.  
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ADDS Xd, Xn|SP, #aimm  

Add and set flags (extended immediate): Xd = Xn|SP + aimm, setting the condition flags.  

SUB Wd|WSP, Wn|WSP, #aimm  

Subtract (immediate): Wd|WSP = Wn|WSP - aimm.  

SUB Xd|SP, Xn|SP, #aimm  

Subtract (extended immediate): Xd|SP = Xn|SP - aimm.  

SUBS Wd, Wn|WSP, #aimm  

Subtract and set flags (immediate): Wd = Wn|WSP - aimm, setting the condition flags.  

SUBS Xd, Xn|SP, #aimm  

Subtract and set flags (extended immediate): Xd = Xn|SP - aimm, setting the condition flags.  

CMP Wn|WSP, #aimm  

Compare (immediate): alias for SUBS WZR,Wn|WSP,#aimm.  

CMP Xn|SP, #aimm  

Compare (extended immediate): alias for SUBS XZR,Xn|SP,#aimm.  

CMN Wn|WSP, #aimm  

Compare negative (immediate): alias for ADDS WZR,Wn|WSP,#aimm.  

CMN Xn|SP, #aimm  

Compare negative (extended immediate): alias for ADDS XZR,Xn|SP,#aimm.  

MOV Wd|WSP, Wn|WSP  

Move (register): alias for ADD Wd|WSP,Wn|WSP,#0, but only when one or other of the registers is WSP. In 
other cases the ORR Wd,WZR,Wn instruction is used.  

MOV Xd|SP, Xn|SP  

Move (extended register): alias for ADD Xd|SP,Xn|SP,#0, but only when one or other of the registers is 
SP. In other cases the ORR Xd,XZR,Xn instruction is used.  

5.3.2 Logical (immediate) 

The logical immediate instructions accept a bitmask immediate bimm32 or bimm64. Such an immediate consists 
EITHER of a single consecutive sequence with at least one non-zero bit, and at least one zero bit, within an 
element of 2, 4, 8, 16, 32 or 64 bits; the element then being replicated across the register width, or the bitwise 
inverse of such a value. The immediate values of all-zero and all-ones may not be encoded as a bitmask 
immediate, so an assembler must either generate an error for a logical instruction with such an immediate, or a 
programmer-friendly assembler may transform it into some other instruction which achieves the intended result.  

The logical (immediate) instructions may write to the current stack pointer, for example to align the stack pointer in 
a function prologue.  

Note: Apart from ANDS, logical immediate instructions do not set the condition flags, but “interesting” results can 
usually directly control a CBZ, CBNZ, TBZ or TBNZ conditional branch.  

AND Wd|WSP, Wn, #bimm32  

Bitwise AND (immediate): Wd|WSP = Wn AND bimm32.  

AND Xd|SP, Xn, #bimm64  

Bitwise AND (extended immediate): Xd|SP = Xn AND bimm64.  
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ANDS Wd, Wn, #bimm32  

Bitwise AND and Set Flags (immediate): Wd = Wn AND bimm32, setting N & Z condition flags based on 
the result and clearing the C & V flags.  

ANDS Xd, Xn, #bimm64  

Bitwise AND and Set Flags (extended immediate): Xd = Xn AND bimm64, setting N & Z condition flags 
based on the result and clearing the C & V flags.  

EOR Wd|WSP, Wn, #bimm32  

Bitwise exclusive OR (immediate): Wd|WSP = Wn EOR bimm32.  

EOR Xd|SP, Xn, #bimm64  

Bitwise exclusive OR (extended immediate): Xd|SP = Xn EOR bimm64.  

ORR Wd|WSP, Wn, #bimm32  

Bitwise inclusive OR (immediate): Wd|WSP = Wn OR bimm32.  

ORR Xd|SP, Xn, #bimm64  

Bitwise inclusive OR (extended immediate): Xd|SP = Xn OR bimm64. 

MOVI Wd, #bimm32  

Move bitmask (immediate): alias for ORR Wd,WZR,#bimm32, but may disassemble as MOV, see below.  

MOVI Xd, #bimm64  

Move bitmask (extended immediate): alias for ORR Xd,XZR,#bimm64, but may disassemble as MOV, see 
below.  
 

TST Wn, #bimm32  

Bitwise test (immediate): alias for ANDS WZR,Wn,#bimm32.  

TST Xn, #bimm64  

Bitwise test (extended immediate): alias for ANDS XZR,Xn,#bimm64  

5.3.3 Move (wide immediate) 
These instructions insert a 16-bit immediate (or inverted immediate) into a 16-bit aligned position in the destination 
register, with the value of the other destination register bits depending on the variant used. The shift amount pos 
may be any multiple of 16 less than the register size. Omitting “LSL #pos” implies a shift of 0.  

MOVZ Wt, #uimm16{, LSL #pos}  

Move with Zero (immediate): Wt = LSL(uimm16, pos). 
Usually disassembled as MOV, see below.  

MOVZ Xt, #uimm16{, LSL #pos}  

Move with Zero (extended immediate): Xt = LSL(uimm16, pos). 
Usually disassembled as MOV, see below.  

MOVN Wt, #uimm16{, LSL #pos}  

Move with NOT (immediate): Wt = NOT(LSL(uimm16, pos)). 
Usually disassembled as MOV, see below.  

MOVN Xt, #uimm16{, LSL #pos}  

Move with NOT (extended immediate): Xt = NOT(LSL(uimm16, pos)). 
Usually disassembled as MOV, see below.  

MOVK Wt, #uimm16{, LSL #pos}  

Move with Keep (immediate): Wt<pos+15:pos> = uimm16.  
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MOVK Xt, #uimm16{, LSL #pos}  

Move with Keep (extended immediate): Xt<pos+15:pos> = uimm16.  

5.3.3.1 Move (immediate)  
MOV Wd, #simm32  

A synthetic assembler instruction which generates a single MOVZ, MOVN or MOVI instruction that loads a 
32-bit immediate value into register Wd. An assembler error shall result if the immediate cannot be created 
by a single one of these instructions. If there is a choice, then to ensure reversability an assembler must 
prefer a MOVZ to MOVN, and MOVZ or MOVN to MOVI. A disassembler may output MOVI, MOVZ and MOVN 
as a MOV mnemonic, except when MOVI has an immediate that could be generated by a MOVZ or MOVN 
instruction, or where a MOVN has an immediate that could be encoded by MOVZ, or where MOVZ/MOVN #0 
have a shift amount other than LSL #0, in which case the machine-instruction mnemonic must be used.  

MOV Xd, #simm64  

As MOV but for loading a 64-bit immediate into register Xd.  

5.3.4 Address Generation 
ADRP Xd, label  

Address of Page: sign extends a 21-bit offset, shifts it left by 12 and adds it to the value of the PC with its 
bottom 12 bits cleared, writing the result to register Xd. This computes the base address of the 4KiB 
aligned memory region containing label, and is designed to be used in conjunction with a load, store or 
ADD instruction which supplies the bottom 12 bits of the label’s address. This permits position-
independent addressing of any location within ±4GiB of the PC using two instructions, providing that 
dynamic relocation is done with a minimum granularity of 4KiB (i.e. the bottom 12 bits of the label’s 
address are unaffected by the relocation). The term “page” is short-hand for the 4KiB relocation granule, 
and is not necessarily related to the virtual memory page size. 

ADR Xd, label  

Address: adds a 21-bit signed byte offset to the program counter, writing the result to register Xd. Used to 
compute the effective address of any location within ±1MiB of the PC.  

5.3.5 Bitfield Operations 
BFM Wd, Wn, #r, #s 

Bitfield Move: if s>=r then Wd<s-r:0> = Wn<s:r>, else Wd<32+s-r,32-r> = Wn<s:0>.  
Leaves other bits in Wd unchanged. 

BFM Xd, Xn, #r, #s 

Bitfield Move: if s>=r then Xd<s-r:0> = Xn<s:r>, else Xd<64+s-r,64-r> = Xn<s:0>.  
Leaves other bits in Xd unchanged. 

SBFM Wd, Wn, #r, #s 

Signed Bitfield Move: if s>=r then Wd<s-r:0> = Wn<s:r>, else Wd<32+s-r,32-r> = Wn<s:0>. 
Sets bits to the left of the destination bitfield to copies of its leftmost bit, and bits to the right to zero. 

SBFM Xd, Xn, #r, #s 

Signed Bitfield Move: if s>=r then Xd<s-r:0> = Xn<s:r>, else Xd<64+s-r,64-r> = Xn<s:0>. 
Sets bits to the left of the destination bitfield to copies of its leftmost bit, and bits to the right to zero. 

UBFM Wd, Wn, #r, #s 

Unsigned Bitfield Move: if s>=r then Wd<s-r:0> = Wn<s:r>, else Wd<32+s-r,32-r> = Wn<s:0>. 
Sets bits to the left and right of the destination bitfield to zero. 
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UBFM Xd, Xn, #r, #s 

Unsigned Bitfield Move: if s>=r then Xd<s-r:0> = Xn<s:r>, else Xd<32+s-r,32-r> = Xn<s:0>. 
Sets bits to the left and right of the destination bitfield to zero. 

 

The following aliases provide more familiar bitfield insert and extract mnemonics, with conventional bitfield lsb 
and width operands, which must satisfy the constraints lsb >= 0 && width >= 1 && lsb+width <= 
reg.size 

 

BFI Wd, Wn, #lsb, #width  

Bitfield Insert: alias for BFM Wd,Wn,#((32-lsb)&31),#(width-1).   
Preferred for disassembly when s < r. 

BFI Xd, Xn, #lsb, #width  

Bitfield Insert (extended): alias for BFM Xd,Xn,#((64-lsb)&63),#(width-1).   
Preferred for disassembly when s < r. 

BFXIL Wd, Wn, #lsb, #width  

Bitfield Extract and Insert Low: alias for BFM Wd,Wn,#lsb,#(lsb+width-1).   
Preferred for disassembly when s >= r. 

BFXIL Xd, Xn, #lsb, #width  

Bitfield Extract and Insert Low (extended): alias for BFM Xd,Xn,#lsb,#(lsb+width-1).   
Preferred for disassembly when s >= r. 

SBFIZ Wd, Wn, #lsb, #width  

Signed Bitfield Insert in Zero: alias for) SBFM Wd,Wn,#((32-lsb)&31),#(width-1).   
Preferred for disassembly when s < r. 

SBFIZ Xd, Xn, #lsb, #width  

Signed Bitfield Insert in Zero (extended): alias for SBFM Xd,Xn,#((64-lsb)&63),#(width-1).   
Preferred for disassembly when s < r. 

SBFX Wd, Wn, #lsb, #width  

Signed Bitfield Extract: alias for SBFM Wd,Wn,#lsb,#(lsb+width-1).   
Preferred for disassembly when s >= r. 

SBFX Xd, Xn, #lsb, #width  

Signed Bitfield Extract (extended): alias for SBFM Xd,Xn,#lsb,#(lsb+width-1).   
Preferred for disassembly when s >= r. 

UBFIZ Wd, Wn, #lsb, #width  

Unsigned Bitfield Insert in Zero: alias for UBFM Wd,Wn,#((32-lsb)&31),#(width-1).   
Preferred for disassembly when s < r. 

UBFIZ Xd, Xn, #lsb, #width  

Unsigned Bitfield Insert in Zero (extended): alias for UBFM Xd,Xn,#((64-lsb)&63),#(width-1).   
Preferred for disassembly when s < r. 

UBFX Wd, Wn, #lsb, #width  

Unsigned Bitfield Extract: alias for UBFM Wd,Wn,#lsb,#(lsb+width-1).   
Preferred for disassembly when s >= r. 

UBFX Xd, Xn, #lsb, #width  

Unsigned Bitfield Extract (extended): alias for UBFM Xd,Xn,#lsb,#(lsb+width-1).   
Preferred for disassembly when s >= r. 
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5.3.6 Extract (immediate) 
EXTR Wd, Wn, Wm, #lsb  

Extract: Wd = Wn:Wm<lsb+31,lsb>. The bit position lsb must be in the range 0 to 31. 

EXTR Xd, Xn, Xm, #lsb  

Extract (extended): Xd = Xn:Xm<lsb+63,lsb>. The bit position lsb must be in the range 0 to 63. 

5.3.7 Shift (immediate) 

All immediate shifts and rotates are aliases, implemented using the Bitfield or Extract instructions. In all cases the 
immediate shift amount uimm must be in the range 0 to (reg.size - 1).   

ASR Wd, Wn, #uimm  

Arithmetic Shift Right (immediate): alias for SBFM Wd,Wn,#uimm,#31.  

ASR Xd, Xn, #uimm  

Arithmetic Shift Right (extended immediate): alias for SBFM Xd,Xn,#uimm,#63.  

LSL Wd, Wn, #uimm  

Logical Shift Left (immediate): alias for UBFM Wd,Wn,#((32-uimm)&31),#(31-uimm).  

LSL Xd, Xn, #uimm  

Logical Shift Left (extended immediate): alias for UBFM Xd,Xn,#((64-uimm)&63),#(63-uimm)  

LSR Wd, Wn, #uimm  

Logical Shift Left (immediate): alias for UBFM Wd,Wn,#uimm,#31.  

LSR Xd, Xn, #uimm  

Logical Shift Left (extended immediate): alias for UBFM Xd,Xn,#uimm,#31.  

ROR Wd, Wm, #uimm  

Rotate Right (immediate): alias for EXTR Wd,Wm,Wm,#uimm.  

ROR Xd, Xm, #uimm  

Rotate Right (extended immediate): alias for EXTR Xd,Xm,Xm,#uimm.  

5.3.8 Sign/Zero Extend 
SXT[BH] Wd, Wn  

Signed Extend Byte|Halfword: alias for SBFM Wd,Wn,#0,#7|15.  

SXT[BHW] Xd, Wn  

Signed Extend Byte|Halfword|Word (extended): alias for SBFM Xd,Xn,#0,#7|15|31.  

UXT[BH] Wd, Wn  

Unsigned Extend Byte|Halfword: alias for UBFM Wd,Wn,#0,#7|15.  

UXT[BHW] Xd, Wn  

Unsigned Extend Byte|Halfword|Word (extended): alias for UBFM Xd,Xn,#0,#7|15|31. 

5.4 Data Processing (register) 
The following instruction groups are supported: 

• Arithmetic (shifted register) 

• Arithmetic (extending register) 
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• Logical (shifted register) 

• Arithmetic (unshifted register) 

• Shift (register) 

• Bitwise operations 

5.4.1 Arithmetic (shifted register) 

The shifted register instructions apply an optional shift to the final source operand value before performing the 
arithmetic operation. The register size of the instruction controls where new bits are fed in to the intermediate 
result on a right shift or rotate (i.e. bit 63 or 31).  

The shift operators LSL, ASR and LSR accept an immediate shift amount in the range 0 to reg.size - 1. 

Omitting the shift operator implies “LSL #0” (i.e. no shift), and “LSL #0” should not be output by a disassembler; 
all other shifts by zero must be output.  

The register names SP and WSP may not be used with this class of instructions, instead see section 5.4.2. 

ADD Wd, Wn, Wm{, ashift #imm}  

Add (register): Wd = Wn + ashift(Wm, imm).  

ADD Xd, Xn, Xm{, ashift #imm}  

Add (extended register): Xd = Xn + ashift(Xm, imm).  

ADDS Wd, Wn, Wm{, ashift #imm}  

Add and Set Flags (register):  Wd = Wn + ashift(Wm, imm), setting condition flags. 

ADDS Xd, Xn, Xm{, ashift #imm}  

Add and Set Flags (extended register):  Xd = Xn + ashift(Xm, imm), setting condition flags.  

SUB Wd, Wn, Wm{, ashift #imm}  

Subtract (register): Wd = Wn - ashift(Wm, imm).  

SUB Xd, Xn, Xm{, ashift #imm}  

Subtract (extended register): Xd = Xn - ashift(Xm, imm).  

SUBS Wd, Wn, Wm{, ashift #imm}  

Subtract and Set Flags (register):  Wd = Wn - ashift(Wm, imm), setting condition flags. 

SUBS Xd, Xn, Xm{, ashift #imm}  

Subtract and Set Flags (extended register):  Xd = Xn - ashift(Xm, imm), setting condition flags.  

CMN Wn, Wm{, ashift #imm}  

Compare Negative (register): alias for ADDS WZR, Wn, Wm{, ashift #imm}.  

CMN Xn, Xm{, ashift #imm}  

Compare Negative (extended register): alias for ADDS XZR, Xn, Xm{, ashift #imm}.  

CMP Wn, Wm{, ashift #imm}  

Compare (register): alias for SUBS WZR, Wn, Wm{,ashift #imm}.  

CMP Xn, Xm{, ashift #imm}  

Compare (extended register): alias for SUBS XZR, Xn, Xm{, ashift #imm}.  

NEG Wd, Wm{, ashift #imm}  

Negate: alias for SUB Wd, WZR, Wm{, ashift #imm}.  
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NEG Xd, Xm{, ashift #imm}  

Negate (extended): alias for SUB Xd, XZR, Xm{, ashift #imm}.  

NEGS Wd, Wm{, ashift #imm}  

Negate and Set Flags: alias for SUBS Wd, WZR, Wm{, ashift #imm}.  

NEGS Xd, Xm{, ashift #imm}  

Negate and Set Flags (extended): alias for SUBS Xd, XZR, Xm{, ashift #imm}.  

5.4.2 Arithmetic (extending register) 

The extending register instructions differ from the shifted register forms in that: 

1. Non-flag setting variants permit use of the stack pointer as either or both of the destination and first 
source register. The flag setting variants only permit the stack pointer as the first source register. 

2. They provide an optional sign or zero-extension of a portion of the second source register value, followed 
by an optional immediate left shift between 1 and 4 inclusive.  

The "extending shift" is described by the mandatory extend operator SXTB, SXTH, SXTW, SXTX, UXTB, UXTH, 
UXTW or UXTX, which is followed by an optional left shift amount. If the shift amount is omitted then it defaults to 
zero, and a zero shift amount should not be output by a disassembler.  

For 64-bit instruction forms the operators UXTX and SXTX (UXTX preferred) both perform a “no-op” extension of 
the second source register, followed by optional shift. If and only if UXTX used in combination with the register 
name SP in at least one operand, then the alias LSL is preferred, and in this case both the operator and shift 
amount may be omitted, implying “LSL #0”. 

Similarly for 32-bit instruction forms the operators UXTW and SXTW (UXTW preferred) both perform a “no-op” 
extension of the second source register, followed by optional shift. If and only if UXTW is used in combination with 
the register name WSP in at least one operand, then the alias LSL is preferred. In the 64-bit form of these 
instructions the final register operand is written as Wm for all but the (possibly omitted) UXTX/LSL and SXTX 
operators. For example:  

 CMP   X4, W5, SXTW 
 ADD   X1, X2, W3, UXTB #2 
 SUB   SP, SP, X1  // SUB SP, SP, X1, UXTX #0 

 

ADD Wd|WSP, Wn|WSP, Wm, extend {#imm}  

Add (register, extending): Wd|WSP = Wn|WSP + LSL(extend(Wm),imm).  

ADD Xd|SP, Xn|SP, Wm, extend {#imm}  

Add (extended register, extending): Xd|SP = Xn|SP + LSL(extend(Wm),imm). 

ADD Xd|SP, Xn|SP, Xm{, UXTX|LSL #imm}  

Add (extended register, extending): Xd|SP = Xn|SP + LSL(Xm,imm). 

ADDS Wd, Wn|WSP, Wm, extend {#imm}  

Add and Set Flags (register, extending): Wd = Wn|WSP + LSL(extend(Wm),imm), setting the 
condition flags.  

ADDS Xd, Xn|SP, Wm, extend {#imm}  

Add and Set Flags (extended register, extending):  Xd = Xn|SP + LSL(extend(Wm),imm), setting 
the condition flags.  
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ADDS Xd, Xn|SP, Xm{, UXTX|LSL #imm}  

Add and Set Flags (extended register, extending):  Xd = Xn|SP + LSL(Xm,imm), setting the condition 
flags.  

SUB Wd|WSP, Wn|WSP, Wm, extend {#imm} 

 Subtract (register, extending): Wd|WSP = Wn|WSP - LSL(extend(Wm),imm). 

SUB Xd|SP, Xn|SP, Wm, extend {#imm}  

Subtract (extended register, extending): Xd|SP = Xn|SP - LSL(extend(Wm),imm). 

SUB Xd|SP, Xn|SP, Xm{, UXTX|LSL #imm}  

Subtract (extended register, extending): Xd|SP = Xn|SP - LSL(Xm,imm). 

SUBS Wd, Wn|WSP, Wm, extend {#imm}  

Subtract and Set Flags (register, extending): Wd = Wn|WSP - LSL(extend(Wm),imm), setting the 
condition flags.  

SUBS Xd, Xn|SP, Wm, extend {#imm}  

Subtract and Set Flags (extended register, extending):  Xd = Xn|SP - LSL(extend(Wm),imm), 
setting the condition flags.  

SUBS Xd, Xn|SP, Xm{, UXTX|LSL #imm}  

Subtract and Set Flags (extended register, extending):  Xd = Xn|SP - LSL(Xm,imm), setting the 
condition flags.  

CMN Wn|WSP, Wm, extend {#imm}  

Compare Negative (register, extending): alias for ADDS WZR,Wn,Wm,extend {#imm}.  

CMN Xn|SP, Wm, extend {#imm} 

Compare Negative (extended register, extending): alias for ADDS XZR,Xn,Wm,extend {#imm}.  

CMN Xn|SP, Xm{, UXTX|LSL #imm} 

Compare Negative (extended register, extending): alias for ADDS XZR,Xn,Xm{,UXTX|LSL #imm}.  

CMP Wn|WSP, Wm, extend {#imm} 

Compare (register, extending): alias for SUBS WZR,Wn,Wm,extend {#imm}.  

CMP Xn|SP, Wm, extend {#imm}  

Compare (extended register, extending): alias for SUBS XZR,Xn,Wm,extend {#imm}.  

CMP Xn|SP, Xm{, UXTX|LSL #imm} 

Compare (extended register, extending): alias for SUBS XZR,Xn,Xm{,UXTX|LSL #imm}.  
 

5.4.3 Logical (shifted register) 

The logical (shifted register) instructions apply an optional shift operator to their final source operand before 
performing the main operation. The register size of the instruction controls where new bits are fed in to the 
intermediate result on a right shift or rotate (i.e. bit 63 or 31).  

The shift operators LSL, ASR, LSR and ROR accept an immediate shift amount in the range 0 to reg.size - 1.  

Omitting the shift operator implies “LSL #0” (i.e. no shift), and an “LSL #0” should not be output by a 
disassembler – however all other shifts by zero must be output.  

Note: Apart from ANDS and BICS the logical instructions do not set the condition flags, but “interesting” results 
can usually directly control a CBZ, CBNZ, TBZ or TBNZ conditional branch.  
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AND Wd, Wn, Wm{, lshift #imm}  

Bitwise AND (register): Wd = Wn AND lshift(Wm, imm).  

AND Xd, Xn, Xm{, lshift #imm}  

Bitwise AND (extended register): Xd = Xn AND lshift(Xm, imm). 

ANDS Wd, Wn, Wm{, lshift #imm}  

Bitwise AND and Set Flags (register): Wd = Wn AND lshift(Wm, imm), setting N & Z condition flags 
based on the result and clearing the C & V flags.  

ANDS Xd, Xn, Xm{, lshift #imm}  

Bitwise AND and Set Flags (extended register): Xd = Xn AND lshift(Xm, imm), setting N & Z 
condition flags based on the result and clearing the C & V flags. 

BIC Wd, Wn, Wm{, lshift #imm}  

Bit Clear (register): Wd = Wn AND NOT(lshift(Wm, imm)). 

BIC Xd, Xn, Xm{, lshift #imm}  

Bit Clear (extended register): Xd = Xn AND NOT(lshift(Xm, imm)). 

BICS Wd, Wn, Wm{, lshift #imm}  

Bit Clear and Set Flags (register): Wd = Wn AND NOT(lshift(Wm, imm)), setting N & Z condition 
flags based on the result and clearing the C & V flags. 

BICS Xd, Xn, Xm{, lshift #imm}  

Bit Clear and Set Flags (extended register): Xd = Xn AND NOT(lshift(Xm, imm)), setting N & Z 
condition flags based on the result and clearing the C & V flags. 

EON Wd, Wn, Wm{, lshift #imm}  

Bitwise exclusive OR NOT (register): Wd = Wn EOR NOT(lshift(Wm, imm)). 

EON Xd, Xn, Xm{, lshift #imm}  

Bitwise exclusive OR NOT (extended register): Xd = Xn EOR NOT(lshift(Xm, imm)). 

EOR Wd, Wn, Wm{, lshift #imm}  

Bitwise exclusive OR (register): Wd = Wn EOR lshift(Wm, imm). 

EOR Xd, Xn, Xm{, lshift #imm}  

Bitwise exclusive OR (extended register): Xd = Xn EOR lshift(Xm, imm). 

ORR Wd, Wn, Wm{, lshift #imm}  

Bitwise inclusive OR (register): Wd = Wn OR lshift(Wm, imm). 

ORR Xd, Xn, Xm{, lshift #imm}  

Bitwise inclusive OR (extended register): Xd = Xn OR lshift(Xm, imm). 

ORN Wd, Wn, Wm{, lshift #imm} 

Bitwise inclusive OR NOT (register): Wd = Wn OR NOT(lshift(Wm, imm)). 

ORN Xd, Xn, Xm{, lshift #imm}  

Bitwise inclusive OR NOT (extended register): Xd = Xn OR NOT(lshift(Xm, imm)). 

MOV Wd, Wm  

Move (register): alias for ORR Wd,WZR,Wm.  

MOV Xd, Xm  

Move (extended register): alias for ORR Xd,XZR,Xm. 

MVN Wd, Wm{, lshift #imm}  

Move NOT (register): alias for ORN Wd,WZR,Wm{,lshift #imm}.  
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MVN Xd, Xm{, lshift #imm}  

Move NOT (extended register): alias for ORN Xd,XZR,Xm{,lshift #imm}.  

TST Wn, Wm{, lshift #imm}  

Bitwise Test (register): alias for  ANDS WZR,Wn,Wm{,lshift #imm}. 

TST Xn, Xm{, lshift #imm}  

Bitwise Test (extended register): alias for  ANDS XZR,Xn,Xm{,lshift #imm}. 

5.4.4 Variable Shift  
The variable shift amount in Wm or Xm is positive, and modulo the register size. For example an extended 64-bit 
shift with Xm containing the value 65 will result in a shift by (65 MOD 64) = 1 bit. The machine instructions are as 
follows: 
ASRV Wd, Wn, Wm  

Arithmetic Shift Right Variable: Wd = ASR(Wn, Wm & 0x1f).  

ASRV Xd, Xn, Xm  

Arithmetic Shift Right Variable (extended): Xd = ASR(Xn, Xm & 0x3f).  

LSLV Wd, Wn, Wm  

Logical Shift Left Variable: Wd = LSL(Wn, Wm & 0x1f).   

LSLV Xd, Xn, Xm  

Logical Shift Left Variable (extended register): Xd = LSL(Xn, Xm & 0x3f). 

LSRV Wd, Wn, Wm  

Logical Shift Right Variable: Wd = LSR(Wn, Wm & 0x1f).   

LSRV Xd, Xn, Xm  

Logical Shift Right Variable (extended): Xd = LSR(Xn, Xm & 0x3f).  

RORV Wd, Wn, Wm  

Rotate Right Variable: Wd = ROR(Wn, Wm & 0x1f). 

RORV Xd, Xn, Xm  

Rotate Right Variable (extended): Xd = ROR(Xn, Xm & 0x3f). 
 
However the “Variable Shift” machine instructions have a preferred set of “Shift (register)” aliases which match the 
Shift (immediate) aliases described elsewhere: 

ASR Wd, Wn, Wm  

Arithmetic Shift Right (register): preferred alias for ASRV Wd, Wn, Wm.   

ASR Xd, Xn, Xm  

Arithmetic Shift Right (extended register): preferred alias for ASRV Xd, Xn, Xm.  

LSL Wd, Wn, Wm  

Logical Shift Left (register): preferred alias for LSLV Wd, Wn, Wm.   

LSL Xd, Xn, Xm  

Logical Shift Left (extended register): preferred alias for LSLV Xd, Xn, Xm. 

LSR Wd, Wn, Wm  

Logical Shift Right (register): preferred alias for LSRV Wd, Wn, Wm.   

LSR Xd, Xn, Xm  

Logical Shift Right (extended register): preferred alias for LSRV Xd, Xn, Xm.  
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ROR Wd, Wn, Wm  

Rotate Right (register): preferred alias for RORV Wd, Wn, Wm. 

ROR Xd, Xn, Xm  

Rotate Right (extended register): preferred alias for RORV Xd, Xn, Xm. 

5.4.5 Bit Operations 
CLS Wd, Wm  

Count Leading Sign Bits: sets Wd to the number of consecutive bits following the topmost bit in Wm, that 
are the same as the topmost bit. The count does not include the topmost bit itself, so the result will be in 
the range 0 to 31 inclusive.  

CLS Xd, Xm  

Count Leading Sign Bits (extended): sets Xd to the number of consecutive bits following the topmost bit 
in Xm, that are the same as the topmost bit. The count does not include the topmost bit itself, so the result 
will be in the range 0 to 63 inclusive.  

CLZ Wd, Wm  

Count Leading Zeros: sets  Wd to the number of binary zeros at the most significant end of Wm. The result 
will be in the range 0 to 32 inclusive.  

CLZ Xd, Xm  

Count Leading Zeros: (extended) sets Xd to the number of binary zeros at the most significant end of Xm. 
The result will be in the range 0 to 64 inclusive.  

RBIT Wd, Wm  

Reverse Bits: reverses the 32 bits from Wm, writing to Wd. 

RBIT Xd, Xm  

Reverse Bits (extended): reverses the 64 bits from Xm, writing to Xd.  

REV Wd, Wm  

Reverse Bytes: reverses the 4 bytes in Wm, writing to Wd.  

REV Xd, Xm  

Reverse Bytes (extended): reverses 8 bytes in Xm, writing to Xd.  

REV16 Wd, Wm  

Reverse Bytes in Halfwords: reverses the 2 bytes in each 16-bit element of Wm, writing to Wd.  

REV16 Xd, Xm  

Reverse Bytes in Halfwords (extended): reverses the 2 bytes in each 16-bit element of Xm, writing to Xd.  

REV32 Xd, Xm  

Reverse Bytes in Words (extended): reverses the 4 bytes in each 32-bit element of Xm, writing to Xd.  

5.4.6 Conditional Data Processing  
These instructions support two unshifted source registers, with the condition flags as a third source. Note that the 
instructions are not conditionally executed: the destination register is always written. 

ADC Wd, Wn, Wm  

Add with Carry:  Wd = Wn + Wm + C.  

ADC Xd, Xn, Xm 

Add with Carry (extended):  Xd = Xn + Xm + C.  
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ADCS Wd, Wn, Wm  

Add with Carry and Set Flags:  Wd = Wn + Wm + C, setting the condition flags.  

ADCS Xd, Xn, Xm  

Add with Carry and Set Flags (extended):  Xd = Xn + Xm + C, setting the condition flags.  

CSEL Wd, Wn, Wm, cond  

Conditional Select:  Wd = if cond then Wn else Wm. 

CSEL Xd, Xn, Xm, cond  

Conditional Select (extended):  Xd = if cond then Xn else Xm.  

CSINC Wd, Wn, Wm, cond  

Conditional Select Increment:  Wd = if cond then Wn else Wm+1.  

CSINC Xd, Xn, Xm, cond  

Conditional Select Increment (extended):  Xd = if cond then Xn else Xm+1.  

CSINV Wd, Wn, Wm, cond  

Conditional Select Invert:  Wd = if cond then Wn else NOT(Wm).  

CSINV Xd, Xn, Xm, cond  

Conditional Select Invert (extended):  Xd = if cond then Xn else NOT(Xm).  

CSNEG Wd, Wn, Wm, cond  

Conditional Select Negate:  Wd = if cond then Wn else -Wm.  

CSNEG Xd, Xn, Xm, cond  

Conditional Select Negate (extended):  Xd = if cond then Xn else -Xm.  

CSET Wd, cond  

Conditional Set:  Wd = if cond then 1 else 0.  
Alias for CSINC Wd,WZR,WZR,invert(cond).  

CSET Xd, cond  

Conditional Set (extended):  Xd = if cond then 1 else 0.  
Alias for CSINC Xd,XZR,XZR,invert(cond)  

CSETM Wd, cond  

Conditional Set Mask:  Wd = if cond then -1 else 0.  
Alias for CSINV Wd,WZR,WZR,invert(cond).  

CSETM Xd, cond  

Conditional Set Mask (extended):  Xd = if cond then -1 else 0.  
Alias for CSINV Xd,WZR,WZR,invert(cond).  

CINC Wd, Wn, cond  

Conditional Increment:  Wd = if cond then Wn+1 else Wn.  
Alias for CSINC Wd,Wn,Wn,invert(cond). 

CINC Xd, Xn, cond  

Conditional Increment (extended):  Xd = if cond then Xn+1 else Xn.  
Alias for CSINC Xd,Xn,Xn,invert(cond). 

CINV Wd, Wn, cond  

Conditional Invert:  Wd = if cond then NOT(Wn) else Wn.  
Alias for CSINV Wd,Wn,Wn,invert(cond). 
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CINV Xd, Xn, cond  

Conditional Invert (extended):  Xd = if cond then NOT(Xn) else Xn.  
Alias for CSINV Xd,Xn,Xn,invert(cond). 

CNEG Wd, Wn, cond  

Conditional Negate:  Wd = if cond then -Wn else Wn.  
Alias for CSNEG Wd,Wn,Wn,invert(cond). 

CNEG Xd, Xn, cond  

Conditional Negate (extended):  Xd = if cond then -Xn else Xn.  
Alias for CSNEG Xd,Xn,Xn,invert(cond). 

SBC Wd, Wn, Wm  

Subtract with Carry:  Wd = Wn - Wm - 1 + C.  

SBC Xd, Xn, Xm  

Subtract with Carry (extended):  Xd = Xn - Xm - 1 + C.  

SBCS Wd, Wn, Wm  

Subtract with Carry and Set Flags:  Wd = Wn - Wm - 1 + C , setting the condition flags.  

SBCS Xd, Xn, Xm  

Subtract with Carry and Set Flags (extended):  Xd = Xn - Xm - 1 + C , setting the condition flags.  

NGC Wd, Wm  

Negate with Carry:  Wd = -Wm - 1 + C.  
Alias for SBC Wd,WZR,Wm. 

NGC Xd, Xm  

Negate with Carry (extended):  Xd = -Xm - 1 + C.  
Alias for SBC Xd,XZR,Xm. 

NGCS Wd, Wm  

Negate with Carry and Set Flags:  Wd = -Wm - 1 + C, setting the condition flags.  
Alias for SBCS Wd,WZR,Wm. 

NGCS Xd, Xm  

Negate with Carry and Set Flags (extended):  Xd = -Xm - 1 + C, setting the condition flags.  
Alias for SBCS Xd,XZR,Xm. 

5.4.7 Conditional Comparison  
Conditional comparison provides a “conditional select” for the NZCV condition flags, setting the flags to the result 
of a comparison if the input condition is true, or to an immediate value if the input condition is false. There are 
register and immediate forms, with the immediate form accepting a small 5-bit unsigned value. 

The #uimm4 operand is the bitmask used to set the NZCV flags when the input condition is false, with bit 3 the 
new value of the N flag, bit 2 the Z flag, bit 1 the C flag, and bit 0 the V flag. 

CCMN Wn, Wm, #uimm4, cond 

Conditional Compare Negative (register): 
NZCV = if cond then CMP(Wn,-Wm) else uimm4.  

CCMN Xn, Xm, #uimm4, cond 

Conditional Compare Negative (extended register): 
NZCV = if cond then CMP(Xn,-Xm) else uimm4.  
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CCMN Wn, #uimm5, #uimm4, cond 

Conditional Compare Negative (immediate): 
NZCV = if cond then CMP(Wn,-uimm5) else uimm4.  

CCMN Xn, #uimm5, #uimm4, cond 

Conditional Compare Negative (extended immediate): 
NZCV = if cond then CMP(Xn,-uimm5) else uimm4.  

CCMP Wn, Wm, #uimm4, cond 

Conditional Compare (register): 
NZCV = if cond then CMP(Wn,Wm) else uimm4.  

CCMP Xn, Xm, #uimm4, cond 

Conditional Compare (extended register): 
NZCV = if cond then CMP(Xn,Xm) else uimm4.  

CCMP Wn, #uimm5, #uimm4, cond 

Conditional Compare (immediate): 
NZCV = if cond then CMP(Wn,uimm5) else uimm4.  

CCMP Xn, #uimm5, #uimm4, cond 

Conditional Compare (extended immediate): 
NZCV = if cond then CMP(Xn,uimm5) else uimm4.  

5.5 Integer Multiply / Divide 

5.5.1 Multiply 
MADD Wd, Wn, Wm, Wa  

Multiply-Add:  Wd = Wa + (Wn × Wm).  

MADD Xd, Xn, Xm, Xa  

Multiply-Add (extended):  Xd = Xa + (Xn × Xm.)  

MSUB Wd, Wn, Wm, Wa  

Multiply-Subtract:  Wd = Wa – (Wn × Wm).  

MSUB Xd, Xn, Xm, Xa  

Multiply-Subtract (extended):  Xd = Xa – (Xn × Xm).  

MNEG Wd, Wn, Wm  

Multiply-Negate:  Wd = –(Wn × Wm). 
Alias for MSUB Wd, Wn, Wm, WZR. 

MNEG Xd, Xn, Xm  

Multiply-Negate (extended):  Xd = –(Xn × Xm). 
Alias for MSUB Xd, Xn, Xm, XZR. 

MUL Wd, Wn, Wm  

Multiply:  Wd = Wn × Wm.  
Alias for MADD Wd, Wn, Wm, WZR. 

MUL Xd, Xn, Xm  

Multiply (extended):  Xd = Xn × Xm. 
Alias for MADD Xd, Xn, Xm, XZR. 

SMADDL Xd, Wn, Wm, Xa  

Signed Multiply-Add Long:  Xd = Xa + (Wn × Wm), treating source operands as signed.  
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SMSUBL Xd, Wn, Wm, Xa  

Signed Multiply-Subtract Long:  Xd = Xa – (Wn × Wm), treating source operands as signed.  

SMNEGL Xd, Wn, Wm  

Signed Multiply-Negate Long:  Xd = -(Wn × Wm), treating source operands as signed. 
Alias for SMSUBL Xd, Wn, Wm, XZR. 

SMULL Xd, Wn, Wm  

Signed Multiply Long:  Xd = Wn × Wm, treating source operands as signed. 
Alias for SMADDL Xd, Wn, Wm, XZR. 

SMULH Xd, Xn, Xm  

Signed Multiply High:  Xd = (Xn × Xm)<127:64>, treating source operands as signed.  

UMADDL Xd, Wn, Wm, Xa  

Unsigned Multiply-Add Long:  Xd = Xa + (Wn × Wm), treating source operands as unsigned.  

UMSUBL Xd, Wn, Wm, Xa  

Unsigned Multiply-Subtract Long:  Xd = Xa – (Wn × Wm), treating source operands as unsigned.  

UMNEGL Xd, Wn, Wm  

Unsigned Multiply-Negate Long:  Xd = -(Wn × Wm), treating source operands as unsigned. 
Alias for UMSUBL Xd, Wn, Wm, XZR. 

UMULL Xd, Wn, Wm  

Unsigned Multiply Long:  Xd = Wn × Wm, treating source operands as unsigned. 
Alias for UMADDL Xd, Wn, Wm, XZR. 

UMULH Xd, Xn, Xm  

Unsigned Multiply High:  Xd = (Xn × Xm)<127:64>, treating source operands as unsigned. 

5.5.2 Divide 

The integer divide instructions compute (numerator÷denominator) and deliver the quotient, which is rounded 
towards zero. The remainder may then be computed as numerator–(quotient�denominator) using the MSUB 
instruction. 

If a signed integer division (INT_MIN ÷ -1) is performed, where INT_MIN is the most negative integer value 
representable in the selected register size, then the result will overflow the signed integer range. No indication of 
this overflow is produced and the result written to the destination register will be INT_MIN.  

NOTE: The divide instructions do not generate a trap upon division by zero, but write zero to the destination 
register.  

SDIV Wd, Wn, Wm  

Signed Divide: Wd = Wn ÷ Wm, treating source operands as signed.  

SDIV Xd, Xn, Xm  

Signed Divide (extended): Xd = Xn ÷ Xm, treating source operands as signed.  

UDIV Wd, Wn, Wm  

Unsigned Divide: Wd = Wn ÷ Wm, treating source operands as unsigned.  

UDIV Xd, Xn, Xm  

Unsigned Divide (extended): Xd = Xn ÷ Xm, treating source operands as unsigned.  
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5.6 Scalar Floating-point 
The A64 scalar floating point instruction set is based closely on ARM VFPv4, and unless explicitly mentioned in 
individual instruction descriptions the handling and generation of denormals, infinities, non-numerics, and floating 
point exceptions, replicates the behaviour of the equivalent VFPv4 instructions. Full details may be found in the 
floating point pseudocode. 

5.6.1 Floating-point/SIMD Scalar Memory Access 
The FP/SIMD scalar load-store instructions operate on the scalar form of the FP/SIMD registers as described in 
§4.4.2.1.  The available memory addressing modes (see §4.5) are identical to the general-purpose register load-
store instructions, and like those instructions permit arbitrary address alignment unless strict alignment checking is 
enabled. However, unlike the general-purpose load-store instructions, the FP/SIMD load-store instructions make 
no guarantee of atomicity, even when the address is naturally aligned to the size of data.  

5.6.1.1 Load-Store Single FP/SIMD Register 

The most general forms of load-store support a range of addressing modes, consisting of base register Xn or SP, 
plus one of: 

• Scaled, 12-bit, unsigned immediate offset, without pre- and post-index options.  
• Unscaled, 9-bit, signed immediate offset, with pre- and post-index options.  
• Scaled or unscaled 64-bit register offset. 
• Scaled or unscaled 32-bit extended register offset. 

Additionally: 

• For loads of 32 bits or larger only, a PC-relative address within ±1MiB of the program counter. 

LDR Bt, addr  

Load Register (byte): load a byte from memory addressed by addr to 8-bit Bt.  

LDR Ht, addr  

Load Register (half): load a halfword from memory addressed by addr to 16-bit Ht.  

LDR St, addr  

Load Register (single): load a word from memory addressed by addr to 32-bit St.  

LDR Dt, addr  

Load Register (double): load a doubleword from memory addressed by addr to 64-bit Dt.  

LDR Qt, addr  

Load Register (quad): load a quadword from memory addressed by addr and pack into 128-bit Qt.  

STR Bt, addr  

Store Register (byte): store byte from 8-bit Bt to memory addressed by addr.  

STR Ht, addr  

Store Register (half): store halfword from 16-bit Ht to memory addressed by addr.  

STR St, addr  

Store Register (single): store word from 32-bit St to memory addressed by addr.  

STR Dt, addr  

Store Register (double): store doubleword from 64-bit Dt to memory addressed by addr. 
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STR Qt, addr  

Store Register (quad): store quadword from 128-bit Qt to memory addressed by addr.  

5.6.1.2 Load-Store Single FP/SIMD Register (unscaled offset) 

Provides explicit access to the unscaled, 9-bit, signed offset form of load/store instruction, see §5.2.2 for more 
information about this mnemonic. 

LDUR Bt, [base,#simm9]  

Load (Unscaled) Register (byte): load a byte from memory addressed by base+simm9 to 8-bit Bt.  

LDUR Ht, [base,#simm9]  

Load (Unscaled) Register (half): load a halfword from memory addressed by base+simm9 to 16-bit Ht.  

LDUR St, [base,#simm9]  

Load (Unscaled) Register (single): load a word from memory addressed by base+simm9 to 32-bit St.  

LDUR Dt, [base,#simm9]  

Load (Unscaled) Register (double): load a doubleword from memory addressed by base+simm9 to 64-bit 
Dt.  

LDUR Qt, [base,#simm9]  

Load (Unscaled) Register (quad): load a quadword from memory addressed by base+simm9 and pack 
into 128-bit Qt.  

STUR Bt, [base,#simm9]  

Store (Unscaled) Register (byte): store byte from 8-bit Bt to memory addressed by base+simm9.  

STUR Ht, [base,#simm9]  

Store (Unscaled) Register (half): store halfword from 16-bit Ht to memory addressed by base+simm9.  

STUR St, [base,#simm9]  

Store (Unscaled) Register (single): store word from 32-bit St to memory addressed by base+simm9.  

STUR Dt, [base,#simm9]  

Store (Unscaled) Register (double): store doubleword from 64-bit Dt to memory addressed by 
base+simm9. 

STUR Qt, [base,#simm9]  

Store (Unscaled) Register (quad): store quadword from 128-bit Qt to memory addressed by 
base+simm9.  

5.6.1.3 Load-Store FP/SIMD Pair 
The load-store pair instructions support an addressing mode consisting of base register Xn or SP, plus: 

• Scaled, 7-bit, signed immediate offset, with pre- and post-index options 

If a Load Pair instruction specifies the same register for the two registers that are being loaded, then one of the 
following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs all of the loads using the specified addressing mode and the register being 
loaded takes an UNKNOWN value 
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LDP St1, St2, addr  

Load Pair (single): load two consecutive words from memory addressed by addr to 32-bit St1 and St2.  

LDP Dt1, Dt2, addr  

Load Pair (double): load two consecutive doublewords from memory addressed by addr to 64-bit Dt1 
and Dt2.  

LDP Qt1, Qt2, addr  

Load Pair (quad): load two consecutive quadwords from memory addressed by addr and to 128-bit Qt1 
and Qt2.  

STP St1, St2, addr  

Store Pair (single): store two consecutive words from 32-bit St1 and St2 to memory addressed by addr.  

STP Dt1, Dt2, addr  

Store Pair (double): store two consecutive doublewords from 64-bit Dt1 and Dt2 to memory addressed 
by addr.  

STP Qt1, Qt2, addr  

Store Pair (quad): store two consecutive quadwords from 128-bit Qt1 and Qt2 to memory addressed by 
addr.  

5.6.1.4 Load-Store FP/SIMD Non-Temporal Pair  
The load-store non-temporal pair instructions provide a hint to the memory system that the data being accessed is 
“non-temporal”, i.e. it is a “streaming” access to memory which is unlikely to be referenced again in the near 
future, and need not be retained in data caches. 

As a special exception to the normal memory ordering rules, where an address dependency exists between two 
memory reads and the second read was generated by a Load Non-temporal Pair instruction then, in the absence 
of any other barrier mechanism to achieve order, those memory accesses can be observed in any order by other 
observers within the shareability domain of the memory addresses being accessed.  

The load-store non-temporal pair instructions support an addressing mode of base register Xn or SP, plus: 

• Scaled, 7-bit, signed immediate offset, without pre- and post-index options 

If a Load Non-temporal Pair instruction specifies the same register for the two registers that are being loaded, then 
one of the following behaviours can occur: 

• The instruction is UNALLOCATED 

• The instruction is treated as a NOP 

• The instruction performs all of the loads using the specified addressing mode and the register being 
loaded takes an UNKNOWN value 

LDNP St1, St2, [base,#imm]  

Load Non-temporal Pair (single): load two consecutive words from memory addressed by base+imm to 
32-bit St1 and St2, with a non-temporal hint.  

LDNP Dt1, Dt2, [base,#imm]  

Load Non-temporal Pair (double): load two consecutive doublewords from memory addressed by 
base+imm to 64-bit Dt1 and Dt2, with a non-temporal hint.  

LDNP Qt1, Qt2, [base,#imm]  

Load Non-temporal Pair (quad): load two consecutive quadwords from memory addressed by base+imm 
to 128-bit Qt1 and Qt2, with a non-temporal hint.  
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STNP St1, St2, [base,#imm]  

Store Non-temporal Pair (single): store two consecutive words from 32-bit St1 and St2 to memory 
addressed by base+imm, with a non-temporal hint.  

STNP Dt1, Dt2, [base,#imm]  

Store Non-temporal Pair (double): store two consecutive doublewords from 64-bit Dt1 and Dt2 to 
memory addressed by base+imm, with a non-temporal hint.  

STNP Qt1, Qt2, [base,#imm]  

Store Non-temporal Pair (quad): store two consecutive quadwords from 128-bit Qt1 and Qt2 to memory 
addressed by base+imm, with a non-temporal hint.  

5.6.2 Floating-point Move (register) 
FMOV Sd, Sn 

Move 32 bits unchanged from Sn to Sd. 

FMOV Dd, Dn 

Move 64 bits unchanged from Dn to Dd. 

FMOV Wd, Sn 

Move 32 bits unchanged from Sn to Wd. 

FMOV Sd, Wn 

Move 32 bits unchanged from Wn to Sd. 

FMOV Xd, Dn 

Move 64 bits unchanged from Dn to Xd. 

FMOV Dd, Xn 

Move 64 bits unchanged from Xn to Dd. 

FMOV Xd, Vn.D[1] 

Move 64 bits unchanged from  Vn<127:64> to Xd. 

FMOV Vd.D[1], Xn 

Move 64 bits unchanged from Xn to Vd<127:64>, leaving the other bits in Vd unchanged. 

5.6.3 Floating-point Move (immediate) 
The floating point constant fpimm may be specified either in decimal notation (e.g. “12.0” or “-1.2e1”), or as a 
string beginning “0x” followed by the hexadecimal representation of its IEEE754 encoding. A disassembler should 
prefer the decimal notation, so long as the value can be displayed precisely.  

The floating point value must be expressable as ±n÷16�2r, where n and r are integers such that 16 ≤ n ≤ 31 and 
-3 ≤ r ≤ 4, i.e. a normalized binary floating point encoding with 1 sign bit, 4 bits of fraction and a 3-bit exponent. 

Note that this encoding does not include the value 0.0, however this value may be loaded using a floating-point 
move (register) instruction of the form FMOV Sd,WZR. 

FMOV Sd, #fpimm 

Single-precision floating-point move immediate Sd = fpimm.  

FMOV Dd, #fpimm 

Double-precision floating-point move immediate Dd = fpimm.  

5.6.4 Floating-point Convert  

5.6.4.1 Convert to/from Floating-point 
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FCVT Sd, Hn 

Convert from half-precision scalar in Hn to single-precision in Sd. 

FCVT Hd, Sn 

Convert from single-precision scalar in Sn to half-precision in Hd. 

FCVT Dd, Hn 

Convert from half-precision scalar in Hn to double-precision in Dd. 

FCVT Hd, Dn 

Convert from double-precision scalar in Dn to half-precision in Hd. 

FCVT Dd, Sn 

Convert from single-precision scalar in Sn to double-precision in Dd. 

FCVT Sd, Dn 

Convert from double-precision scalar in Dn to single-precision in Sd. 

5.6.4.2 Convert to/from Integer 
These instructions raise the Invalid Operation exception (FPSR.IOC) in response to a floating point input of NaN, 
Infinity, or a numerical value that cannot be represented within the destination register. An out of range integer 
result will also be saturated to the destination size. A numeric result which differs from the input will raise the 
Inexact exception (FPSR.IXC). When flush-to-zero mode is enabled a denormal input will be replaced by a zero 
and will raise the Input Denormal exception (FPSR.IDC).  
 

FCVTAS Wd, Sn 

Convert single-precision scalar in Sn to nearest signed 32-bit integer in Wd, with halfway cases rounding 
away from zero. 

FCVTAS Xd, Sn 

Convert single-precision scalar in Sn to nearest signed 64-bit integer in Xd, with halfway cases rounding 
away from zero. 

FCVTAS Wd, Dn 

Convert double-precision scalar in Dn to nearest signed 32-bit integer in Wd, with halfway cases rounding 
away from zero. 

FCVTAS Xd, Dn 

Convert double-precision scalar in Dn to nearest signed 64-bit integer in Xd, with halfway cases rounding 
away from zero. 

FCVTAU Wd, Sn 

Convert single-precision scalar in Sn to nearest unsigned 32-bit integer in Wd, with halfway cases 
rounding away from zero. 

FCVTAU Xd, Sn 

Convert single-precision scalar in Sn to nearest unsigned 64-bit integer in Xd, with halfway cases 
rounding away from zero. 

FCVTAU Wd, Dn 

Convert double-precision scalar in Dn to nearest unsigned 32-bit integer in Wd, with halfway cases 
rounding away from zero. 

FCVTAU Xd, Dn 

Convert double-precision scalar in Dn to nearest unsigned 64-bit integer in Xd, with halfway cases 
rounding away from zero. 
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FCVTMS Wd, Sn 

Convert single-precision scalar in Sn to signed 32-bit integer in Wd, rounding towards -∞ (RM). 

FCVTMS Xd, Sn 

Convert single-precision scalar in Sn to signed 64-bit integer in Xd, rounding towards -∞ (RM). 

FCVTMS Wd, Dn 

Convert double-precision scalar in Dn to signed 32-bit integer in Wd, rounding towards -∞ (RM). 

FCVTMS Xd, Dn 

Convert double-precision scalar in Dn to signed 64-bit integer in Xd, rounding towards -∞ (RM). 

FCVTMU Wd, Sn 

Convert single-precision scalar in Sn to unsigned 32-bit integer in Wd, rounding towards -∞ (RM). 

FCVTMU Xd, Sn 

Convert single-precision scalar in Sn to unsigned 64-bit integer in Xd, rounding towards -∞ (RM). 

FCVTMU Wd, Dn 

Convert double-precision scalar in Dn to unsigned 32-bit integer in Wd, rounding towards -∞ (RM). 

FCVTMU Xd, Dn 

Convert double-precision scalar in Dn to unsigned 64-bit integer in Xd, rounding towards -∞ (RM). 

FCVTNS Wd, Sn 

Convert single-precision scalar in Sn to signed 32-bit integer in Wd, with halfway cases rounding to even 
(RN). 

FCVTNS Xd, Sn 

Convert single-precision scalar in Sn to signed 64-bit integer in Xd, with halfway cases rounding to even 
(RN). 

FCVTNS Wd, Dn 

Convert double-precision scalar in Dn to nearest signed 32-bit integer in Wd, with halfway cases rounding 
to even (RN). 

FCVTNS Xd, Dn 

Convert double-precision scalar in Dn to nearest signed 64-bit integer in Xd, with halfway cases rounding 
to even (RN). 

FCVTNU Wd, Sn 

Convert single-precision scalar in Sn to nearest unsigned 32-bit integer in Wd, with halfway cases 
rounding to even (RN). 

FCVTNU Xd, Sn 

Convert single-precision scalar in Sn to nearest unsigned 64-bit integer in Xd, with halfway cases 
rounding to even (RN). 

FCVTNU Wd, Dn 

Convert double-precision scalar in Dn to nearest unsigned 32-bit integer in Wd, with halfway cases 
rounding to even (RN). 

FCVTNU Xd, Dn 

Convert double-precision scalar in Dn to nearest unsigned 64-bit integer in Xd, with halfway cases 
rounding to even (RN). 

FCVTPS Wd, Sn 

Convert single-precision scalar in Sn to signed 32-bit integer in Wd, rounding towards +∞ (RP). 
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FCVTPS Xd, Sn 

Convert single-precision scalar in Sn to signed 64-bit integer in Xd, rounding towards +∞ (RP). 

FCVTPS Wd, Dn 

Convert double-precision scalar in Dn to signed 32-bit integer in Wd, rounding towards +∞ (RP). 

FCVTPS Xd, Dn 

Convert double-precision scalar in Dn to signed 64-bit integer in Xd, rounding towards +∞ (RP). 

FCVTPU Wd, Sn 

Convert single-precision scalar in Sn to unsigned 32-bit integer in Wd, rounding towards +∞ (RP). 

FCVTPU Xd, Sn 

Convert single-precision scalar in Sn to unsigned 64-bit integer in Xd, rounding towards +∞ (RP). 

FCVTPU Wd, Dn 

Convert double-precision scalar in Dn to unsigned 32-bit integer in Wd, rounding towards +∞ (RP). 

FCVTPU Xd, Dn 

Convert double-precision scalar in Dn to unsigned 64-bit integer in Xd, rounding towards +∞ (RP). 

FCVTZS Wd, Sn 

Convert single-precision scalar in Sn to signed 32-bit integer in Wd, rounding towards zero (RZ). 

FCVTZS Xd, Sn 

Convert single-precision scalar in Sn to signed 64-bit integer in Xd, rounding towards zero (RZ). 

FCVTZS Wd, Dn 

Convert double-precision scalar in Dn to signed 32-bit integer in Wd, rounding towards zero (RZ). 

FCVTZS Xd, Dn 

Convert double-precision scalar in Dn to signed 64-bit integer in Xd, rounding towards zero (RZ). 

FCVTZU Wd, Sn 

Convert single-precision scalar in Sn to unsigned 32-bit integer in Wd, rounding towards zero (RZ). 

FCVTZU Xd, Sn 

Convert single-precision scalar in Sn to unsigned 64-bit integer in Xd, rounding towards zero (RZ). 

FCVTZU Wd, Dn 

Convert double-precision scalar in Dn to unsigned 32-bit integer in Wd, rounding towards zero (RZ). 

FCVTZU Xd, Dn 

Convert double-precision scalar in Dn to unsigned 64-bit integer in Xd, rounding towards zero (RZ). 

SCVTF Sd, Wn 

Convert signed 32-bit integer in Wn to single-precision scalar in Sd, using FPCR rounding mode. 

SCVTF Sd, Xn 

Convert signed 64-bit integer in Xn to single-precision scalar in Sd, using FPCR rounding mode. 

SCVTF Dd, Wn 

Convert signed 32-bit integer in Wn to double-precision scalar in Dd, using FPCR rounding mode. 

SCVTF Dd, Xn 

Convert signed 64-bit integer in Xn to double-precision scalar in Dd, using FPCR rounding mode. 

UCVTF Sd, Wn 

Convert unsigned 32-bit integer in Wn to single-precision scalar in Sd, using FPCR rounding mode. 
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UCVTF Sd, Xn 

Convert unsigned 64-bit integer in Xn to single-precision scalar in Sd, using FPCR rounding mode. 

UCVTF Dd, Wn 

Convert unsigned 32-bit integer in Wn to double-precision scalar in Dd, using FPCR rounding mode. 

UCVTF Dd, Xn 

Convert unsigned 64-bit integer in Xn to double-precision scalar in Dd, using FPCR rounding mode. 

5.6.4.3 Convert to/from Fixed-point 
The #fbits operand indicates that the general register holds a fixed-point number with fbits bits after the 
binary point, where fbits is in the range 1 to 32 for a 32-bit general register, or 1 to 64 for a 64-bit general 
register.  
 
These instructions raise the Invalid Operation exception (FPSR.IOC) in response to a floating point input of NaN, 
Infinity, or a numerical value that cannot be represented within the destination register. An out of range fixed-point 
result will also be saturated to the destination size. A numeric result which differs from the input will raise the 
Inexact exception (FPSR.IXC). When flush-to-zero mode is enabled a denormal input will be replaced by a zero 
and will raise the Input Denormal exception (FPSR.IDC). 
 

FCVTZS Wd, Sn, #fbits 

Convert single-precision scalar in Sn to signed 32-bit fixed-point in Wd, rounding towards zero. 

FCVTZS Xd, Sn, #fbits 

Convert single-precision scalar in Sn to signed 64-bit fixed-point in Xd, rounding towards zero. 

FCVTZS Wd, Dn, #fbits 

Convert double-precision scalar in Dn to signed 32-bit fixed-point in Wd, rounding towards zero. 

FCVTZS Xd, Dn, #fbits 

Convert double-precision scalar in Dn to signed 64-bit fixed-point in Xd, rounding towards zero. 

FCVTZU Wd, Sn, #fbits 

Convert single-precision scalar in Sn to unsigned 32-bit fixed-point in Wd, rounding towards zero. 

FCVTZU Xd, Sn, #fbits 

Convert single-precision scalar in Sn to unsigned 64-bit fixed-point in Xd, rounding towards zero. 

FCVTZU Wd, Dn, #fbits 

Convert double-precision scalar in Dn to unsigned 32-bit fixed-point in Wd, rounding towards zero. 

FCVTZU Xd, Dn, #fbits 

Convert double-precision scalar in Dn to unsigned 64-bit fixed-point in Xd, rounding towards zero. 

SCVTF Sd, Wn, #fbits 

Convert signed 32-bit fixed-point in Wn to single-precision scalar in Sd, using FPCR rounding mode. 

SCVTF Sd, Xn, #fbits 

Convert signed 64-bit fixed-point in Xn to single-precision scalar in Sd, using FPCR rounding mode. 

SCVTF Dd, Wn, #fbits 

Convert signed 32-bit fixed-point in Wn to double-precision scalar in Dd, using FPCR rounding mode. 

SCVTF Dd, Xn, #fbits 

Convert signed 64-bit fixed-point in Xn to double-precision scalar in Dd, using FPCR rounding mode. 
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UCVTF Sd, Wn, #fbits 

Convert unsigned 32-bit fixed-point in Wn to single-precision scalar in Sd, using FPCR rounding mode. 

UCVTF Sd, Xn, #fbits 

Convert unsigned 64-bit fixed-point in Xn to single-precision scalar in Sd, using FPCR rounding mode. 

UCVTF Dd, Wn, #fbits 

Convert unsigned 32-bit fixed-point in Wn to double-precision scalar in Dd, using FPCR rounding mode. 

UCVTF Dd, Xn, #fbits 

Convert unsigned 64-bit fixed-point in Xn to double-precision scalar in Dd, using FPCR rounding mode. 
 

5.6.5 Floating-point Round to Integral  
The round to integral instructions round a floating-point value to an integral floating-point value of the same size. 
The only FPSR exception flags that can be raised by these instructions are: FPSR.IOC (Invalid Operation) for a 
Signaling NaN input; FPSR.IDC (Input Denormal) for a denormal input when flush-to-zero mode is enabled; for 
FRINTX only the FPSR.IXC (Inexact) exception if the result is numeric and does not have the same numerical 
value as the source. A zero input gives a zero result with the same sign, an infinite input gives an infinite result 
with the same sign, and a NaN is propagated as in normal arithmetic. 

FRINTA Sd, Sn 

Round to nearest integral with halfway cases rounding away from zero, single-precision, from Sn to Sd. 

FRINTA Dd, Dn 

Round to nearest integral with halfway cases rounding away from zero, double-precision, from Dn to Dd. 

FRINTI Sd, Sn 

Round to integral using FPCR rounding mode, single-precision, from Sn to Sd. 

FRINTI Dd, Dn 

Round to integral using FPCR rounding mode, double-precision, from Dn to Dd,. 

FRINTM Sd, Sn 

Round to integral towards -∞, single-precision, from Sn to Sd. 

FRINTM Dd, Dn 

Round to integral towards -∞, double-precision, from Dn to Dd. 

FRINTN Sd, Sn 

Round to nearest integral with halfway cases rounding to even, single-precision, from Sn to Sd, 

FRINTN Dd, Dn 

Round to nearest integral with halfway cases rounding to even, double-precision from Dn to Dd. 

FRINTP Sd, Sn 

Round to integral towards +∞, single-precision, from Sn to Sd. 

FRINTP Dd, Dn 

Round to integral towards +∞, double-precision, from Dn to Dd. 

FRINTX Sd, Sn 

Round to integral exact using FPCR rounding mode, single-precision, from Sn to Sd.  
For a numerical input sets the Inexact flag if result does not have the same value as the input.  

FRINTX Dd, Dn 

Round to integral exact using FPCR rounding mode, double-precision, from Dn to Dd. 
For a numerical input sets the Inexact flag if result does not have the same value as the input. 
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FRINTZ Sd, Sn 

Round to integral towards zero, single-precision, from Sn to Sd. 

FRINTZ Dd, Dn 

Round to integral towards zero, double-precision, from Dn to Dd. 

5.6.6 Floating-point Arithmetic (1 source) 
FABS Sd, Sn 

Single-precision floating-point scalar absolute value: Sd = abs(Sn). 

FABS Dd, Dn 

Double-precision floating-point scalar absolute value: Dd = abs(Dn). 

FNEG Sd, Sn 

Single-precision floating-point scalar negation: Sd = -Sn. 

FNEG Dd, Dn 

Double-precision floating-point scalar negation: Dd = -Dn. 

FSQRT Sd, Sn 

Single-precision floating-point scalar square root: Sd = sqrt(Sn). 

FSQRT Dd, Dn 

Double-precision floating-point scalar square root: Dd = sqrt(Dn). 

5.6.7 Floating-point Arithmetic (2 source) 
FADD Sd, Sn, Sm 

Single-precision floating-point scalar addition: Sd = Sn + Sm. 

FADD Dd, Dn, Dm 

Double-precision floating-point scalar addition: Dd = Dn + Dm. 

FDIV Sd, Sn, Sm 

Single-precision floating-point scalar division: Sd = Sn / Sm. 

FDIV Dd, Dn, Dm 

Double-precision floating-point scalar division: Dd = Dn / Dm. 

FMUL Sd, Sn, Sm 

Single-precision floating-point scalar multiply: Sd = Sn * Sm. 

FMUL Dd, Dn, Dm 

Double-precision floating-point scalar multipy: Dd = Dn * Dm. 

FNMUL Sd, Sn, Sm 

Single-precision floating-point scalar multiply-negate: Sd = -(Sn * Sm). 

FNMUL Dd, Dn, Dm 

Double-precision floating-point scalar multiply-negate: Dd = -(Dn * Dm). 

FSUB Sd, Sn, Sm 

Single-precision floating-point scalar subtraction: Sd = Sn - Sm. 

FSUB Dd, Dn, Dm 

Double-precision floating-point scalar subtraction: Dd = Dn - Dm. 
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5.6.8 Floating-point Min/Max 
The min(x,y) and max(x,y) operations behave similarly to the ARM v7 VMIN.F and VMAX.F instructions and 
return a quiet NaN when either x or y is a NaN. In flush-to-zero mode subnormal operands are flushed to zero 
before comparison, and if a flushed value is then the appropriate result the zero value is returned. Where both x 
and y are zero (or subnormal values flushed to zero) with differing sign, then +0.0 is returned by max() and -0.0 by 
min(). 

The minNum(x,y) and maxNum(x,y) operations follow the IEEE 754-2008 standard and return the numerical 
operand when one operand is numerical and the other a quiet NaN. Apart from this additional handling of a single 
quiet NaN the result is then identical to min(x,y) and max(x,y). 

FMAX Sd, Sn, Sm 

Single-precision floating-point scalar maximum: Sd = max(Sn,Sm).  

FMAX Dd, Dn, Dm 

Double-precision floating-point scalar maximum: Dd = max(Dn,Dm).  

FMAXNM Sd, Sn, Sm 

Single-precision floating-point scalar max number: Sd = maxNum(Sn,Sm). 

FMAXNM Dd, Dn, Dm 

Double-precision floating-point scalar max number: Dd = maxNum(Dn,Dm).  

FMIN Sd, Sn, Sm 

Single-precision floating-point scalar minimum: Sd = min(Sn,Sm).  
FMIN Dd, Dn, Dm 

Double-precision floating-point scalar minimum: Dd = min(Dn,Dm).  

FMINNM Sd, Sn, Sm 

Single-precision floating-point scalar min number: Sd = minNum(Sn,Sm).  

FMINNM Dd, Dn, Dm 

Double-precision floating-point scalar min number: Dd = minNum(Dn,Dm).  

5.6.9 Floating-point Multiply-Add 
FMADD Sd, Sn, Sm, Sa 

Single-precision floating-point scalar fused multiply-add: Sd = Sa + Sn*Sm. 

FMADD Dd, Dn, Dm, Da 

Double-precision floating-point scalar fused multiply-add: Dd = Da + Dn*Dm. 

FMSUB Sd, Sn, Sm, Sa 

Single-precision floating-point scalar fused multiply-subtract: Sd = Sa + (-Sn)*Sm. 

FMSUB Dd, Dn, Dm, Da 

Double-precision floating-point scalar fused multiply-subtract: Dd = Da + (-Dn)*Dm. 

FNMADD Sd, Sn, Sm, Sa 

Single-precision floating-point scalar negated fused multiply-add: Sd = (-Sa) + (-Sn)*Sm. 

FNMADD Dd, Dn, Dm, Da 

Double-precision floating-point scalar negated fused multiply-add: Dd = (-Da) + (-Dn)*Dm. 

FNMSUB Sd, Sn, Sm, Sa 

Single-precision floating-point scalar negated fused multiply-subtract: Sd = (-Sa) + Sn*Sm. 

FNMSUB Dd, Dn, Dm, Da 

Double-precision floating-point scalar negated fused multiply-subtract: Dd = (-Da) + Dn*Dm. 
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5.6.10 Floating-point Comparison 
These instructions set the integer NZCV condition flags directly, and do not alter the condition flags in the FPSR. 
In the conditional compare instructions, the #uimm4 operand is a bitmask used to set the NZCV flags when the 
input condition is false, with bit 3 setting the N flag, bit 2 the Z flag, bit 1 the C flag, and bit 0 the V flag. If floating-
point comparisons are unordered the C and V flag bits are set and the N and Z bits cleared.  

FCMP Sn, Sm|#0.0 

Single-precision compare: set condition flags from floating point comparison of Sn with Sm or 0.0. 
Invalid Operation exception only on signaling NaNs. 

FCMP Dn, Dm|#0.0 

Double-precision compare: set condition flags from floating point comparison of Dn with Dm or 0.0.  
Invalid Operation exception only on signaling NaNs. 

FCMPE Sn, Sm|#0.0 

Single-precision compare, exceptional: set flags from floating point comparison of Sn with Sm or 0.0. 
Invalid Operation exception on all NaNs. 

FCMPE Dn, Dm|#0.0 

Double-precision compare, exceptional: set flags from floating point comparison of Dn with Dm or 0.0. 
Invalid Operation exception on all NaNs. 

FCCMP Sn, Sm, #uimm4, cond 

Single-precision conditional compare: NZCV = if cond then FPCompare(Sn, Sm) else uimm4. 
Invalid Operation exception only on signaling NaNs when cond holds true. 

FCCMP Dn, Dm, #uimm4, cond 

Double-precision conditional compare: NZCV = if cond then FPcompare(Dn, Dm) else uimm4. 
Invalid Operation exception only on signaling NaNs when cond holds true. 

FCCMPE Sn, Sm, #uimm4, cond 

Single-precision conditional compare, exceptional:  
NZCV = if cond then FPCompare(Sn, Sm) else uimm4. 
Invalid Operation exception on all NaNs when cond holds true. 

FCCMPE Dn, Dm, #uimm4, cond 

Double-precision conditional compare, exceptional: 
NZCV = if cond then FPCompare(Dn, Dm) else uimm4. 
Invalid Operation exception on all NaNs when cond holds true. 

5.6.11 Floating-point Conditional Select 
FCSEL Sd, Sn, Sm, cond 

Single-precision conditional select: Sd = if cond then Sn else Sm. 

FCSEL Dd, Dn, Dm, cond 

Double-precision conditional select: Dd = if cond then Dn else Dm. 
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5.7 Advanced SIMD 

5.7.1 Overview 
AArch64 Advanced SIMD is based upon the existing AArch32 Advanced SIMD extension, with the following 
changes: 

• In AArch64 Advanced SIMD, there are thirty two 128-bit wide vector registers, whereas AArch32 
Advanced SIMD had sixteen 128-bit wide registers. 

• There are thirty two 64-bit vectors and these are held in the lower 64 bits of each 128-bit register. 

• Writes of 64 bits or less to a vector register result in the higher bits being zeroed (except for lane inserts). 

• New lane insert and extract instructions have been added to support the new register packing scheme. 

• Additional widening instructions are provided for generating the top 64 bits of a 128-bit vector register. 

• Data-processing instructions which would generate more than one result register (e.g. widening a 128-bit 
vector), or consume more than three sources (e.g. narrowing a 128-bit vector), have been split into 
separate instructions. 

• A set of scalar instructions have been added to implement loop heads and tails, but only where the 
instruction does not already exist in the main scalar floating-point instruction set, and only when “over-
computing” using a vector form might have the side effect of setting the saturation or floating point 
exception flags if there was “garbage” in unused higher lanes. Scalar operations on 64-bit integers are 
also provided in this section, to avoid the cost of over-computing using a 128-bit vector. 

• A new set of vector “reduction” operations provide across-lane sum, minimum and maximum.  

• Some existing instructions have been extended to support 64-bit integer values: e.g. comparison, 
addition, absolute value and negate, including saturating versions. 

• Advanced SIMD now supports both single-precision (32-bit) and double-precision (64-bit) floating-point 
vector data types and arithmetic as defined by the IEEE 754 floating-point standard, honoring the FPCR 
Rounding Mode field, the Default NaN control, the Flush-to-Zero control, and (where supported by the 
implementation) the Exception trap enable bits. 

• The ARMv7 SIMD "chained" floating-point multiply-accumulate instructions have been replaced with 
IEEE754 "fused" multiply-add. This includes the reciprocal step and reciprocal square root step 
instructions. 

• Convert float to integer (FCVTxU, FCVTxS) encode a directed rounding mode: towards zero, towards +Inf, 
towards –Inf, to nearest with ties to even, and to nearest with ties away from zero. 

• Round float to nearest integer in floating-point format (FRINTx) has been added, with the same directed 
rounding modes, as well as rounding according to the ambient rounding mode. 

• A new double to single precision down-convert instruction with “exact” rounding, suitable for ongoing 
single to half-precision down-conversion with correct double to half rounding (FCVTXN). 

• IEEE 754-2008 minNum() and maxNum() instructions have been added (FMINNM, FMAXNM). 

• Instructions to accelerate floating point vector normalisation have been added (FRECPX, FMULX). 

• Saturating instructions have been extended to include unsigned accumulate into signed, and vice-versa. 



ARMv8 Instruction Set Overview  

 
PRD03-GENC-010197 Copyright © 2009-2011 ARM Limited. All rights reserved. Page 61 of 112 

5.7.2  Advanced SIMD Mnemonics 
Although derived from the AArch32 Advanced SIMD syntax, a number of changes have been made to harmonise 
with the AArch64 core integer and floating point instruction set syntax, and to unify AArch32’s divergent 
“architectural” and “programmers’” notations: 

• The ‘V’ mnemonic prefix has been removed, and S/U/F/P added to indicate signed/unsigned/floating-
point/polynomial data type. The mnemonic always indicates the data type(s) of the operation. 

• The vector organisation (element size and number of lanes) is described by the register qualifiers and 
never by a mnemonic qualifier. See the description of the vector register syntax in §4.4.2 above. 

• The ‘P’ prefix for “pairwise” operations becomes a suffix. 

• A ‘V’ suffix has been added for the new reduction (across-all-lanes) operations 

• A ‘2’ suffix has been added for the new widening/narrowing “second part” instructions, described below. 

• Vector compares now use the integer condition code names to indicate whether an integer comparison is 
signed or unsigned (e.g. CMLT, CMLO, CMGE, CMHI, etc) 

• Some mnemonics have been renamed where the removal of the V prefix caused clash with the core 
instruction set mnemonics. 

With the exception of the above changes, the mnemonics are based closely on AArch32 Advanced SIMD. As 
such, the learning curve for existing Advanced SIMD programmers is reduced. A full list of the equivalent AArch32 
mnemonics can be found in §5.7.23 below. 

Widening instructions with a ‘2’ suffix implement the “second” or “top” part of a widening operation that would 
otherwise need to write two 128-bit vectors: they get their input data from the high numbered lanes of the 128-bit 
source vectors, and write the expanded results to the 128-bit destination.  

Narrowing instructions with a ‘2’ suffix implement the “second” or “top” part of a narrowing operation that would 
otherwise need to read two 128-bit vectors for each source operand: they get their input data from the 128-bit 
source operands and insert their narrowed results into the high numbered lanes of the 128-bit destination, leaving 
the lower lanes unchanged.  

5.7.3 Data Movement 
DUP Vd.<Td>, Vn.<Ts>[index] 

Duplicate element (vector). Replicate single vector element from Vn to all elements of Vd. Where 
<Td>/<Ts> may be 8B/B, 16B/B, 4H/H, 8H/H, 2S/S, 4S/S or 2D/D. The immediate index is a value in the 
range 0 to nelem(<Ts>)-1. 

DUP Vd.<T>, Wn 

Duplicate 32-bit general register (vector). Replicate low order bits from 32-bit general register Wn to all 
elements of vector Vd. Where <T> may be 8B, 16B, 4H, 8H, 2S or 4S. 

DUP Vd.2D, Xn 

Duplicate 64-bit general register (vector). Replicate 64-bit general register Xn to both elements of vector 
Vd. 

DUP <V>d, Vn.<T>[index] 

Duplicate element (scalar). Copy single vector element from Vn to scalar register <V>d. Where <V>/<T> 
may be B/B, H/H, S/S or D/D. The immediate index is a value in the range 0 to nelem(<T>)-1. Normally 
disassembled as MOV. 

INS Vd.<T>[index], Vn.<T>[index2] 

Insert element (vector). Inserts a single vector element from Vn into a single element of Vd. Where <T> 
may be B, H, S or D. Both immediates index and index2 are values in the range 0 to nelem(<T>)-1. 
Normally disassembled as MOV. 



ARMv8 Instruction Set Overview  

 
PRD03-GENC-010197 Copyright © 2009-2011 ARM Limited. All rights reserved. Page 62 of 112 

INS Vd.<T>[index], Wn 

Insert 32-bit general register (vector). Inserts low order bits from 32-bit general register Wn into a single 
vector element of Vd. Where <T> may be 8B, 16B, 4H, 8H, 2S or 4S. The immediate index is a value in 
the range 0 to nelem(<T>)-1. Normally disassembled as MOV. 

INS Vd.D[index], Xn 

Insert  64-bit general register (vector). Inserts 64-bit general register Xn into a single vector element of Vd. 
The immediate index is a value in the range 0 to 1. Normally disassembled as MOV. 

MOV Vd.<T>[index], Vn.<T>[index2] 

Move element. Moves a vector element from Vn to a vector element in Vd: alias for INS 
Vd.<T>[index],Vn.<T>[index2]. 

MOV Vd.<T>[index], Wn 

Move 32-bit general register to element.  Moves a 32-bit general register Wn to vector element in Vd: alias 
for INS Vd.<T>[index],Wn. 

MOV Vd.2D[index], Xn 

Move 64-bit general register to element. Moves a 64-bit general register Xn to a vector element in Vd: 
alias for INS Vd.D[index],Xn. 

MOV <V>d, Vn.<T>[index] 

Move element (scalar). Moves a vector element from Vn to scalar register <V>d: alias for DUP 
<V>d,Vn.<T>[index]. 

MOV <V>d, <V>n 

Move (scalar). Moves a scalar register <V>n to scalar register <V>d: alias for DUP <V>d,Vn.<V>[0]. 

UMOV Wd, Vn.<Ts>[index] 

Unsigned integer move element to 32-bit general register. Zero-extends an integer vector element from 
Vn into 32-bit general register Wd. Where <Ts> may be 8B, 16B, 4H, 8H, 2S or 4S. The index is in the 
range 0 to nelem(<Ts>)-1. 

UMOV Xd, Vn.D[index] 

Unsigned integer move element to 64-bit general register. Moves an unsigned 64-bit integer vector 
element from Vn into 64-bit general register Wd. The immediate index is in the range 0 to 1. 

SMOV Wd, Vn.<T>[index] 

Signed integer move element to 32-bit general register. Sign-extends an integer vector element from Vn 
into 32-bit general register Wd. Where <T> may be B or H. The index is a value is in the range 0 to 
nelem(<T>)-1. 

SMOV Xd, Vn.<T>[index] 

Signed integer move element to 64-bit general register. Sign-extends an integer vector element from Vn 
into 64-bit general register Xd. Where <T> may be B, H or S. The index is in the range 0 to nelem(<T>)-1. 

5.7.4 Vector Arithmetic 
UABA Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer absolute difference and accumulate (vector). Subtracts the elements of Vm from the 
corresponding elements of Vn, and accumulates the absolute values of the results into the elements of 
Vd. Operand and result elements are all unsigned integers of the same length: <T> is 8B, 16B, 4H, 8H, 
2S or 4S. 

SABA Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer absolute difference and accumulate (vector). Subtracts the elements of Vm from the 
corresponding elements of Vn, and accumulates the absolute values of the results into the elements of 
Vd. Operand and result elements are all signed integers of the same length: <T> is 8B, 16B, 4H, 8H, 2S 
or 4S. 
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UABD Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer absolute difference (vector).  Subtracts the elements of Vm from the corresponding 
elements of Vn, and places the absolute values of the results in the elements of Vd. Operand and result 
elements are all integers of the same length: <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

SABD Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer absolute difference (vector).  Subtracts the elements of Vm from the corresponding 
elements of Vn, and places the absolute values of the results in the elements of Vd. Operand and result 
elements are all integers of the same length: <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FABD Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point absolute difference (vector).  Subtracts the elements of Vm from the corresponding 
elements of Vn, and places the absolute values of the results in the elements of Vd. Operand and result 
elements are all of the same length: <T> is 2S, 4S or 2D. 

ADD Vd.<T>, Vn.<T>, Vm.<T> 

Integer add (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

FADD Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point add (vector). Where <T> is 2S, 4S or 2D. 

AND Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise AND (vector). Where <T> is 8B or 16B (though an assembler should accept any valid format). 

BIC Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise bit clear (vector). Where <T> is 8B or 16B (though an assembler should accept any valid format). 
BIF Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise insert if false (vector). Where <T> is 8B or 16B (though an assembler should accept any valid 
format). 

BIT Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise insert if true (vector). Where <T> is 8B or 16B (though an assembler should accept any valid 
format). 

BSL Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise select (vector). Where <T> is 8B or 16B (though an assembler should accept any valid format). 

CMEQ Vd.<T>, Vn.<T>, Vm.<T> 

Integer compare mask equal (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

CMEQ Vd.<T>, Vn.<T>, #0 

Integer compare mask equal to zero (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

CMHS Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer compare mask higher or same (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

CMGE Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer compare mask greater than or equal (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 
2D. 

CMGE Vd.<T>, Vn.<T>, #0 

Signed integer compare mask greater than or equal to zero (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 
4S or 2D. 

CMHI Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer compare mask higher (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

CMGT Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer compare mask greater than (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 
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CMGT Vd.<T>, Vn.<T>, #0 

Signed integer compare mask greater than zero (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

CMLS Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer compare mask lower or same (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 
Alias for CMHS with operands reversed. 

CMLE Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer compare mask less than or equal (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 
Alias for CMGE with operands reversed. 

CMLE Vd.<T>, Vn.<T>, #0 

Signed integer compare mask less than or equal to zero (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S 
or 2D. 

CMLO Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer compare mask lower (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D.  
Alias for CMHI with operands reversed. 

CMLT Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer compare mask less than (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D.  
Alias for CMGT with operands reversed. 

CMLT Vd.<T>, Vn.<T>, #0 

Signed integer compare mask less than zero (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D.  

CMTST Vd.<T>, Vn.<T>, Vm.<T> 

Integer compare mask bitwise test (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

FCMEQ Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point compare mask equal (vector). Where <T> is 2S, 4S or 2D. 
FCMEQ Vd.<T>, Vn.<T>, #0 

Floating-point compare mask equal to zero (vector). Where <T> is 2S, 4S or 2D. 

FCMGE Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point compare mask greater than or equal (vector). Where <T> is 2S, 4S or 2D. 

FCMGE Vd.<T>, Vn.<T>, #0 

Floating-point compare mask greater than or equal to zero (vector). Where <T> is 2S, 4S or 2D. 

FCMGT Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point compare mask greater than (vector). Where <T> is 2S, 4S or 2D. 

FCMGT Vd.<T>, Vn.<T>, #0 

Floating-point compare mask greater than zero (vector). Where <T> is 2S, 4S or 2D. 

FCMLE Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point compare mask less than or equal (vector). Where <T> is 2S, 4S or 2D. 
Alias for FCMGE with operands reversed. 

FCMLE Vd.<T>, Vn.<T>, #0 

Floating-point compare mask less than or equal to zero (vector). Where <T> is 2S, 4S or 2D. 
FCMLT Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point compare mask less than (vector). Where <T> is 2S, 4S or 2D. 
Alias for FCMGT with operands reversed. 

FCMLT Vd.<T>, Vn.<T>, #0 

Floating-point compare mask less than zero (vector). Where <T> is 2S, 4S or 2D. 
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FACGE Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point absolute compare mask greater than or equal (vector). Where <T> is 2S, 4S or 2D. 

FACGT Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point absolute compare mask greater than (vector). Where <T> is 2S, 4S or 2D. 

FACLE Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point absolute compare mask less than or equal (vector). Where <T> is 2S, 4S or 2D. 
Alias for FACGE with operands reversed. 

FACLT Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point absolute compare mask less than (vector). Where <T> is 2S, 4S or 2D. 
Alias for FACGT with operands reversed. 

FDIV Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point divide (vector). Where <T> is 2S, 4S or 2D. 

EOR Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise exclusive OR (vector). Where <T> is 8B or 16B (an assembler should accept any valid 
arrangement). 

UHADD Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer halving add (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

SHADD Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer halving add (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

UHSUB Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer halving subtract (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

SHSUB Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer halving subtract (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

UMAX Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer maximum (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

SMAX Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer maximum (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FMAX Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point maximum (vector). Where <T> is 2S, 4S or 2D. 
FMAXNM Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point maxNum (vector). Where <T> is 2S, 4S or 2D. 

UMIN Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer minimum (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

SMIN Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer minimum (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FMIN Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point minimum (vector). Where <T> is 2S, 4S or 2D. 

FMINNM Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point minNum (vector). Where <T> is 2S, 4S or 2D. 

MLA Vd.<T>, Vn.<T>, Vm.<T> 

Integer multiply-accumulate (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FMLA Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point fused multiply-accumulate (vector). Where <T> is 2S, 4S or 2D. 
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MLS Vd.<T>, Vn.<T>, Vm.<T> 

Integer multiply-subtract from accumulator (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FMLS Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point fused multiply-subtract from accumulator (vector). Where <T> is 2S, 4S or 2D. 

MUL Vd.<T>, Vn.<T>, Vm.<T> 

Integer multiply (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FMUL Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point multiply (vector). Where <T> is 2S, 4S or 2D. 

FMULX Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point multiply extended, like FMUL but 0�±∞ → ±2 (vector). Where <T> is 2S, 4S or 2D. 
PMUL Vd.<T>, Vn.<T>, Vm.<T> 

Polynomial multiply (vector). Where <T> is 8B or 16B. 

ORN Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise OR NOT (vector). Where <T> is 8B or 16B (an assembler should accept any valid arrangement). 

ORR Vd.<T>, Vn.<T>, Vm.<T> 

Bitwise OR (vector). Where <T> is 8B or 16B (an assembler should accept any valid arrangement). 

SQADD Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer saturating add (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

UQADD Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer saturating add (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

SQDMULH Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer saturating doubling multiply high half (vector). Where <T> is 4H, 8H, 2S or 4S. 

SQRDMULH Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer saturating rounding doubling multiply high half (vector). Where <T> is 4H, 8H, 2S or 4S. 

UQRSHL Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer saturating rounding shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

SQRSHL Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer saturating rounding shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

UQSUB Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer saturating subtract (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

SQSUB Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer saturating subtract (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

URHADD Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer rounding halving add (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

SRHADD Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer rounding halving add (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

URSHL Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer rounding shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 
SRSHL Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer rounding shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

UQSHL Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer saturating shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 
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SQSHL Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer saturating shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

USHL Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

SSHL Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

SUB Vd.<T>, Vn.<T>, Vm.<T> 

Integer subtract (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D 

FSUB Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point subtract (vector). Where <T> is 2S, 4S or 2D. 

FRECPS Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point reciprocal step (vector). Where <T> is 2S, 4S or 2D. The embedded multiply-accumulate is 
fused in AArch64 FRECPS, whilst in AArch32 VRECPS it remains chained. 

FRSQRTS Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point reciprocal square root step (vector). Where <T> is 2S, 4S or 2D. The embedded multiply-
accumulate is fused in AArch64 FRSQRTS, whilst in AArch32 VRSQRTS it remains chained. 
 

5.7.5 Scalar Arithmetic 
FABD <V>d, <V>n, <V>m 

Floating-point absolute difference (scalar).  Subtracts <V>m from <V>n, and places the absolute value of 
the result in <V>d. Where <V>is S or D. 

ADD Dd, Dn, Dm 

Integer add (scalar). 

CMEQ Dd, Dn, Dm 

Integer compare mask equal (scalar). 

CMEQ Dd, Dn, #0 

Integer compare mask equal to zero (scalar). 

CMHS Dd, Dn, Dm 

Unsigned integer compare mask higher or same (scalar). 

CMGE Dd, Dn, Dm 

Signed integer compare mask greater than or equal (scalar). 

CMGE Dd, Dn, #0 

Signed integer compare mask greater than or equal to zero (scalar). 

CMHI Dd, Dn, Dm 

Unsigned integer compare mask higher (scalar). 

CMGT Dd, Dn, Dm 

Signed integer compare mask greater than (scalar). 

CMGT Dd, Dn, #0 

Signed integer compare mask greater than zero (scalar). 

CMLS Dd, Dn, Dm 

Unsigned integer compare mask lower or same (scalar). 
Alias for CMHS with operands reversed. 
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CMLE Dd, Dn, Dm 

Signed integer compare mask less than or equal (scalar). 
Alias for CMGE with operands reversed. 

CMLE Dd, Dn, #0 

Signed integer compare mask less than or equal to zero (scalar). 

CMLO Dd, Dn, Dm 

Unsigned integer compare mask lower (scalar).  
Alias for CMHI with operands reversed. 

CMLT Dd, Dn, Dm 

Signed integer compare mask less than (scalar).  
Alias for CMGT with operands reversed. 

CMLT Dd, Dn, #0 

Signed integer compare mask less than zero (scalar).  

CMTST Dd, Dn, Dm 

Integer compare mask bitwise test (scalar). 

FCMEQ <V>d, <V>n, <V>m 

Floating-point compare mask equal (scalar). Where <V>is S or D. 

FCMEQ <V>d, <V>n, #0 

Floating-point compare mask equal to zero (scalar). Where <V>is S or D. 

FCMGE <V>d, <V>n, <V>m 

Floating-point compare mask greater than or equal (scalar). Where <V>is S or D. 

FCMGE <V>d, <V>n, #0 

Floating-point compare mask greater than or equal to zero (scalar). Where <V>is S or D. 

FCMGT <V>d, <V>n, <V>m 

Floating-point compare mask greater than (scalar). Where <V>is S or D. 

FCMGT <V>d, <V>n, #0 

Floating-point compare mask greater than zero (scalar). Where <V>is S or D. 

FCMLE <V>d, <V>n, <V>m 

Floating-point compare mask less than or equal (scalar). Where <V>is S or D. 
Alias for FCMGE with operands reversed. 

FCMLE <V>d, <V>n, #0 

Floating-point compare mask less than or equal to zero (scalar). Where <V>is S or D. 

FCMLT <V>d, <V>n, <V>m 

Floating-point compare mask less than (scalar). Where <V>is S or D. 
Alias for FCMGT with operands reversed. 

FCMLT <V>d, <V>n, #0 

Floating-point compare mask less than zero (scalar). Where <V>is S or D. 

FACGE <V>d, <V>n, <V>m 

Floating-point absolute compare mask greater than or equal (scalar). Where <V>is S or D. 

FACGT <V>d, <V>n, <V>m 

Floating-point absolute compare mask greater than (scalar). Where <V>is S or D. 
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FACLE <V>d, <V>n, <V>m 

Floating-point absolute compare mask less than or equal (scalar). Where <V>is S or D. 
Alias for FACGE with operands reversed. 

FACLT <V>d, <V>n, <V>m 

Floating-point absolute compare mask less than (scalar). Where <V>is S or D.  
Alias for FACGT with operands reversed. 

SQADD <V>d, <V>n, <V>m 

Signed integer saturating add (scalar). Where <V> is B, H, S or D. 

UQADD <V>d, <V>n, <V>m 

Unsigned integer saturating add (scalar). Where <V> is B, H, S or D. 
SQDMULH <V>d, <V>n, <V>m 

Signed integer saturating doubling multiply high half (scalar). Where <V> is H or S. 

SQRDMULH <V>d, <V>n, <V>m 

Signed integer saturating rounding doubling multiply high half (scalar). Where <V> is H or S. 

UQRSHL <V>d, <V>n, <V>m 

Unsigned integer saturating rounding shift left (scalar). Where <V> is B, H, S or D. 

SQRSHL <V>d, <V>n, <V>m 

Signed integer saturating rounding shift left (scalar). Where <V> is B, H, S or D. 

UQSUB <V>d, <V>n, <V>m 

Unsigned integer saturating subtract (scalar). Where <V> is B, H, S or D. 

SQSUB <V>d, <V>n, <V>m 

Signed integer saturating subtract (scalar). Where <V> is B, H, S or D. 

UQSHL <V>d, <V>n, <V>m 

Unsigned integer saturating shift left (scalar). Where <V> is B, H, S or D. 

SQSHL <V>d, <V>n, <V>m 

Signed integer saturating shift left (scalar). Where <V> is B, H, S or D. 

URSHL Dd, Dn, Dm 

Unsigned integer rounding shift left (scalar). 

SRSHL Dd, Dn, Dm 

Signed integer rounding shift left (scalar). 

USHL Dd, Dn, Dm 

Unsigned integer shift left (scalar).  

SSHL Dd, Dn, Dm 

Signed integer shift left (scalar). 

SUB Dd, Dn, Dm 

Integer subtract (scalar). 

FMULX <V>d, <V>n, <V>m 

Floating-point multiply extended, like FMUL but 0�±∞ → ±2 (scalar). Where <V> is S or D. 

FRECPS <V>d, <V>n, <V>m 

Floating-point reciprocal step (scalar). Where <V>is S or D. The embedded multiply-accumulate is fused 
in AArch64 FRECPS, whilst in AArch32 VRECPS it remains chained. 
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FRSQRTS <V>d, <V>n, <V>m 

Floating-point reciprocal square root step (scalar). Where <V>is S or D. The embedded multiply-
accumulate is fused in AArch64 FRSQRTS, whilst in AArch32 VRSQRTS it remains chained. 

5.7.6 Vector Widening/Narrowing Arithmetic 
UABAL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer absolute difference and accumulate long (vector). Where the <Td>/<Ts> is 8H/8B, 
4S/4H or 2D/2S. 

UABAL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer absolute difference and accumulate long (vector, second part). Where the <Td>/<Ts> is 
8H/16B, 4S/8H or 2D/4S. 

SABAL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer absolute difference and accumulate long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H 
or 2D/2S. 

SABAL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer absolute difference and accumulate long (vector, second part). Where the <Td>/<Ts> is 
8H/16B, 4S/8H or 2D/4S. 

UABDL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer absolute difference long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

UABDL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer absolute difference long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H 
or 2D/4S. 

SABDL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer absolute difference long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

SABDL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer absolute difference long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 
2D/4S. 

UADDL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer add long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

UADDL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer add long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

SADDL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer add long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

SADDL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer add long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

USUBL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer subtract long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

USUBL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer subtract long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

SSUBL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer subtract long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

SSUBL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer subtract long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 
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UMLAL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer multiply-accumulate long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

UMLAL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer multiply-accumulate long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H 
or 2D/4S. 

SMLAL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer multiply-accumulate long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

SMLAL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer multiply-accumulate long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 
2D/4S. 

UMLSL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer multiply-subtract from accumulator long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H 
or 2D/2S. 

UMLSL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer multiply-subtract from accumulator long (vector, second part). Where the <Td>/<Ts> is 
8H/16B, 4S/8H or 2D/4S. 

SMLSL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer multiply-subtract from accumulator long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 
2D/2S. 

SMLSL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer multiply-subtract from accumulator long (vector, second part). Where the <Td>/<Ts> is 
8H/16B, 4S/8H or 2D/4S. 

UMULL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer multiply long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

UMULL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Unsigned integer multiply long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

SMULL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer multiply long (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

SMULL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer multiply long (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

PMULL Vd.8H, Vn.8B, Vm.8B 

Polynomial multiply long (vector).  

PMULL2 Vd.8H, Vn.16B, Vm.16B 

Polynomial multiply long (vector, second part). 

SQDMLAL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer saturating doubling multiply accumulate long (vector). Where the <Td>/<Ts> is  4S/4H or 
2D/2S. 

SQDMLAL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer saturating doubling multiply accumulate long (vector, second part). Where the <Td>/<Ts> 
is 4S/8H or 2D/4S. 

SQDMLSL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer saturating doubling multiply subtract from accumulator long (vector). Where the <Td>/<Ts> 
is 4S/4H or 2D/2S. 
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SQDMLSL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer saturating doubling multiply subtract from accumulator long (vector, second part). Where 
the <Td>/<Ts> is 4S/8H or 2D/4S. 

SQDMULL Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer saturating doubling multiply long (vector). Where the <Td>/<Ts> is 4S/4H or 2D/2S. 

SQDMULL2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Signed integer saturating doubling multiply long (vector, second part). Where the <Td>/<Ts> is 4S/8H or 
2D/4S. 

UADDW Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Unsigned integer add wide (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 
UADDW2 Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Unsigned integer add wide (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

SADDW Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Signed integer add wide (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

SADDW2 Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Signed integer add wide (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

USUBW Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Unsigned integer subtract wide (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

USUBW2 Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Unsigned integer subtract wide (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

SSUBW Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Signed integer subtract wide (vector). Where the <Td>/<Ts> is 8H/8B, 4S/4H or 2D/2S. 

SSUBW2 Vd.<Td>, Vn.<Td>, Vm.<Ts> 

Signed integer subtract wide (vector, second part). Where the <Td>/<Ts> is 8H/16B, 4S/8H or 2D/4S. 

RADDHN Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer rounding add and narrow high half (vector). Where the <Td>/<Ts> is 8B/8H, 4H/4S or 2S/2D. 

RADDHN2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer rounding add and narrow high half (vector, second part). Where the <Td>/<Ts> is 16B/8H, 8H/4S 
or 4S/2D. 

RSUBHN Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer rounding subtract and narrow high half (vector). Where the <Td>/<Ts> is 8B/8H, 4H/4S or 2S/2D. 

RSUBHN2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer rounding subtract and narrow high half (vector, second part). Where the <Td>/<Ts> is 16B/8H, 
8H/4S or 4S/2D. 

ADDHN Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer add and narrow high half (vector). Where the <Td>/<Ts> is 8B/8H, 4H/4S or 2S/2D. 

ADDHN2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer add and narrow high half (vector, second part). Where the <Td>/<Ts> is 16B/8H, 8H/4S or 4S/2D. 

SUBHN Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer subtract and narrow high half (vector). Where the <Td>/<Ts> is 8B/8H, 4H/4S or 2S/2D. 

SUBHN2 Vd.<Td>, Vn.<Ts>, Vm.<Ts> 

Integer subtract and narrow high half (vector, second part). Where the <Td>/<Ts> is 16B/8H, 8H/4S or 
4S/2D. 
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5.7.7 Scalar Widening/Narrowing Arithmetic 
SQDMLAL <Vd>d, <Vs>n, <Vs>m 

Signed integer saturating doubling multiply accumulate long (scalar). Where the <Vd>/<Vs> is H/B, S/H or 
D/S. 

SQDMLSL <Vd>d, <Vs>n, <Vs>m 

Signed integer saturating doubling multiply subtract from accumulator long (scalar). Where the <Vd>/<Vs> 
is S/H or D/S. 

SQDMULL <Vd>d, <Vs>n, <Vs>m 

Signed integer saturating doubling multiply long (scalar). Where the <Vd>/<Vs> is S/H or D/S. 

5.7.8 Vector Unary Arithmetic 
ABS Vd.<T>, Vn.<T> 

Integer absolute value (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

SQABS Vd.<T>, Vn.<T> 

Signed integer saturating absolute (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

FABS Vd.<T>, Vn.<T> 

Floating-point absolute value (vector). Where <T> is 2S, 4S or 2D. 

NEG Vd.<T>, Vn.<T> 

Integer negate (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 
SQNEG Vd.<T>, Vn.<T> 

Signed integer saturating negate (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

FNEG Vd.<T>, Vn.<T> 

Floating-point negate (vector). Where <T> is 2S, 4S or 2D. 

CLS Vd.<T>, Vn.<T> 

Signed integer count leading sign bits (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

CLZ Vd.<T>, Vn.<T> 

Integer count leading zero bits (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

CNT Vd.<T>, Vn.<T> 

Count non-zero bits (vector). Where <T> is 8B or 16B. 

NOT Vd.<T>, Vn.<T> 

Bitwise invert (vector). Where <T> is 8B or 16B (an assembler should accept any valid arrangement). 
Normally disassembled as MVN. 

MVN Vd.<T>, Vn.<T> 

Bitwise invert (vector). Where <T> is 8B or 16B (an assembler should accept any valid arrangement). 
Alias for NOT Vd.<T>,Vn.<T> 

SUQADD Vd.<T>, Vn.<T> 

Signed integer saturating accumulate of unsigned value (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S 
or 2D. 

USQADD Vd.<T>, Vn.<T> 

Unsigned integer saturating accumulate of signed value (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S 
or 2D. 

UADALP Vd.<Td>, Vn.<Ts> 

Unsigned integer add and accumulate long pairwise (vector). Where <Td>/<Ts> is 4H/8B, 8H/16B, 2S/4H, 
4S/8H, 1D/2S or 2D/4S. 
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SADALP Vd.<Td>, Vn.<Ts> 

Signed integer add and accumulate long pairwise (vector). Where <Td>/<Ts> is 4H/8B, 8H/16B, 2S/4H, 
4S/8H, 1D/2S or 2D/4S. 

UADDLP Vd.<Td>, Vn.<Ts> 

Unsigned integer add long pair (vector). Where <Td>/<Ts> is 4H/8B, 8H/16B, 2S/4H, 4S/8H, 1D/2S or 
2D/4S. 

SADDLP Vd.<Td>, Vn.<Ts> 

Signed integer add long pair (vector). Where <Td>/<Ts> is 4H/8B, 8H/16B, 2S/4H, 4S/8H, 1D/2S or 
2D/4S. 

FCVTL Vd.<Td>, Vn.<Ts> 

Floating-point convert long half-precision to single-precision, or single-precision to double-precision 
(vector). Where <Td>/<Ts> is 4S/4H or 2D/2S 

FCVTL2 Vd.<Td>, Vn.<Ts> 

Floating-point convert long half-precision to single-precision, or single-precision to double-precision 
(vector, second part). Where <Td>/<Ts> is 4S/8H or 2D/4S 

XTN Vd.<Td>, Vn.<Ts> 

Integer narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D. 

XTN2 Vd.<Td>, Vn.<Ts> 

Integer narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 8H/4S, or 4S/2D. 

SQXTUN Vd.<Td>, Vn.<Ts> 

Signed integer saturating and unsigned narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D. 

SQXTUN2 Vd.<Td>, Vn.<Ts> 

Signed integer saturating and unsigned narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 
8H/4S, or 4S/2D. 

UQXTN Vd.<Td>, Vn.<Ts> 

Unsigned integer saturating narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D. 

UQXTN2 Vd.<Td>, Vn.<Ts> 

Unsigned integer saturating narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 8H/4S, or 4S/2D. 

SQXTN Vd.<Td>, Vn.<Ts> 

Signed integer saturating narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D. 

SQXTN2 Vd.<Td>, Vn.<Ts> 

Signed integer saturating narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 8H/4S, or 4S/2D. 

FCVTN Vd.<Td>, Vn.<Ts> 

Floating-point convert narrow single-precision to half-precision, or double-precision to single-precision 
(vector). Where <Td>/<Ts> is 4H/4S or 2S/2D. 

FCVTN2 Vd.<Td>, Vn.<Ts> 

Floating-point convert narrow single-precision to half-precision, or double-precision to single-precision 
(vector, second part). Where <Td>/<Ts> is 8H/4S or 4S/2D. 

FCVTXN Vd.2S, Vn.2D 

Floating-point convert narrow double-precision to single-precision with “exact” rounding (vector). The 
result is only suitable for further narrowing to half-precision without losing precision due to rounding twice. 

FCVTXN2 Vd.4S, Vn.2D 

Floating-point convert narrow double-precision to single-precision with “exact” rounding (vector, second 
part). The result is only suitable for further narrowing to half-precision without losing precision due to 
rounding twice. 
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FRINTx Vd.<T>, Vn.<T> 

Floating-point round to integral (vector). Where <T> is 2S, 4S or 2D. The letter x selects the rounding 
mode: N (nearest, ties to even); A (nearest, ties away from zero), P (towards +Inf); M (towards –Inf), Z 
(towards zero), I (using FPCR rounding mode) and X (using FPCR rounding mode, with exactness test). 

FSQRT Vd.<T>, Vn.<T> 

Floating-point square root (vector). Where <T> is 2S, 4S or 2D. 

URECPE Vd.<T>, Vn.<T> 

Unsigned integer reciprocal estimate (vector). Where <T> is 2S or 4S. 

FRECPE Vd.<T>, Vn.<T> 

Floating-point reciprocal estimate (vector). Where <T> is 2S, 4S or 2D. 
URSQRTE Vd.<T>, Vn.<T> 

Unsigned integer reciprocal square root estimate (vector). Where <T> is 2S or 4S. 

FRSQRTE Vd.<T>, Vn.<T> 

Floating-point reciprocal square root estimate (vector). Where <T> is 2S, 4S or 2D. 

RBIT Vd.<T>, Vn.<T> 

Bit reverse (vector): reverses the bits within each byte vector element.  Where <T> is 8B or 16B. 

REV16 Vd.<T>, Vn.<T> 

Element reverse in 16-bit halfwords (vector). Where <T> is 8B or 16B. 

REV32 Vd.<T>, Vn.<T> 

Element reverse in 32-bit words (vector). Where <T> is 8B, 16B, 4H, or 8H. 

REV64 Vd.<T>, Vn.<T> 

Element reverse in 64-bit doublewords (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

5.7.9 Scalar Unary Arithmetic 
ABS Dd, Dn 

Signed 64-bit integer absolute (scalar). 

SQABS <V>d, <V>n 

Signed integer saturating absolute (scalar). Where <V> is B, H, S or D. 

NEG Dd, Dn 

Signed 64-bit integer negate (scalar). 

SQNEG <V>d, <V>n 

Signed integer saturating negate (scalar). Where <V> is B, H, S or D. 
SUQADD <V>d, <V>n 

Signed integer saturating accumulate of unsigned value (scalar). Where <V> is B, H, S or D. 

USQADD <V>d, <V>n 

Unsigned integer saturating accumulate of signed value Where <V> is B, H, S or D. 

SQXTUN <Vd>d, <Vs>n 

Signed integer saturating and unsigned narrow (scalar). Where <Vd>/<Vs> is B/H, H/S or S/D. 

UQXTN <Vd>d, <Vs>n 

Unsigned integer saturating narrow (scalar). Where <Vd>/<Vs> is B/H, H/S or S/D. 

SQXTN <Vd>d, <Vs>n 

Signed integer saturating narrow (scalar). Where <Vd>/<Vs> is B/H, H/S or S/D. 
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FCVTXN Sd, Dn 

Floating-point convert narrow double-precision to single-precision with “exact” rounding (scalar).  

FRECPE <V>d, <V>n 

Floating-point reciprocal estimate (scalar). Where <V> is S or D. 

FRECPX <V>d, <V>n 

Floating-point reciprocal exponent (scalar). Where <V> is S or D. 

FRSQRTE <V>d, <V>n 

Floating-point reciprocal square root estimate (scalar). Where <V> is S or D. 

5.7.10 Vector-by-element Arithmetic 
In all cases the immediate index is a constant in the range 0 to nelem(<Ts>)–1. 

FMLA Vd.<T>, Vn.<T>, Vm.<Ts>[index] 

Floating-point fused multiply add (vector, by element). Where <T>/<Ts> is 2S/S, 4S/S or 2D/D. If <Ts> is 
S, then Vm must be in the range V0-V15. 

FMLS Vd.<T>, Vn.<T>, Vm.<Ts>[index] 

Floating-point fused multiply subtract (vector, by element). Where <T>/<Ts> is 2S/S, 4S/S or 2D/D. If 
<Ts> is S, then Vm must be in the range V0-V15. 

FMUL Vd.<T>, Vn.<T>, Vm.<Ts>[index] 

Floating-point multiply (vector, by element). Where <Td>/<Ts> is 2S/S 4S/S or 2D/D. If <Ts> is S, then 
Vm must be in the range V0-V15. 

FMULX Vd.<T>, Vn.<T>, Vm.<Ts>[index] 

Floating-point multiply extended (vector, by element): like FMUL but 0�±∞ → ±2. Where <Td>/<Ts> is 
2S/S, 4S/S or 2D/D. If <Ts> is S, then Vm must be in the range V0-V15. 

MLA Vd.<T>, Vn.<T>, Vm.<Ts>[index] 

Integer multiply accumulate (vector, by element). Where <T>/<Ts> is 4H/H, 8H/H, 2S/S or 4S/S. If <Ts> is 
H, then Vm must be in the range V0-V15. 

MLS Vd.<T>, Vn.<T>, Vm.<Ts>[index] 

Integer multiply subtract (vector, by element). Where <T>/<Ts> is 4H/H, 8H/H, 2S/S or 4S/S. If <Ts> is H, 
then Vm must be in the range V0-V15. 

MUL Vd.<T>, Vn.<T>, Vm.<Ts>[index] 

Integer multiply (vector, by element). Where <T>/<Ts> is 4H/H, 8H/H, 2S/S or 4S/S. If <Ts> is H, then Vm 
must be in the range V0-V15. 

SMLAL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer multiply accumulate long (vector, by element). Where <Ta>/<Tb>/<Ts> is 4S/4H/H or 
2D/2S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SMLAL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer multiply accumulate long (vector, by element, second part). Where <Ta>/<Tb>/<Ts> is 
4S/8H/H or 2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SMLSL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer multiply subtract long (vector, by element). Where <Ta>/<Tb>/<Ts> is 4S/4H/H or 
2D/2S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SMLSL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer multiply subtract long (vector, by element, second part). Where <Ta>/<Tb>/<Ts> is 
4S/8H/H or 2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. If <Ts> is H, then Vm must be in 
the range V0-V15. 
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SMULL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer multiply long (vector, by element). Where <Ta>/<Tb>/<Ts> is 4S/4H/H or 2D/2S/S. If <Ts> 
is H, then Vm must be in the range V0-V15. 

SMULL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer multiply long (vector, by element, second part). Where <Ta>/<Tb>/<Ts> is 4S/8H/H or 
2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

UMLAL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Unsigned integer multiply accumulate long (vector, by element). Where <Ta>/<Tb>/<Ts> is 4S/4H/H or 
2D/2S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

UMLAL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Unsigned integer multiply accumulate long (vector, by element, second part). Where <Ta>/<Tb>/<Ts> is 
4S/8H/H or 2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

UMLSL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Unsigned integer multiply subtract long (vector, by element). Where <Ta>/<Tb>/<Ts> is 4S/4H/H or 
2D/2S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

UMLSL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Unsigned integer multiply subtract long (vector, by element, second part). Where <Ta>/<Tb>/<Ts> is 
4S/8H/H or 2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

UMULL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Unsigned integer multiply long (vector, by element). Where <Ta>/<Tb>/<Ts> is 4S/4H/H or 2D/2S/S. If 
<Ts> is H, then Vm must be in the range V0-V15. 

UMULL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Unsigned integer multiply long (vector, by element, second part). Where <Ta>/<Tb>/<Ts> is 4S/8H/H or 
2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMLAL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer saturating doubling multiply accumulate long (vector, by element). Where <Ta>/<Tb>/<Ts> 
is 4S/4H/H or 2D/2S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMLAL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer saturating doubling multiply accumulate long (vector, by element, second part). Where 
<Ta>/<Tb>/<Ts> is 4S/8H/H or 2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMLSL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer saturating doubling multiply subtract long (vector, by element). Where <Ta>/<Tb>/<Ts> is 
4S/4H/H or 2D/2S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMLSL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer saturating doubling multiply subtract long (vector, by element, second part). Where 
<Ta>/<Tb>/<Ts> is 4S/8H/H or 2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMULL Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer saturating doubling multiply long (vector, by element). Where <Ta>/<Tb>/<Ts> is 4S/4H/H 
or 2D/2S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMULL2 Vd.<Ta>, Vn.<Tb>, Vm.<Ts>[index] 

Signed integer saturating doubling multiply long (vector, by element, second part). Where 
<Ta>/<Tb>/<Ts> is 4S/8H/H or 2D/4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMULH Vd.<Td>, Vn.<Td>, Vm.<Ts>[index] 

Signed integer saturating doubling multiply returning high half (vector, by element). Where <Td>/<Ts> is 
4H/H, 8H/H, 2S/S or 4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 
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SQRDMULH Vd.<Td>, Vn.<Td>, Vm.<Ts>[index] 

Signed integer saturating rounding doubling multiply returning high half (vector, by element). Where 
<Td>/<Ts> is 4H/H, 8H/H, 2S/S or 4S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

5.7.11 Scalar-by-element Arithmetic 
In all cases the immediate index is a constant in the range 0 to nelem(<Ts>)–1. 

FMLA <V>d, <V>n, Vm.<Ts>[index] 

Floating-point fused multiply add (scalar, by element). Where <V>/<Ts> is S/S or D/D. If <Ts> is S, then 
Vm must be in the range V0-V15. 

FMLS <V>d, <V>n, Vm.<Ts>[index] 

Floating-point fused multiply subtract (scalar, by element). Where <V>/<Ts> is S/S or D/D. If <Ts> is S, 
then Vm must be in the range V0-V15. 

FMUL <V>d, <V>n, Vm.<Ts>[index] 

Floating-point multiply (scalar, by element). Where <V>/<Ts> is S/S or D/D. If <Ts> is S, then Vm must be 
in the range V0-V15. 

FMULX <V>d, <V>n, Vm.<Ts>[index] 

Floating-point multiply extended (scalar, by element): like FMUL but 0�±∞ → ±2. Where <V>/<Ts> is S/S, 
or D/D. If <Ts> is S, then Vm must be in the range V0-V15. 

SQDMLAL <Va>d, <Vb>n, Vm.<Ts>[index] 

Signed integer saturating doubling multiply accumulate long (scalar, by element). Where <Va>/<Vb>/<Ts> 
is S/H/H or D/S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMLSL <Va>d, <Vb>n, Vm.<Ts>[index] 

Signed integer saturating doubling multiply subtract long (scalar, by element). Where <Va>/<Vb>/<Ts> is 
S/H/H or D/S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMULL <Va>d, <Vb>n, Vm.<Ts>[index] 

Signed integer saturating doubling multiply long (scalar, by element). Where <Va>/<Vb>/<Ts> is S/H/H or 
D/S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQDMULH <V>d, <V>n, Vm.<Ts>[index] 

Signed integer saturating doubling multiply returning high half (scalar, by element). Where <V>/<Ts> is 
H/H or S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

SQRDMULH <V>d, <V>n, Vm.<Ts>[index] 

Signed integer saturating rounding doubling multiply returning high half (scalar, by element). Where 
<V>/<Ts> is H/H or S/S. If <Ts> is H, then Vm must be in the range V0-V15. 

5.7.12 Vector Permute 
EXT Vd.<T>, Vn.<T>, Vm.<T>, #index 

Bitwise extract (vector). Where <T> is either 8B or 16B. The index is an immediate value in the range 0 to 
nelem(<T>)-1. 

The following are replacements for the ARMv7 VTRN, VUZP and VZIP instructions which had two destination 
registers. Semantically these are identical to the ARMv7 instruction except that UZP1/TRN1/ZIP1 produce what 
would have been the Dn/Qn output of the ARMv7 instruction, whilst UZP2/TRN2/ZIP2 produce what would have 
been the Dm/Qm output. 

TRN1 Vd.<T>, Vn.<T>, Vm.<T> 

Vector element transpose (first part). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

TRN2 Vd.<T>, Vn.<T>, Vm.<T> 

Vector element transpose (second part). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 
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UZP1 Vd.<T>, Vn.<T>, Vm.<T> 

Vector element unzip (first part). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

UZP2 Vd.<T>, Vn.<T>, Vm.<T> 

Vector element unzip (second part). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

ZIP1 Vd.<T>, Vn.<T>, Vm.<T> 

Vector element zip (first part). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

ZIP2 Vd.<T>, Vn.<T>, Vm.<T> 

Vector element zip (second part). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

5.7.13 Vector Immediate 
MOVI Vn.<T>, #uimm8{, LSL #shift} 

Move immediate (vector, shifted): replicates LSL(uimm8,shift) into each 32-bit element. Where <T> is 2S 
or 4S, and shift is 0, 8, 16 or 24 (default 0).  

MOVI Vn.<T>, #uimm8, MSL #shift 

Move immediate (vector, masked): replicates MSL(uimm8,shift) into each 32-bit element. Where <T> is 
2S or 4S, and shift is 8 or 16. The MSL operator is a left shift, but filling the low order bits with ones 
instead of zeros.  

MOVI Vn.<T>, #uimm8{, LSL #shift} 

Move immediate (vector, shifted): replicates LSL(uimm8,shift) into each 16-bit element. Where <T> is 4H 
or 8H, and shift is 0 or 8 (default 0).  

MOVI Vn.<T>, #uimm8 

Move immediate (vector) : replicates uimm8 into each 8-bit element. Where <T> is 8B or 16B.  

MOVI Vn.2D, #uimm64 

Move immediate (vector) : replicates a “byte mask immediate” consisting of 8 bytes, each byte having only 
the value 0x00 or 0xff, into each 64-bit element. 

MOVI Dn, #uimm64 

Move immediate (scalar) : moves a “byte mask” immediate consisting of 8 bytes, each byte having only 
the value 0x00 or 0xff, into a 64-bit vector register.  

MVNI Vn.<T>, #uimm8{, LSL #shift} 

Move inverted immediate (vector, shifted): replicates NOT(LSL(uimm8,shift)) into each 32-bit element. 
Where <T> is 2S or 4S, and shift is 0, 8, 16 or 24 (default 0).  

MVNI Vn.<T>, #uimm8, MSL #shift 

Move inverted immediate (vector, masked): replicates NOT(MSL(uimm8,shift)) into each 32-bit element. 
Where <T> is 2S or 4S, and shift is 8 or 16. The MSL operator is a left shift, but filling the low order bits 
with ones instead of zeros.  

MVNI Vn.<T>, #uimm8{, LSL #shift} 

Move inverted immediate (vector, shifted): replicates NOT(LSL(uimm8,shift)) into each 16-bit element. 
Where <T> is 4H or 8H, and shift is 0 or 8 (default 0).  

FMOV Vn.<T>, #fpimm 

Floating point move immediate (vector). Where <T> is 2S, 4S or 2D, and fpimm is a floating point constant 
replicated into each vector element. The constant may be specified either in decimal notation (e.g. “12.0” 
or “-1.2e1”), or as a string beginning “0x” followed by the hexadecimal representation of its IEEE754 
encoding. A disassembler should prefer the decimal notation, so long as the value can be displayed 
precisely. The floating point value must be expressable as ±n÷16�2r, where n and r are integers such that 
16 ≤ n ≤ 31 and -3 ≤ r ≤ 4, i.e. a normalized binary floating point encoding with sign, 4 bits of fraction and 
a 3-bit exponent. 
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BIC Vn.<T>, #uimm8{, LSL #shift} 

Bitwise bit clear immediate (vector): bitwise AND of NOT(LSL(uimm8,shift)) with each 32-bit element. 
Where <T> is 2S or 4S, and shift is 0, 8, 16 or 24 (default 0).  

BIC Vn.<T>, #uimm8{, LSL #shift} 

Bitwise bit clear immediate (vector): bitwise AND of NOT(LSL(uimm8,shift)) with each 16-bit element. 
Where <T> is 4H or 8H, and shift is 0 or 8 (default 0).  

ORR Vn.<T>, #uimm8{, LSL #shift} 

Bitwise OR immediate (vector): bitwise OR of LSL(uimm8,shift) with each 32-bit element. Where <T> is 
2S or 4S, and shift is 0, 8, 16 or 24 (default 0).  

ORR Vn.<T>, #uimm8{, LSL #shift} 

Bitwise OR immediate (vector): bitwise OR of LSL(uimm8,shift) with each 16-bit element. Where <T> is 
4H or 8H, and shift is 0 or 8 (default 0).  

5.7.14 Vector Shift (immediate) 
USHR Vd.<T>, Vn.<T>, #shift 

Unsigned integer shift right (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in the range 
1 to elsize(<T>). 

SSHR Vd.<T>, Vn.<T>, #shift 

Signed integer shift right (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in the range 1 
to elsize(<T>). 

URSHR Vd.<T>, Vn.<T>, #shift 

Unsigned integer rounding shift right (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in 
the range 1 to elsize(<T>). 

SRSHR Vd.<T>, Vn.<T>, #shift 

Signed integer rounding shift right (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in 
the range 1 to elsize(<T>). 

USRA Vd.<T>, Vn.<T>, #shift 

Unsigned integer shift right and accumulate (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and 
shift is in the range 1 to elsize(<T>). 

SSRA Vd.<T>, Vn.<T>, #shift 

Signed integer shift right and accumulate (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift 
is in the range 1 to elsize(<T>). 

URSRA Vd.<T>, Vn.<T>, #shift 

Unsigned integer rounding shift right and accumulate (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 
2D; and shift is in the range 1 to elsize(<T>). 

SRSRA Vd.<T>, Vn.<T>, #shift 

Signed integer rounding shift right and accumulate (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; 
and shift is in the range 1 to elsize(<T>). 

SRI Vd.<T>, Vn.<T>, #shift 

Integer shift right and insert (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in the 
range 1 to elsize(<T>). 

SHRN Vd.<Td>, Vn.<Ts>, #shift 

Integer shift right narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D; and shift is in the range 1 
to elsize(<Td>). 
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SHRN2 Vd.<Td>, Vn.<Ts>, #shift 

Integer shift right narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 8H/4S, or 4S/2D; and shift is 
in the range 1 to elsize(<Td>). 

UQSHRN Vd.<Td>, Vn.<Ts>, #shift 

Unsigned integer saturating shift right narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D; and 
shift is in the range 1 to elsize(<Td>). 

UQSHRN2 Vd.<Td>, Vn.<Ts>, #shift 

Unsigned integer saturating shift right narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 8H/4S, 
or 4S/2D; and shift is in the range 1 to elsize(<Td>). 

SQSHRN Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating shift right narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D; and 
shift is in the range 1 to elsize(<Td>). 

SQSHRN2 Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating shift right narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 8H/4S, or 
4S/2D; and shift is in the range 1 to elsize(<Td>). 

RSHRN Vd.<Td>, Vn.<Ts>, #shift 

Integer rounding shift right narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 2S/2D; and shift is in 
the range 1 to elsize(<Td>). 

RSHRN2 Vd.<Td>, Vn.<Ts>, #shift 

Integer rounding shift right narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 8H/4S, or 4S/2D; 
and shift is in the range 1 to elsize(<Td>). 

UQRSHRN Vd.<Td>, Vn.<Ts>, #shift 

Unsigned integer saturating rounding shift right narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 
2S/2D; and shift is in the range 1 to elsize(<Td>). 

UQRSHRN2 Vd.<Td>, Vn.<Ts>, #shift 

Unsigned integer saturating rounding shift right narrow (vector, second part). Where <Td>/<Ts> is 
16B/8H, 8H/4S, or 4S/2D; and shift is in the range 1 to elsize(<Td>). 

SQRSHRN Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating rounding shift right narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 
2S/2D; and shift is in the range 1 to elsize(<Td>). 

SQRSHRN2 Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating rounding shift right narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 
8H/4S, or 4S/2D; and shift is in the range 1 to elsize(<Td>). 

SQSHRUN Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating shift right unsigned narrow (vector). Where <Td>/<Ts> is 8B/8H, 4H/4S, or 
2S/2D; and shift is in the range 1 to elsize(<Td>). 

SQSHRUN2 Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating shift right unsigned narrow (vector, second part). Where <Td>/<Ts> is 16B/8H, 
8H/4S, or 4S/2D; and shift is in the range 1 to elsize(<Td>). 

SQRSHRUN Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating rounding shift right unsigned narrow (vector). Where <Td>/<Ts> is 8B/8H, 
4H/4S, or 2S/2D; and shift is in the range 1 to elsize(<Td>). 

SQRSHRUN2 Vd.<Td>, Vn.<Ts>, #shift 

Signed integer saturating rounding shift right unsigned narrow (vector, second part). Where <Td>/<Ts> is 
16B/8H, 8H/4S, or 4S/2D; and shift is in the range 1 to elsize(<Td>). 
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SHL Vd.<T>, Vn.<T>, #shift 

Unsigned integer shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in the range 
0 to elsize(<T>)-1. 

UQSHL Vd.<T>, Vn.<T>, #shift 

Unsigned integer saturating shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in 
the range 0 to elsize(<T>)-1. 

SQSHL Vd.<T>, Vn.<T>, #shift 

Signed integer saturating shift left (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in the 
range 0 to elsize(<T>)-1. 

SQSHLU Vd.<T>, Vn.<T>, #shift 

Signed integer saturating shift left unsigned (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and 
shift is in the range 0 to elsize(<T>)-1. 

SLI Vd.<T>, Vn.<T>, #shift 

Integer shift left and insert (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in the range 
0 to elsize(<T>)-1. 

USHLL Vd.<Td>, Vn.<Ts>, #shift 

Unsigned integer shift left long (vector). Where <Td>/<Ts> is 8H/8B, 4S/4H, or 2D/2S; and shift is in the 
range 0 to elsize(<Ts>)-1. 

USHLL2 Vd.<Td>, Vn.<Ts>, #shift 

Unsigned integer shift left long (vector, second part). Where <Td>/<Ts> is 8H/16B, 4S/8H, or 2D/4S; and 
shift is in the range 0 to elsize(<Ts>)-1. 

UXTL Vd.<Td>, Vn.<Ts> 

Unsigned integer lengthen (vector). Where <Td>/<Ts> is 8H/8B, 4S/4H, or 2D/2S. 
Alias for USHLL Vd.<Td>,Vn.<Ts>,#0. 

UXTL2 Vd.<Td>, Vn.<Ts> 

Unsigned integer lengthen (vector, second part). Where <Td>/<Ts> is 8H/16B, 4S/8H, or 2D/4S. 
Alias for USHLL2 Vd.<Td>,Vn.<Ts>,#0. 

SSHLL Vd.<Td>, Vn.<Ts>, #shift 

Signed integer shift left long (vector). Where <Td>/<Ts> is 8H/8B, 4S/4H, or 2D/2S; and shift is in the 
range 0 to elsize(<Ts>)-1. 

SSHLL2 Vd.<Td>, Vn.<Ts>, #shift 

Signed integer shift left long (vector, second part). Where <Td>/<Ts> is 8H/16B, 4S/8H, or 2D/4S; and 
shift is in the range 0 to elsize(<Ts>)-1. 

SXTL Vd.<Td>, Vn.<Ts> 

Signed integer lengthen (vector). Where <Td>/<Ts> is 8H/8B, 4S/4H, or 2D/2S. 
Alias for SSHLL Vd.<Td>,Vn.<Ts>,#0. 

SXTL2 Vd.<Td>, Vn.<Ts> 

Signed integer lengthen (vector, second part). Where <Td>/<Ts> is 8H/16B, 4S/8H, or 2D/4S. 
Alias for SSHLL2 Vd.<Td>,Vn.<Ts>,#0. 

5.7.15 Scalar Shift (immediate) 
USHR Dd, Dn, #shift 

Unsigned integer shift right (scalar). Where shift is in the range 1 to 64. 
SSHR Dd, Dn, #shift 

Signed integer shift right (scalar). Where shift is in the range 1 to 64. 
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URSHR Dd, Dn, #shift 

Unsigned integer rounding shift right (scalar). Where shift is in the range 1 to 64. 

SRSHR Dd, Dn, #shift 

Signed integer rounding shift right (scalar). Where shift is in the range 1 to 64. 

USRA Dd, Dn, #shift 

Unsigned integer shift right and accumulate (scalar). Where shift is in the range 1 to 64. 

SSRA Dd, Dn, #shift 

Signed integer shift right and accumulate (scalar). Where shift is in the range 1 to 64. 

URSRA Dd, Dn, #shift 

Unsigned integer rounding shift right and accumulate (scalar). Where shift is in the range 1 to 64. 

SRSRA Dd, Dn, #shift 

Signed integer rounding shift right and accumulate (scalar). Where shift is in the range 1 to 64. 

SRI Dd, Dn, #shift 

Integer shift right and insert (scalar). Where shift is in the range 1 to 64. 

UQSHRN <Vd>d, <Vs>n, #shift 

Unsigned integer saturating shift right narrow (scalar). Where <Vd>/<Vs> is B/H, H/S, or S/D; and shift is 
in the range 1 to elsize(<Vd>). 

SQSHRN <Vd>d, <Vs>n, #shift 

Signed integer saturating shift right narrow (scalar). Where <Vd>/<Vs> is B/H, H/S, or S/D; and shift is in 
the range 1 to elsize(<Vd>). 

UQRSHRN <Vd>d, <Vs>n, #shift 

Unsigned integer saturating rounding shift right narrow (scalar). Where <Vd>/<Vs> is B/H, H/S, or S/D; 
and shift is in the range 1 to elsize(<Vd>). 

SQRSHRN <Vd>d, <Vs>n, #shift 

Signed integer saturating rounding shift right narrow (scalar). Where <Vd>/<Vs> is B/H, H/S, or S/D; and 
shift is in the range 1 to elsize(<Vd>). 

SQSHRUN <Vd>d, <Vs>n, #shift 

Signed integer saturating shift right unsigned narrow (scalar). Where <Vd>/<Vs> is B/H, H/S, or S/D; and 
shift is in the range 1 to elsize(<Vd>). 

SQRSHRUN <Vd>d, <Vs>n, #shift 

Signed integer saturating rounding shift right unsigned narrow (scalar). Where <Vd>/<Vs> is B/H, H/S, or 
S/D; and shift is in the range 1 to elsize(<Vd>). 

SHL Dd, Dn, #shift 

Unsigned integer shift left (scalar). Where shift is in the range 0 to 63. 

UQSHL <V>d, <V>n, #shift 

Unsigned integer saturating shift left (scalar). Where <V> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in 
the range 0 to elsize(<V>)-1. 

SQSHL <V>d, <V>n, #shift 

Signed integer saturating shift left (scalar). Where <V> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and shift is in the 
range 0 to elsize(<V>)-1. 

SQSHLU <V>d, <V>n, #shift 

Signed integer saturating shift left unsigned (scalar). Where <V> is 8B, 16B, 4H, 8H, 2S, 4S or 2D; and 
shift is in the range 0 to elsize(<V>)-1. 



ARMv8 Instruction Set Overview  

 
PRD03-GENC-010197 Copyright © 2009-2011 ARM Limited. All rights reserved. Page 84 of 112 

SLI Dd, Dn, #shift 

Integer shift left and insert (scalar). Where shift is in the range 0 to 63. 

5.7.16 Vector Floating Point / Integer Convert 
These instructions raise the Invalid Operation exception (FPSR.IOC) in response to a floating point input of NaN, 
Infinity, or a numerical value that cannot be represented within the destination register. An out of range integer or 
fixed-point result will also be saturated to the destination size. A numeric result which differs from the input will 
raise the Inexact exception (FPSR.IXC). 

FCVTxS Vd.<T>, Vn.<T> 

Floating-point convert to signed integer of same size (vector). Where <T> is 2S, 4S or 2D. The letter x 
selects the rounding mode: N (nearest, ties to even); A (nearest, ties away from zero), P (towards +Inf); M 
(towards –Inf), Z (towards zero). 

FCVTZS Vd.<T>, Vn.<T>, #fbits 

Floating-point convert to signed fixed-point of same size (vector) with rounding towards zero. Where <T> 
is 2S, 4S or 2D. The number of fractional bits is represented by fbits in the range 1 to 64. 

FCVTxU Vd.<T>, Vn.<T> 

Floating-point convert to unsigned integer of same size (vector). Where <T> is 2S, 4S or 2D. The letter x 
selects the rounding mode: N (nearest, ties to even); A (nearest, ties away from zero), P (towards +Inf); M 
(towards –Inf), Z (towards zero). 

FCVTZU Vd.<T>, Vn.<T>, #fbits 

Floating-point convert to unsigned fixed-point of same size (vector) with rounding towards zero. Where 
<T> is 2S, 4S or 2D. The number of fractional bits is represented by fbits in the range 1 to 64. 

SCVTF Vd.<T>, Vn.<T> 

Signed integer convert to floating-point of same size (vector). Where <T> is 2S, 4S or 2D. 

SCVTF Vd.<T>, Vn.<T>, #fbits 

Signed fixed-point convert to floating-point of same size (vector). Where <T> is 2S, 4S or 2D. The number 
of fractional bits is represented by fbits in the range 1 to 64. 

UCVTF Vd.<T>, Vn.<T> 

Unsigned integer convert to floating-point of same size (vector). Where <T> is 2S, 4S or 2D. 

UCVTF Vd.<T>, Vn.<T>, #fbits 

Unsigned fixed-point convert to floating-point of same size (vector). Where <T> is 2S, 4S or 2D. The 
number of fractional bits is represented by fbits in the range 1 to 64. 
 

5.7.17 Scalar Floating Point / Integer Convert 
These instructions raise the Invalid Operation exception (FPSR.IOC) in response to a floating point input of NaN, 
Infinity, or a numerical value that cannot be represented within the destination register. An out of range integer or 
fixed-point result will also be saturated to the destination size. A numeric result which differs from the input will 
raise the Inexact exception (FPSR.IXC). 

FCVTxS <V>d, <V>n 

Floating-point convert to signed integer of same size (scalar). Where <V> is S or D. The letter x selects 
the rounding mode: N (nearest, ties to even); A (nearest, ties away from zero), P (towards +Inf); M 
(towards –Inf), Z (towards zero).  

FCVTZS <V>d, <V>n, #fbits 

Floating-point convert to signed fixed-point of same size (scalar) with rounding towards zero. Where <V> 
is S or D. The number of fractional bits is represented by fbits in the range 1 to 64. 
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FCVTxU <V>d, <V>n 

Floating-point convert to unsigned integer of same size (scalar). Where <V> is S or D. The letter x selects 
the rounding mode: N (nearest, ties to even); A (nearest, ties away from zero), P (towards +Inf); M 
(towards –Inf), Z (towards zero).  

FCVTZU <V>d, <V>n, #fbits 

Floating-point convert to unsigned fixed-point of same size (scalar) with rounding towards zero. Where 
<V> is S or D. The number of fractional bits is represented by fbits in the range 1 to 64. 

SCVTF <V>d, <V>n 

Signed integer convert to floating-point of same size (scalar). Where <V> is S or D. 

SCVTF <V>d, <V>n, #fbits 

Signed fixed-point convert to floating-point of same size (scalar). Where <V> is S or D. The number of 
fractional bits is represented by fbits in the range 1 to 64. 

UCVTF <V>d, <V>n 

Unsigned integer convert to floating-point of same size (scalar). Where <V> is S or D. 

UCVTF <V>d, <V>n, #fbits 

Unsigned fixed-point convert to floating-point of same size (scalar). Where <V> is S or D. The number of 
fractional bits is represented by fbits in the range 1 to 64. 

5.7.18 Vector Reduce (across lanes) 
ADDV <V>d, Vn.<T> 

Integer sum elements to scalar (vector). Where <V>/<T> is B/8B, B/16B, H/4H, H/8H, S/2S, or S/4S. 

SADDLV <V>d, Vn.<T> 

Signed integer sum elements to scalar long (vector). Where <V>/<T> is H/8B, H/16B, S/4H, S/8H, D/2S, 
or D/4S. 

UADDLV <V>d, Vn.<T> 

Unsigned integer sum elements to scalar long (vector). Where <V>/<T> is H/8B, H/16B, S/4H, S/8H, 
D/2S, or D/4S. 

SMAXV <V>d, Vn.<T> 

Signed integer maximum element to scalar (vector). Where <V>/<T> is B/8B, B/16B, H/4H, H/8H, S/2S, or 
S/4S. 

SMINV <V>d, Vn.<T> 

Signed integer minimum element to scalar (vector). Where <V>/<T> is B/8B, B/16B, H/4H, H/8H, S/2S, or 
S/4S. 

UMAXV <V>d, Vn.<T> 

Unsigned integer maximum element to scalar (vector). Where <V>/<T> is B/8B, B/16B, H/4H, H/8H, S/2S, 
or S/4S. 

UMINV <V>d, Vn.<T> 

Unsigned integer minimum element to scalar (vector). Where <V>/<T> is B/8B, B/16B, H/4H, H/8H, S/2S, 
or S/4S. 

FMAXV Sd, Vn.4S 

Floating-point maximum element to scalar (vector), equivalent to a sequence of pairwise reductions.  

FMAXNMV Sd, Vn.4S 

Floating-point maxNum element to scalar (vector), equivalent to a sequence of pairwise reductions.  

FMINV Sd, Vn.4S 

Floating-point minimum element to scalar (vector), equivalent to a sequence of pairwise reductions. 



ARMv8 Instruction Set Overview  

 
PRD03-GENC-010197 Copyright © 2009-2011 ARM Limited. All rights reserved. Page 86 of 112 

FMINNMV Sd, Vn.4S 

Floating-point minNum element to scalar (vector), equivalent to a sequence of pairwise reductions.  
 

5.7.19 Vector Pairwise Arithmetic 
ADDP Vd.<T>, Vn.<T>, Vm.<T> 

Integer add pair (vector). Where <T> is 8B, 16B, 4H, 8H, 2S, 4S or 2D. 

FADDP Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point add pair (vector). Where <T> is 2S, 4S or 2D. 

SMAXP Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer maximum pair (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

UMAXP Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer maximum pair (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FMAXP Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point maximum pair (vector). Where <T> is 2S, 4S or 2D. 

FMAXNMP Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point maxNum pair (vector). Where <T> is 2S, 4S or 2D. 

SMINP Vd.<T>, Vn.<T>, Vm.<T> 

Signed integer minimum pair (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

UMINP Vd.<T>, Vn.<T>, Vm.<T> 

Unsigned integer minimum pair (vector). Where <T> is 8B, 16B, 4H, 8H, 2S or 4S. 

FMINP Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point minimum pair (vector). Where <T> is 2S, 4S or 2D. 

FMINNMP Vd.<T>, Vn.<T>, Vm.<T> 

Floating-point minNum pair (vector). Where <T> is 2S, 4S or 2D. 
 

5.7.20 Scalar Reduce (pairwise) 
ADDP Dd, Vn.2D 

Integer pairwise sum (scalar).  

FADDP <V>d, Vn.<T> 

Floating-point pairwise sum (scalar). Where <V>/<T> is S/2S or D/2D. 
FMAXP <V>d, Vn.<T> 

Floating-point pairwise maximum (scalar). Where <V>/<T> is S/2S or D/2D. 

FMAXNMP <V>d, Vn.<T> 

Floating-point pairwise maxNum (scalar). Where <V>/<T> is S/2S or D/2D. 

FMINP <V>d, Vn.<T> 

Floating-point pairwise minimum (scalar). Where <V>/<T> is S/2S or D/2D. 

FMINNMP <V>d, Vn.<T> 

Floating-point pairwise minNum (scalar). Where <V>/<T> is S/2S or D/2D. 
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5.7.21 Vector Table Lookup 
TBL Vd.<T>, {Vn*.16B}, Vm.<T> 

Table lookup (vector). Where <T> may be 8B or 16B, and Vn* is a list of between one and four 
consecutively numbered vector registers each holding sixteen 8-bit table elements. The list braces “{ }” 
are concrete symbols, and do not indicate an optional field as elsewhere in this manual. 

TBX Vd.<T>, {Vn*.16B}, Vm.<T> 

Table lookup extension (vector). Where <T> may be 8B or 16B, and Vn* is a list of between one and four 
consecutively numbered vector registers each holding sixteen 8-bit table elements. The list braces “{ }” 
are concrete symbols, and do not indicate an optional field as elsewhere in this manual. 
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5.7.22 Vector Load-Store Structure 
All SIMD load-store structure instructions use the syntax term vaddr as shorthand for the following addressing 
modes: 

[base] 

Memory addressed by base register Xn or SP. 

[base],Xm 

Memory addressed by base register Xn or SP, post-incremented by 64-bit index register Xm. 

[base],#imm 

Memory addressed by Xn or SP, post-incremented by an immediate value which must equal the total 
number of bytes transferred to/from memory. 

Register notation of the form Vt+n in the register lists below indicates that the register number is required to be 
equal to (t + n) MOD 32. Furthemore the list braces “{ }” are concrete symbols, and do not indicate an 
optional field as elsewhere in this manual. 

Like other load-store instructions they permit arbitrary address alignment, unless strict alignment checking is 
enabled, in which case alignment to the size of the element is checked. However unlike the general-purpose load-
store instructions, the vector load-store instructions make no guarantee of atomicity, even when the address is 
naturally aligned to the size of element.  

5.7.22.1 Load-Store Multiple Structures 

In all of these instructions <T> is one of 8B, 16B, 4H, 8H, 2S, 4S, 2D and additionally the LD1 and ST1 
instructions support the 1D format. The post-increment immediate offset, if present, must be 8, 16, 24, 32, 48 or 
64, depending on the number of elements transferred. 

LD1 {Vt.<T>}, vaddr 

Load multiple 1-element structures (to one register) 
LD1 {Vt.<T>, Vt+1.<T>}, vaddr 

Load multiple 1-element structures (to two consecutive registers) 

LD1 {Vt.<T>, Vt+1.<T>, Vt+2.<T>}, vaddr 

Load multiple 1-element structures (to three consecutive registers) 

LD1 {Vt.<T>, Vt+1.<T>, Vt+2.<T>, Vt+3.<T>}, vaddr 

Load multiple 1-element structures (to four consecutive registers) 

LD2 {Vt.<T>, Vt+1.<T>}, vaddr 

Load multiple 2-element structures (to two consecutive registers) 

LD2 {Vt.<T>, Vt+2.<T>}, vaddr 

Load multiple 2-element structures (to two alternating registers) 

LD3 {Vt.<T>, Vt+1.<T>, Vt+2.<T>}, vaddr 

Load multiple 3-element structures (to three consecutive registers) 

LD3 {Vt.<T>, Vt+2.<T>, Vt+4.<T>}, vaddr 

Load multiple 3-element structures (to three alternating registers) 

LD4 {Vt.<T>, Vt+1.<T>, Vt+2.<T>, Vt+3.<T>}, vaddr 

Load multiple 4-element structures (to four consecutive registers) 

LD4 {Vt.<T>, Vt+2.<T>, Vt+4.<T>, Vt+6.<T>}, vaddr 

Load multiple 4-element structures (to four alternating registers) 
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ST1 {Vt.<T>}, vaddr 

Store multiple 1-element structures (from one register) 

ST1 {Vt.<T>, Vt+1.<T>}, vaddr 

Store multiple 1-element structures (from two consecutive registers) 

ST1 {Vt.<T>, Vt+1.<T>, Vt+2.<T>}, vaddr 

Store multiple 1-element structures (from three consecutive registers) 

ST1 {Vt.<T>, Vt+1.<T>, Vt+2.<T>, Vt+3.<T>}, vaddr 

Store multiple 1-element structures (from four consecutive registers) 

ST2 {Vt.<T>, Vt+1.<T>}, vaddr 

Store multiple 2-element structures (from two consecutive registers) 

ST2 {Vt.<T>, Vt+2.<T>}, vaddr 

Store multiple 2-element structures (from two alternating registers) 

ST3 {Vt.<T>, Vt+1.<T>, Vt+2.<T>}, vaddr 

Store multiple 3-element structures (from three consecutive registers) 

ST3 {Vt.<T>, Vt+2.<T>, Vt+4.<T>}, vaddr 

Store multiple 3-element structures (from three alternating registers) 
ST4 {Vt.<T>, Vt+1.<T>, Vt+2.<T>, Vt+3.<T>}, vaddr 

Store multiple 4-element structures (from four consecutive registers) 

ST4 {Vt.<T>, Vt+2.<T>, Vt+4.<T>, Vt+6.<T>}, vaddr 

Store multiple 4-element structures (from four alternating registers) 

5.7.22.2 Load-Store Single Structure 
In all of these instructions <T> is one of B, H, S or D, except that type B is not available in conjunction with the 
alternate register variant. The post-increment immediate offset, if present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24 or 
32, depending on the number of elements transferred. 
LD1 {Vt.<T>}[index], vaddr 

Load single 1-element structure to one lane (of one register) 

LD2 {Vt.<T>, Vt+1.<T>}[index], vaddr 

Load single 2-element structure to one lane (of two consecutive registers)  

LD2 {Vt.<T>, Vt+2.<T>}[index], vaddr 

Load single 2-element structure to one lane (of two alternating registers)  

LD3 {Vt.<T>, Vt+1.<T>, Vt+2.<T>}[index], vaddr 

Load single 3-element structure to one lane (of three consecutive registers)  

LD3 {Vt.<T>, Vt+2.<T>, Vt+4.<T>}[index], vaddr 

Load single 3-element structure to one lane (of three alternating registers)  

LD4 {Vt.<T>, Vt+1.<T>, Vt+2.<T>, Vt+3.<T>}[index], vaddr 

Load single 4-element structure to one lane (of four consecutive registers)  
LD4 {Vt.<T>, Vt+2.<T>, Vt+4.<T>, Vt+6.<T>}[index], vaddr 

Load single 4-element structure to one lane (of four alternating registers)  

ST1 {Vt.<T>}[index], vaddr 

Store single 1-element structure from one lane (of one register) 

ST2 {Vt.<T>, Vt+1.<T>}[index], vaddr 

Store single 2-element structure from one lane (of two consecutive registers)  
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ST2 {Vt.<T>, Vt+2.<T>}[index], vaddr 

Store single 2-element structure from one lane (of two alternating registers)  

ST3 {Vt.<T>, Vt+1.<T>, Vt+2.<T>}[index], vaddr 

Store single 3-element structure from one lane (of three consecutive registers)  

ST3 {Vt.<T>, Vt+2.<T>, Vt+4.<T>}[index], vaddr 

Store single 3-element structure from one lane (of three alternating registers)  

ST4 {Vt.<T>, Vt+1.<T>, Vt+2.<T>, Vt+3.<T>}[index], vaddr 

Store single 4-element structure from one lane (of four consecutive registers)  

ST4 {Vt.<T>, Vt+2.<T>, Vt+4.<T>, Vt+6.<T>}[index], vaddr 

Store single 4-element structure from one lane (of four alternating registers)  

5.7.22.3 Load Single Structure and Replicate 
In all of these instructions <T> is one of 8B, 16B, 4H, 8H, 2S, 4S, 1D or 2D. The post-increment immediate offset, 
if present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24 or 32, depending on the number of elements transferred. 

LD1R {Vt.<T>}, vaddr 

Load single 1-element structure to all lanes (of one register) 

LD1R {Vt.<T>, Vt+1.<T>}, vaddr 

Load single 1-element structure to all lanes (of two consecutive registers) 

LD2R {Vt.<T>, Vt+1.<T>}, vaddr 

Load single 2-element structure to all lanes (of two consecutive registers) 

LD2R {Vt.<T>, Vt+2.<T>}, vaddr 

Load single 2-element structure to all lanes (of two alternating registers) 

LD3R {Vt.<T>, Vt+1.<T>, Vt+2.<T>}, vaddr 

Load single 3-element structure to all lanes (of three consecutive registers) 

LD3R {Vt.<T>, Vt+2.<T>, Vt+4.<T>}, vaddr 

Load single 3-element structure to all lanes (of three alternating registers) 

LD4R {Vt.<T>, Vt+1.<T>, Vt+2.<T>, Vt+3.<T>}, vaddr 

Load single 4-element structure to all lanes (of four consecutive registers) 

LD4R {Vt.<T>, Vt+2.<T>, Vt+4.<T>, Vt+6.<T>}, vaddr 

Load single 4-element structure to all lanes (of four alternating registers) 
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5.7.23 AArch32 Equivalent Advanced SIMD Mnemonics 
New or changed functionality is highlighted. 

 

AArch64 
Integer AArch32 

Agnosti
c 

Unsigne
d Signed 

Floating 
point Poly 

Description 

VABA   UABA SABA     

Integer vector 
absolute difference 
and accumulate 

VABAL   
UABAL 

UABAL2 
SABAL 

SABAL2     

Integer vector 
absolute difference 
and accumulate 
long 

VABD   UABD SABD FABD   

Vector absolute 
difference 

VABDL   
UABDL 

UABDL2 
SABDL 
SABDL2     

Integer vector 
absolute difference 
long 

VABS     ABS FABS   

Vector absolute 
value 

VACGE       FACGE   

Floating-point 
vector absolute 
compare greater 
than or equal 

VACGT       FACGT   

Floating-point 
vector absolute 
compare greater 
than 

VACLE       FACLE   

Floating-point 
vector absolute 
compare less than 
or equal 

VACLT       FACLT   

Floating-point 
vector absolute 
compare less than 

VADD ADD     FADD   Vector add 

VADDHN 
ADDHN 
ADDHN2         

Integer vector add 
and narrow high 
half 

VADDL   
UADDL 

UADDL2 
SADDL 
SADDL2     

Integer vector add 
long 

VADDW   
UADDW 

UADDW2 
SADDW 
SADDW2     

Integer vector add 
wide 
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VAND AND         Bitwise vector AND 

VBIC BIC         

Bitwise vector bit 
clear 

VBIF BIF         

Bitwise vector insert 
if false 

VBIT BIT         

Bitwise vector insert 
if true 

VBSL BSL         

Bitwise vector 
select 

VCEQ CMEQ     FCMEQ   

Vector compare 
equal 

VCGE   CMHS CMGE FCMGE   

Vector compare 
greater than or 
equal 

VCGT   CMHI CMGT FCMGT   

Vector compare 
greater than 

VCLE   CMLS CMLE FCMLE   

Vector compare 
less than or equal 

VCLS CLS         

Integer vector 
count leading sign 
bits 

VCLT   CMLO CMLT FCMLT   

Vector compare 
less than 

VCLZ CLZ         

Integer vector 
count leading zero 
bits 

VCMP       FCMP   

Floating-point 
compare 

VCMPE       FCMPE   

Floating-point 
compare 
(exceptions on 
quiet NaNs) 

VCNT CNT         

Vector count non-
zero bits 

VCVT.s32.f32       FCVTZS   

Vector floating-
point convert to 
signed integer 
(round to zero) 

new       FCVTxS   

Vector floating-
point convert to 
signed integer 
(round to x) 

VCVT.u32.f32       FCVTZU   

Vector floating-
point convert to 
unsigned integer 
(round to zero) 
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new       FCVTxU  

Vector floating-
point convert to 
unsigned integer 
(round to x) 

VCVT.f32.i32   UCVTF SCVTF     

Vector integer 
convert to floating-
point 

VCVT.f*.f*     
FCVTN 
FCVTL   

Vector convert 
floating-point 
precision 

new    FCVTXN  

Vector convert 
double to single-
precision (inexact)  

new    FRINTx  

Vector floating-
point round to 
integral f-p value 
(towards x) 

new       FDIV  

Vector floating-
point divide 

VDUP DUP         

Duplicate single 
vector element to 
all elements 

new INS         

Insert single 
element in another 
element 

VEOR EOR         

Bitwise vector 
exclusive OR 

VEXT EXT         

Bitwise vector 
extract 

VHADD   UHADD SHADD     

Integer vector 
halving add 

VHSUB   UHSUB SHSUB     

Integer vector 
halving subtract 

VLD1..4 LD1..4         

Vector structure 
/element load  

VLD1..4 LD1..4R         

Vector replicated 
element load  

VLDM/VLDR LDP/LDR         

Vector load 
pair/register 

VMAX   UMAX SMAX FMAX   Vector maximum 

new       FMAXNM   

Floating-point 
vector maxNum 

VMIN   UMIN SMIN FMIN   Vector minimum 

new       FMINNM   

Floating-point 
vector minNum 
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VMLA MLA     n/a   

Vector chained 
multiply-
accumulate 

VFMA      FMLA   

Vector fused 
multiply-
accumulate 

VMLAL   
UMLAL 

UMLAL2 
SMLAL 
SMLAL2     

Integer vector 
multiply-
accumulate long 

VMLS MLS     n/a   

Vector chained 
multiply-subtract 

VFMS      FMLS   

Vector fused 
multiply-subtract 

VMLSL   
UMLSL 
UMLSL2 

SMLSL 
SMLSL2     

Integer vector 
multiply-subtract 
long 

VMOV MOV UMOV SMOV FMOV   Vector move 

VMOVL   
UXTL 
UXTL2 SXTL SXTL2     

Integer vector 
lengthen (pseudo 
for USHLL/SSHL # 0) 

VMOVN XTN         

Integer vector 
narrow 

VMUL MUL     FMUL PMUL Vector multiply 

new      FMULX  

Floating-point 
vector multiply 
extended 
(0xINF→2) 

VMULL   
UMULL 
UMULL2 

SMULL 
SMULL2   

PMUL
L 

Vector multiply 
long 

VMVN MVN         Bitwise vector NOT 
VNEG     NEG FNEG   Vector negate 

VORN ORN         

Bitwise vector OR 
NOT 

VORR ORR         Bitwise vector OR  

VPADAL   UADALP SADALP     

Integer vector add 
and accumulate 
long pair 

VPADD ADDP     FADDP   Vector add pair 

VPADDL   UADDLP SADDLP     

Integer vector add 
long pair 

VPMAX   UMAXP SMAXP FMAXP   Vector max pair 

new       FMAXNMP   

Floating-point 
vector maxNum 
pair 

VPMIN   UMINP SMINP FMINP   Vector min pair 
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new       FMINNMP   

Floating-point 
vector minNum pair 

VQABS     SQABS     

Signed integer 
saturating vector 
absolute 

VQADD   SQADD UQADD     

Integer saturating 
vector add 

new   SUQADD      

Signed integer 
saturating vector 
accumulate of 
unsigned value 

new    USQADD     

Unsigned integer 
saturating vector 
accumulate of signed 
value 

VQDMLAL     
SQDMLAL 

SQDMLAL2     

Signed integer 
saturating vector 
doubling multiply 
accumulate long 

VQDMLSL     
SQDMLSL 

SQDMLSL2     

Signed integer 
saturating vector 
doubling multiply 
subtract from 
accumulator long 

VQDMULH     SQDMULH     

Signed integer 
saturating vector 
doubling multiply 
high half 

VQDMULL     
SQDMULL 

SQDMULL2     

Signed integer 
saturating vector 
doubling multiply 
long 

VQMOVN   
UQXTN 

UQXTN2 
SQXTN 

SQXTN2     

Integer saturating 
vector narrow 

VQMOVUN     
SQXTUN 

SQXTUN2     

Signed integer 
saturating vector 
and unsigned 
narrow 

VQNEG     SQNEG     

Signed integer 
saturating vector 
negate 

VQRDMULH     SQRDMULH     

Signed integer 
vector saturating 
rounding doubling 
multiply high half 
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VQRSHL   UQRSHL SQRSHL     

Integer saturating 
vector rounding 
shift left 

VQRSHRN   UQRSHRN SQRSHRN     

Integer saturating 
vector shift right 
rounded narrow 

VQRSHRUN     SQRSHRUN     

Signed integer 
saturating vector 
shift right rounded 
unsigned narrow 

VQSHL   UQSHL SQSHL     

Integer saturating 
vector shift left 

VQSHLU     SQSHLU     

Signed integer 
saturating vector 
shift left unsigned 

VQSHRN   UQSHRN SQSHRN     

Integer saturating 
vector shift right 
narrow 

VQSHRUN     SQSHRUN     

Signed integer 
saturating vector 
shift right unsigned 
narrow 

VQSUB   UQSUB SQSUB     

Integer saturating 
vector subtract 

VRADDHN RADDHN         

Integer vector 
rounding add and 
narrow high half 

VRECPE   URECPE   FRECPE   

Vector reciprocal 
estimate 

VRECPS       FRECPS   

Floating-point 
vector reciprocal 
step (FRECPS uses 
fused mac; VRECPS 
remains non-fused) 

new      FRECPX  

Floating-point 
reciprocal 
exponent 

new RBIT     

Vector reverse bits 
in bytes 

VREV16  
VREV32  
VREV64 

REV16 
REV32 
REV64         

Vector reverse 
elements 

VRHADD   URHADD SRHADD     

Integer rounding 
vector halving add 

VRSHL   URSHL SRSHL     

Integer rounding 
vector shift left 
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VRSHR   URSHR SRSHR     

Integer rounding 
vector shift right 

VRSHRN 
RSHRN 

RSHRN2         

Integer rounding 
vector shift right 
narrow 

VRSQRTE   URSQRTE   FRSQRTE   

Vector reciprocal 
square root 
estimate 

VRSQRTS       FRSQRTS   

Floating-point 
reciprocal square 
root step (FRSQRTS 
uses fused mac; 
VRSQRTS remains 
non-fused) 

VRSRA   URSRA SRSRA     

Integer rounding 
vector shift right 
and accumulate 

VRSUBHN 
RSUBHN 

RSUBHN2         

Integer rounding 
vector subtract 
and narrow high 
half 

VSHL SHL       

Integer vector shift 
left 

VSHLL   USHLL SSHLL     

Integer vector shift 
left long 

VSHR   USHR SSHR     

Integer vector shift 
right 

VSHRN 
SHRN 

SHRN2         

Integer vector shift 
right narrow 

VSLI SLI         

Integer vector shift 
left and insert 

new       FSQRT  

Floating-point 
vector square root 

VSRA   USRA SSRA     

Integer vector shift 
right and 
accumulate 

VSRI SRI         

Integer vector shift 
right and insert 

VST1..4 ST1..4         

Vector structure 
store 

VSTM/VSTR STP/STR         

Vector store 
pair/register 

VSUB SUB     FSUB   Vector subtract 

VSUBHN 
SUBHN 

SUBHN2         

Integer vector 
subtract and 
narrow high half 
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VSUBL   
USUBL 
USUBL2 

SSUBL 
SSUBL2     

Integer vector 
subtract long 

VSUBW   
USUBW 

USUBW2 
SSUBW 
SSUBW2     

Integer vector 
subtract wide 

VSWP n/a         Vector swap 

VTBL TBL         

Vector table 
lookup 

VTBX TBX         

Vector table 
extension 

VTRN 
TRN1 
TRN2         

Vector element 
transpose 

VTST CMTST         Vector test bits 

VUZP 
UZP1 
UZP2         

Vector element 
unzip 

VZIP ZIP ZIP2         Vector element zip 

new ADDV         

Integer sum 
elements in vector 

new   SADDLV UADDLV     

Integer sum 
elements in vector 
long 

new   SMAXV UMAXV FMAXV   

Maximum element 
in vector 

new       
FMAXNM

V   

Floating-point 
maxNum element 
in vector 

new   SMINV UMINV FMINV   

Minimum element 
in vector 

new       FMINNMV   

Floating-point 
minNum element in 
vector 
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5.7.24 Crypto Extension 
The optional Crypto extension shares the FP/SIMD register file. For more information see [AES], [GCM] and 
[SHA]. 

 
PMULL Vd.1Q, Vn.1D, Vm.1D 

Polynomial multiply long (vector): AES-GCM acceleration 64x64 to 128-bit.  

PMULL2 Vd.1Q, Vn.2D, Vm.2D 

Polynomial multiply long (vector, second part). Upper lanes AES-GCM acceleration 64x64 to 128-bit. 

AESE Vd.16B, Vn.16B 

AES single round encryption. 

AESD Vd.16B, Vn.16B 

AES single round decryption. 

AESMC Vd.16B, Vn.16B 

AES mix columns. 

AESIMC Vd.16B, Vn.16B 

AES inverse mix columns. 

SHA256H Qd, Qn, Vm.4S 

SHA256 hash update accelerator. 

SHA256H2 Qd, Qn, Vm.4S 

SHA256 hash update accelerator, upper part. 

SHA256SU0 Vd.4S, Vn.4S 

SHA256 schedule update accelerator, first part 
SHA256SU1 Vd.4S, Vn.4S, Vm.4S 

SHA256 schedule update accelerator, second part 

SHA1C Qd, Sn, Vm.4S 

SHA1 hash update accelerator (choose). 

SHA1P Qd, Sn, Vm.4S 

SHA1 hash update accelerator (parity). 

SHA1M Qd, Sn, Vm.4S 

SHA1 hash update accelerator (majority). 

SHA1H Sd, Sn 

SHA1 hash update accelerator (rotate left by 30). 

SHA1SU0 Vd.4S, Vn.4S, Vm.4S 

SHA1 schedule update accelerator, first part 

SHA1SU1 Vd.4S, Vn.4S 

SHA1 schedule update accelerator, second part 
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5.8 System Instructions 
The following instruction groups are supported: 

• Exception generating instructions 

• System register access 

• System management 

• Architectural hints  

• Barriers and CLREX 

 

In several of the system instructions described in this section, the following terms are used to describe operands: 

op0   
A 2-bit opcode field with an immediate value 2 or 3.  

op1, op2  
A 3-bit opcode field with an immediate value in the range 0 to 7.  

Cn  

A 4-bit opcode field named for historical reasons C0 – C15. 
Cm  

A 4-bit opcode field named for historical reasons C0 – C15.  

5.8.1 Exception Generation and Return 

5.8.1.1 Non-debug exceptions 
SVC #uimm16 

Generate exception targeted at exception level 1 (system), with 16-bit payload in uimm16. 

HVC #uimm16 

Generate exception targeted at exception level 2 (hypervisor) , with 16-bit payload in uimm16. 

SMC #uimm16 

Generate exception targeted at exception level 3 (secure monitor), with 16-bit payload in uimm16. 

ERET 

Exception return: reconstructs the processor state from the current exception level’s SPSR_ELn register, 
and branches to the address in ELR_ELn.  

5.8.1.2 Debug exceptions 
BRK #uimm16 

Monitor mode software breakpoint: exception routed to a debug monitor executing in EL1 or EL2, with 16-
bit payload in uimm16. 

HLT #uimm16 

Halting mode software breakpoint: enters halting mode debug state if enabled, else treated as 
UNALLOCATED. With 16-bit payload in uimm16. 

DCPS1 {#uimm16} 

Debug Change Processor State to EL1 (valid in halting mode debug state only), the optional 16-bit 
immediate uimm16 defaults to zero and is ignored by the hardware.  
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DCPS2 {#uimm16} 

Debug Change Processor State to EL2 (valid in halting mode debug state only), the optional 16-bit 
immediate uimm16 defaults to zero and is ignored by the hardware.  

DCPS3 {#uimm16} 

Debug Change Processor State to EL3 (valid in halting mode debug state only), the optional 16-bit 
immediate uimm16 defaults to zero and is ignored by the hardware.  

DRPS 

Debug Restore Processor State: restores the processor to the exception level and mode recorded in the 
current exception level’s SPSR_ELn register (valid in halting mode debug state only). 

5.8.2 System Register Access 
MRS Xt, <system_register> 

Move <system_register> to Xt, where <system_register> is a system register name, or for 
implementation-defined registers a name of the form “S<op0>_<op1>_<Cn>_<Cm>_<op2>”, e.g. 
“S3_4_c13_c9_7”. 

MSR <system_register>, Xt  
Move Xt to <system_register>, where <system_register> is a system register name, or for 
implementation-defined registers a name of the form “S<op0>_<op1>_<Cn>_<Cm>_<op2>”, e.g. 
“S3_4_c13_c9_7”.. 

MSR DAIFClr, #uimm4  

Uses uimm4 as a bitmask to select the clearing of one or more of the DAIF exception mask bits: bit 3 
selects the D mask, bit 2 the A mask, bit 1 the I mask and bit 0 the F mask. 

MSR DAIFSet, #uimm4  

Uses uimm4 as a bitmask to select the setting of one or more of the DAIF exception mask bits: bit 3 
selects the D mask, bit 2 the A mask, bit 1 the I mask and bit 0 the F mask. 

MSR SPSel, #uimm4  

Uses uimm4 as a control value to select the stack pointer: if bit 0 is set it selects the current exception 
level’s stack pointer, if bit 0 is clear it selects shared EL0 stack pointer. Bits 1 to 3 of uimm4 are reserved 
and should be zero. 

5.8.3 System Management 
Where the operands of a SYS instruction match an entry in the <xx_op> tables below, then the associated alias is 
the preferred disassembly. Otherwise the SYS or SYSL mnemonics shall be used, permitting generation and 
disassembly of arbitrary implementation-defined system instructions. 
SYS #op1, Cn, Cm, #op2{, Xt}  

Perform system maintenance instruction with optional source register Xt (defaulting to XZR), with the 
operation selected by op1, Cn, Cm, and op2.  

SYSL Xt, #op1, Cn, Cm, #op2 

Perform system maintenance instruction returning a result in destination register Xt, with the operation 
selected by op1, Cn, Cm, and op2. 

IC <ic_op>{, Xt}  
Instruction cache maintenance instruction, where Xt is the address argument as required (defaulting to 
XZR) and <ic_op> is defined as: 

<ic_op> ::= <function><type><point>{<domain>} 
<function>  ::= “I” (invalidate) 
<type>  ::= “ALL” (entire cache) | “VA” (by virtual address) 
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<point>  ::= “U” (to point of unification) 
<domain>  ::= “IS” (inner sharable)  

 
This is the preferred alias for the SYS instruction with the following operand values: 

<ic_op> op1 Cn Cm op2 {Xt} 
IALLUIS 0 C7 C1 0  

IALLU 0 C7 C5 0  

IVAU 3 C7 C5 1 � 

 

DC <dc_op>, Xt  
Data cache maintenance instruction, where Xt is the address argument and <dc_op> is defined as:  

<dc_op> ::= <function><type>{<point>} 
<function>  ::= “I” (invalidate) | “C” (clean) | “CI” (clean & invalidate)  

    | “Z” (zero) 
<type>  ::= “VA” (by virtual address) | “SW” (by set/way) 
<point>  ::= “C” (to point of coherency) | “U” (to point of unification) 
 

This is the preferred alias for the SYS instruction with the following operand values: 
<dc_op> op1 Cn Cm op2 
ZVA 3 C7 C4 1
IVAC 0 C7 C6 1
ISW 0 C7 C6 2
CVAC 3 C7 C10 1
CSW 0 C7 C10 2
CVAU 3 C7 C11 1
CIVAC 3 C7 C14 1
CISW 0 C7 C14 2

AT <at_op>, Xt  
Address Translation instruction, where Xt is the address argument and <at_op> is defined as:  

<at_op> ::= <type><level><readwrite> 
<type>  ::= “S1” (stage 1 translation) | “S12” (stage 1 and 2 translation)  
<level>  ::= “E0” (exception level 0) |“E1” (exception level 1)  

      |“E2” (exception level 2) |“E3” (exception level 3)  
<readwrite> ::= “R” (read) | “W” (write) 

This is the preferred alias for the SYS instruction with the following operand values: 

<at_op> op1 Cn Cm op2 
S1E1R 0 C7 C8 0
S1E2R 4 C7 C8 0
S1E3R 6 C7 C8 0
S1E1W 0 C7 C8 1
S1E2W 4 C7 C8 1
S1E3W 6 C7 C8 1
S1E0R 0 C7 C8 2
S1E0W 0 C7 C8 3
S12E1R 4 C7 C8 4
S12E1W 4 C7 C8 5
S12E0R 4 C7 C8 6
S12E0W 4 C7 C8 7
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TLBI <tlbi_op>{, Xt} 

TLB invalidation instruction, where Xt is the address argument if required (defaulting to XZR).  
<tlbi_op> ::= <type><level>{<domain>} 
<type>  ::= “ALL” (all translations at level)  

     | “VMALL” (all stage 1 translations, current VMID)  
     | “VMALLS12” (all stage 1 & 2 translations, current VMID) 

        | “ASID” (translations matching ASID)  
 | “VA” (translations matching VA and ASID)  
 | “VAL” (last-level translations matching VA and ASID)  
 | “VAA” (translations matching VA, all ASIDs) 

     | “VAAL” (last-level translations matching VA, all ASIDs) 
     | “IPAS2” (stage 2 translations matching IPA, current VMID) 
     | “IPAS2L” (last-level stage 2 translations matching IPA, current VMID) 

<level>  ::= “E0” (exception level 0) |“E1” (exception level 1)  
     |“E2” (exception level 2) |“E3” (exception level 3)  

<domain>  ::= “IS” (inner sharable)  
 

This is the preferred alias for the SYS instruction with the following operand values: 
<tlbi_op> op1 Cn Cm op2 {Xt} 
IPAS2E1IS 4 C8 C0 1 � 

IPAS2LE1IS 4 C8 C0 5 � 

VMALLE1IS 0 C8 C3 0  

ALLE2IS 4 C8 C3 0  

ALLE3IS 6 C8 C3 0  

VAE1IS 0 C8 C3 1 � 

VAE2IS 4 C8 C3 1 � 

VAE3IS 6 C8 C3 1 � 

ASIDE1IS 0 C8 C3 2 � 

VAAE1IS 0 C8 C3 3 � 

ALLE1IS 4 C8 C3 4  

VALE1IS 0 C8 C3 5 � 

VAALE1IS 0 C8 C3 7 � 

VMALLE1  0 C8 C7 0  

ALLE2  4 C8 C7 0  

VALE2IS 4 C8 C3 5 � 

VALE3IS 6 C8 C3 5 � 

VMALLS12E1IS 4 C8 C3 6  

ALLE3 6 C8 C7 0  

IPAS2E1 4 C8 C4 1 � 

IPAS2LE1 4 C8 C4 5 � 

VAE1 0 C8 C7 1 � 

VAE2 4 C8 C7 1 � 

VAE3 6 C8 C7 1 � 

ASIDE1 0 C8 C7 2 � 

VAAE1 0 C8 C7 3 � 

ALLE1 4 C8 C7 4  

VALE1 0 C8 C7 5 � 

VALE2 4 C8 C7 5 � 

VALE3 6 C8 C7 5 � 

VMALLS12E1 4 C8 C7 6  

VAALE1 0 C8 C7 7 � 
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5.8.4 Architectural Hints 
NOP  

No Operation. May be used to enforce instruction alignment, but has no execution timing constraints and 
so may be safely deleted from the instruction stream. 

YIELD  
Yield hint.  

WFE  
Wait For Event.  

WFI  
Wait For Interrupt.  

SEV  
Send Event: send event globally. Note that in ARMv8 a DSB and SEV instruction are in most cases not 
required following a synchronization operation such as unlocking a spin-lock or releasing a semaphore. A 
memory transaction which clears a processor’s global exclusive monitor also implicitly generates an event 
for that processor, as held in the Event register and used by the WFE instruction. 

SEVL  
Send Event Local: send event locally, without being required to affect other processors, for example to 
prime a wait-loop which starts with a WFE instruction. 

HINT #uimm7 
Unallocated hint, where uimm7 is in the range 6-127. The unallocated hint instructions behave as a NOP 
but might be allocated to other hint functionality in future revisions of the architecture. 

5.8.5 Barriers and CLREX 
CLREX {#uimm4} 

Clear Exclusive: clears the local record of the executing processor that an address has had a request for 
an exclusive access.  The 4-bit immediate uimm4 defaults to 0xf if omitted, with all other values 
unallocated.  

DSB <option>|#uimm4 
Data Synchronization Barrier, where <option> is any barrier option, as below, or a 4-bit immediate 
uimm4 for unallocated values of option: 

DMB <option>|#uimm4 
Data Memory Barrier, where <option> is any barrier option, as below, or a 4-bit immediate uimm4 for 
unallocated values of option. 

ISB {SY|#uimm4} 

Instruction Synchronization Barrier, where SY encoded as value 0xf is the default, or a 4-bit immediate 
uimm4 for other unallocated values of option. 

 
The following table defines the allocated values of data barrier option. Unallocated values behave as SY but might 
be allocated to other barrier functionality in future revisions of the architecture. 
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<option> Value Shareability 
Domain 

Ordered Accesses  
(before-after) 

OSHLD 0x1 Load-Load, Load-Store 
OSHST 0x2 Store-Store 
OSH 0x3 

Outer shareable  
Any-Any 

NSHLD 0x5 Load-Load, Load-Store 
NSHST 0x6 Store-Store 
NSH 0x7 

Non-shareable 
Any-Any 

ISHLD 0x9 Load-Load, Load-Store 
ISHST 0xa Store-Store 
ISH 0xb 

Inner shareable 
Any-Any 

LD 0xd Load-Load, Load-Store 
ST 0xe Store-Store 
SY 0xf 

Full system 
Any-Any 
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6 A32 & T32 INSTRUCTION SETS 
Some of the new functionality found in the A64 instruction set is independent of the general purpose register 
width, and is therefore equally applicable to AArch32 state, namely the enhanced barrier types and load-
acquire/store-release, the new IEEE 754-2008 operations, and the cryptography extensions. These new functions 
are added as part of ARMv8 to the A32 and T32 instruction sets as described in this section.  
 
Note that the A32 and T32 assembler syntax remains unchanged from ARMv7 UAL. The syntax term <c> where 
used below represents a standard ARM condition code – mnemonics which do not include <c> may not be 
conditionally executed. 

6.1 Partial Deprecation of IT 
In conjunction with the reduction of conditionality in the A64 instruction set, and to facilitate higher performance 
implementations of the architecture in the future, ARMv8 deprecates some uses of the T32 IT instruction. All uses 
of IT that apply to other than a single subsequent 16-bit instruction from a restricted set are deprecated, as are 
explicit references to R15 (i.e. PC) within that single 16-bit instruction.  This permits the non-deprecated forms of 
IT and subsequent instruction to be treated by the processor as a single 32-bit conditional instruction. The 
restricted set of 16-bit instructions which are not deprecated when used in conjunction with IT are as follows: 

 
Permitted 16-Bit Instructions Class But deprecated… 
MOV, MVN Move when Rm or Rd is PC 
LDR, LDRB, LDRH, LDRSB, LDRSH Load  for PC-relative “load literal” 

forms 
STR, STRB, STRH Store    
ADD, ADC, RSB, SBC, SUB Add/Subtract ADD/SUB SP,SP,#imm  

or when Rm, Rdn or Rdm is PC 
CMP, CMN Compare when Rm or Rn is PC 
MUL Multiply   
ASR, LSL, LSR, ROR Shift   
AND, BIC, EOR, ORR, TST Logical    
BX, BLX Branch to register when Rm is PC 

 

The IT instruction remains fully available in order to execute ARMv7 T32 code, but to verify conformance with the 
deprecation a new control bit permits privileged software to disable the deprecated forms of the IT instruction, 
causing them to generate an Undefined Instruction exception. 

6.2 Load-Acquire / Store-Release 

These new instructions provide similar functionality to the A64 instructions described in section 5.2.8 above. 
Natural alignment is required in all cases, and to 8 bytes in the case of LDRAEXD and STRLEXD: an unaligned 
address will cause an alignment fault. 

6.2.1 Non-Exclusive 
LDRA<c> Rt, [Rn{,#0}] 

Load-Acquire Word: loads a word from memory addressed by Rn into Rt. 
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LDRAB<c> Rt, [Rn{,#0}] 

Load-Acquire Byte: loads a byte from memory addressed by Rn and zero-extends it into Rt. 

LDRAH<c> Rt, [Rn{,#0}] 

Load-Acquire Halfword: loads a halfword from memory addressed by Rn and zero-extends it into Rt. 

STRL<c> Rt, [Rn{,#0}] 

Store-Release Word: stores a word from Rt to memory addressed by Rn. 

STRLB<c> Rt, [Rn{,#0}] 

Store-Release Byte: stores a byte from Rt to memory addressed by Rn. 

STRLH<c> Rt, [Rn{,#0}] 

Store-Release Halfword: stores a halfword from Rt to memory addressed by Rn. 

6.2.2 Exclusive 
LDRAEX<c> Rt, [Rn{,#0}] 

Load-Acquire Exclusive Word: loads a word from memory addressed by Rn into Rt. Records the physical 
address as an exclusive access.  

LDRAEXB<c> Rt, [Rn{,#0}] 

Load-Acquire Exclusive Byte: loads a byte from memory addressed by Rn and zero-extends it into Rt. 
Records the physical address as an exclusive access.  

LDRAEXH<c> Rt, [Rn{,#0}] 

Load-Acquire Exclusive Halfword: loads a halfword from memory addressed by Rn and zero-extends it 
into Rt. Records the physical address as an exclusive access.  

LDRAEXD<c> Rt, Rt2, [Rn{,#0}] 

Load-Acquire Exclusive Double: loads two words from memory addressed by base to Rt and Rt2. 
Records the physical address as an exclusive access. The register Rt must be an even-numbered 
register less than 14 and Rt2 must be R(t+1). 

STRLEX<c> Rd, Rt, [Rn{,#0}] 

Store-Release Exclusive: stores a word from Rt to memory addressed by Rn, and sets Rd to the returned 
exclusive access status.  

STRLEXB<c> Rd, Rt, [Rn{,#0}] 

Store-Release Exclusive Byte: stores a byte from Rt to memory addressed by Rn, and sets Rd to the 
returned exclusive access status.  

STRLEXH<c> Rd, Rt, [Rn{,#0}] 

Store-Release Exclusive Halfword: stores a halfword from Rt to memory addressed by Rn, and sets Rd to 
the returned exclusive access status.  

STRLEXD<c> Rd, Rt, Rt2, [Rn{,#0}] 

Store-Release Exclusive Double: stores two words from Rt and Rt2 to memory addressed by Rn, and 
sets Rd to the returned exclusive access status. The register Rt must be an even-numbered register less 
than 14 and Rt2 must be R(t+1). 
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6.3 VFP Scalar Floating-point 

6.3.1 Floating-point Conditional Select 
The new VSEL instruction is equivalent of the A64 FCSEL instruction in section 5.6.11, For A32 it provides an 
alternative to a pair of conditional VMOV instructions, while for T32 as it does not use an IT prefix it compensates 
for the partial deprecation of IT described in §6.1 above. The condition code <fc> may be one of GE, GT, EQ and 
VS only; the effect of the inverted conditions LT, LE, NE and VC may be achieved by reversing the order of the 
source operands. 

VSEL<fc>.F32 Sd, Sn, Sm 

Single-precision conditional select: Sd = if <fc> then Sn else Sm. 

VSEL<fc>.F64 Dd, Dn, Dm 

      Double-precision conditional select: Dd = if <fc> then Dn else Dm. 

6.3.2 Floating-point minNum/maxNum 
The new VMAXNNM and VMINNM instructions implement the minNum(x,y) and maxNum(x,y) operations defined 
by the IEEE 754-2008 standard, and are equivalent to A64’s FMAXNM and FMINNM instructions. They return the 
numerical operand when one operand is numerical and the other is a quiet NaN, but otherwise the result is 
identical to VFP VMAX and VMIN. These instructions may not be conditional. 

VMAXNM.F32 Sd, Sn, Sm 

Single-precision maxNum (scalar). 

VMAXNM.F64 Dd, Dn, Dm 

Double-precision maxNum (scalar). 

VMINNM.F32 Sd, Sn, Sm 

Single-precision minNum (scalar). 

VMINNM.F64 Dd, Dn, Dm 

Double-precision minNum (scalar). 

6.3.3 Floating-point Convert  (floating-point to integer) 
These new instructions extend the existing ARMv7 VFP VCVT instructions by providing four additional explicit 
rounding modes, where ARMv7 VCVT rounds towards zero, giving an equivalent set of options to the A64 FCVTS 
and FCVTU instructions described in section 5.6.4.2. The syntax term <r> selects the rounding direction as 
follows: N (nearest, ties to even), A (nearest, ties away from zero), P (towards +Inf) or M (towards –Inf). These 
instructions may not be conditional. 
VCVT<r>.S32.F64 Sd, Dm 

Convert double-precision floating-point to signed 32-bit integer with explicit rounding direction (scalar).  

VCVT<r>.S32.F32 Sd, Sm 

Convert single-precision floating-point to signed 32-bit integer with explicit rounding direction (scalar).   

VCVT<r>.U32.F64 Sd, Dm 

Convert double-precision floating-point to unsigned 32-bit integer with explicit rounding direction (scalar).  

VCVT<r>.U32.F32 Sd, Sm 

Convert single-precision floating-point to unsigned 32-bit integer with explicit rounding direction (scalar). 



ARMv8 Instruction Set Overview  

 
PRD03-GENC-010197 Copyright © 2009-2011 ARM Limited. All rights reserved. Page 109 of 112 

6.3.4 Floating-point Convert (half-precision to/from double-precision)  
The VFP VCVTT and VCVTB instructions are extended to permit direct conversion between half-precision and 
double-precision floating-point as a single operation, preventing double rounding errors. The syntax term <y> 
below is either T (top half) or B (bottom half).  

VCVT<y><c>.F64.F16  Dd, Sm 

Convert from half-precision value in top or bottom of Sm to double-precision in Dd (scalar). 

VCVT<y><c>.F16.F64  Sd, Dm 

Convert from double-precision value in Dm to in half-precision value in top or bottom of Sd (scalar). 

6.3.5 Floating-point Round to Integral 
The new “round to integral” instructions round a floating-point value to the nearest integral floating-point value of 
the same size, equivalent to the A64 FRINT* instructions in section 5.6.5. The only floating-point exceptions that 
can be raised by these instructions are FPSCR.IOC (Invalid Operation) for a Signaling NaN input, or FPSCR.IDC 
(Input Denormal) for a denormal input when flush-to-zero mode is enabled. For VRINTX only the FPSCR.IXC 
(Inexact) exception may be raised if the result is numeric and does not have the same numerical value as the 
source. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same 
sign, and a NaN is propagated as for normal arithmetic. 
 
A subset of the rounding instructions may be conditional when the syntax term <x> selects the rounding direction 
as follows: Z (towards zero), R (FPSCR rounding mode), or X (FPSCR rounding mode and signal inexactness). 

VRINT<x><c>.F64.F64 Dd, Dm 

Round a double-precision value to nearest integral double-precision value (scalar), with half-way cases 
rounding according to <x>. 

VRINT<x><c>.F32.F32 Sd, Sm 

Round a single-precision value to nearest integral single-precision value (scalar), with half-way cases 
rounding according to <x>. 

 
The remaing rounding instructions are not conditional when syntax term <r> selects the rounding direction as 
follows: N (nearest, ties to even), A (nearest, ties away from zero), P (towards +Inf) or M (towards –Inf). 

VRINT<r>.F64.F64 Dd, Dm 

Round a double-precision value to nearest integral double-precision value (scalar), with half-way cases 
rounding according to <r>. 

VRINT<r>.F32.F32 Sd, Sm 

Round a single-precision value to nearest integral single-precision value (scalar), with half-way cases 
rounding according to <r>. 
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6.4 Advanced SIMD Floating-Point 
The AArch32 Advanced SIMD extension continues to support only single-precision (32-bit) floating-point data 
types, with fixed operating modes of Round to Nearest, Default NaN and Flush-to-Zero. However it is extended 
with the addition of the following new instructions. 

6.4.1 Floating-point minNum/maxNum 
Vector forms of the new VMAXNM and VMINNM instructions described in section 6.3.2 above. 

VMAXNM.F32 Dd, Dn, Dm 

VMAXNM.F32 Qd, Qn, Qm 

Single-precision maxNum (vector).  

VMINNM.F32 Dd, Dn, Dm 

VMINNM.F32 Qd, Qn, Qm 

Single-precision minNum (vector).  

6.4.2 Floating-point Convert 
Vector forms of the floating-point to integer convert instructions described in section 6.3.3 above. The syntax term 
<r> selects the rounding direction: N (nearest, ties to even), A (nearest, ties away from zero), P (towards +Inf) or 
M (towards –Inf). 

VCVT<r>.S32.F32 Dd, Dm 

VCVT<r>.S32.F32 Qd, Qm 

Convert single-precision floating-point to signed 32-bit integer with explicit rounding direction (vector). 

VCVT<r>.U32.F32 Dd, Dm 

VCVT<r>.U32.F32 Qd, Qm 

Convert single-precision floating-point to unsigned 32-bit integer with explicit rounding direction (vector). 

6.4.3 Floating-point Round to Integral 
Vector forms of the floating-point rounding instructions described in section 6.3.5 above. The syntax term <rx> 
selects the rounding direction as follows: N (nearest, ties to even), A (nearest, ties away from zero), P (towards 
+Inf) or M (towards –Inf), Z (towards zero), or X (nearest, ties to even, signal inexactness) 

VRINT<rx>.F32.F32 Qd, Qm 

VRINT<rx>.F32.F32 Dd, Dm 

Round a single-precision value to nearest integral single-precision value (vector), with half-way cases 
rounding according to <rx>. 
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6.5 Crypto Extension 
Equivalent to the A64 cryptographic instructions listed in section 5.7.24. 
AESD.8  Qd, Qm 

AES single round decryption. 

AESE.8  Qd, Qm 

AES single round encryption. 

AESIMC.8 Qd, Qm 

AES inverse mix columns. 

AESMC.8  Qd, Qm 

AES mix columns. 

SHA1C.32 Qd, Qn, Qm 

SHA1 hash update accelerator (choose). 

SHA1M.32 Qd, Qn, Qm 

SHA1 hash update accelerator (majority). 

SHA1P.32 Qd, Qn, Qm 

SHA1 hash update accelerator (parity). 

SHA1H.32 Qd, Qm 

SHA1 hash update accelerator (rotate left by 30). 

SHA1SU0.32 Qd, Qn, Qm 

SHA1 schedule update accelerator, first part 

SHA1SU1.32 Qd, Qm 

SHA1 schedule update accelerator, second part 
SHA256H.32 Qd, Qn, Qm 

SHA256 hash update accelerator. 

SHA256H2.32 Qd, Qn, Qm 

SHA256 hash update accelerator upper part. 

SHA256SU0.32 Qd, Qm 

SHA256 schedule update accelerator, first part 

SHA256SU1.32 Qd, Qn, Qm 

SHA256 schedule update accelerator, second part 

VMULL.P64 Qd, Dn, Dm 

Polynomial multiply long, AES-GCM acceleration 64x64 to 128-bit.  
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6.6 System Instructions 

6.6.1 Halting Debug  
New halting mode debug support instructions. 

DCPS1 

Debug switch to EL1 (valid in halting mode debug state only).  

DCPS2 

Debug switch to EL2 (valid in halting mode debug state only).  

DCPS3 

Debug switch to EL3 (valid in halting mode debug state only).  

HLT #uimm6 

Halting mode software breakpoint: enters halting mode debug state if enabled, else treated as 
UNALLOCATED. With 6-bit payload in uimm6. 

6.6.2 Barriers and Hints 
New barrier options and hint instructions to match those in A64, as described in section 5.8.5. 

DMB <option> 

Data Memory Barrier is extended to support the new A64 Load-Load/Store options.  

DSB <option> 

Data Synchronization Barrier is extended to support the new A64 Load-Load/Store options. 

SEVL 

Send Event Locally without being required to affect other processors, for example to prime a wait-loop 
which starts with a WFE instruction. 


