
COS 217: Introduction to Programming Systems

The Assignment 6 ‘B’ Attack

@fridooh

https://unsplash.com/@fridooh

A Program

$./a.out
What is your name?
John Smith
Thank you, John Smith.
The answer to life, the universe, and everything is 42

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

@grakozy

2

https://unsplash.com/@grakozy

A Reason Why People With Long Names Can’t Have Nice Things

$./a.out
What is your name?
Christopher Moretti
Thank you, Christopher Mor
tti.
The answer to life, the universe, and everything is 6911092

?
??? (!)
(depending on the area code, this might be an
interesting phone number, but probably not one
you should call for the answer to
life, the universe, and everything)

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

3

Explanation: Stack Frame Layout

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

When there are too many characters,
program carelessly writes beyond
space “belonging” to name.

• Overwrites other variables
• This is a buffer overrun, or stack smash
• The program has a security bug!

4

Example Trace
#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Christophers (not \0 terminated) in name[0]-name[11]

Each letter from getchar overwrites c (it is also
overwritten once by name[i++] = c, when i is 15 and c is
‘e’) until c becomes ‘\n’ and the loop ends.
First t overwrites 42 with 0x74 (‘t’) – little endian!
Second t makes magic 29812 (2 high-order bytes still 0)
Final i makes magic 6911092 (1 high-order byte still 0)

Mor in 3 padding bytes before c

5

It Gets Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

Return addr

6

It Gets Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

• Value can be an invalid address,
leading to a segfault,…

0x0042

7

It Gets Much Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

• Value can be an invalid address,
leading to a segfault, or it can cleverly
cause unintended control flow!

here
.text

8

It Gets Much, Much Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

• Value can be an invalid address,
leading to a segfault, or it can cleverly
cause unintended control flow, or even
cause arbitrary malicious code to execute!

or here...
.bss

here
.text

9

Defenses Against This Attack
Best: program in languages that make
array-out-of-bounds impossible (Java, C#,
ML, python,)

If you must program in C: use discipline and
software analysis tools to check bounds of
array subscripts

Otherwise, stopgap security patches:
• Operating system randomizes initial stack pointer
• “No-execute” memory permission
• “Canaries” at end of stack frames

None of these
would have
prevented the
“Heartbleed”
attack

10

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Bob
D is your grade.
Thank you, Bob.
$./grader
What is your name?
Andrew Appel
B is your grade.
Thank you, Andrew Appel.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
…
int main(void) {

mprotect(…);
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}
11

Assignment 6 : Attack the “Grader” Program

/* Read a string into name */
void readString() {
char buf[BUFSIZE];
int i = 0;
int c;

/* Read string into buf[] */
for (;;) {
c = fgetc(stdin);
if (c == EOF || c == '\n')
break;

buf[i] = c;
i++;

}
buf[i] = '\0';

/* Copy buf[] to name[] */
for (i = 0; i < BUFSIZE; i++)
name[i] = buf[i];

}

/* Prompt for name and read it */
void getName() {
printf("What is your name?\n");
readString();

}

Unchecked
write to
buffer!

12

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?

Bob\0(#@&$%*#&(*^!@%*!!(&#$%(@*

B is your grade.

Thank you, Bob.

int main(void) {
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}

13

Memory Map of STACK Section

SP
readString’s
stackframe

???
buf
buf
…
buf
???

getName’s
stackframe ???

…
???

main’s
stackframe ???

…
???

Keep writing past end of buf

Get to getName’s stackframe

getName’s saved x30!
(somewhere on stack)

Overwrite it!

What’s
there?

With
what?

14

Assignment 6: Attack the “Grader” Program

$./grader

What is your name?

Bob\0(#@&$%*#&(*^!@%*!!(&#$%(@*

B is your grade.

Thank you, Bob.

int main(void) {
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}

int main(void) {
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}

15

Memory Map of TEXT Section

readString
rS prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

getName
gN prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

main
m prolog
m instrs…
m instrs…
…
m epilog
m return

…
checkappel:

if (strcmp(name, "Andrew Appel") != 0)
goto afterb

grade = ‘B’
afterb:

print …
…

…
checkappel:

if (strcmp(name, "Andrew Appel") != 0)
goto afterb

grade = ‘B’ ß HERE!
afterb:

print …
…

16

Construct Your Exploit String (createdataB.c)
1. Your name.

•After all, the grader program’s last
line of output must be:
“Thank you, [your name].”

2. A null byte.
•Otherwise the grader program’s last

line of output will be corrupted.

3. Filler to overrun until x30.
•Presumably more null bytes are

easiest, but easter eggs are fine.

4. The address of grade = ‘B’.

1. Open the file dataB and write
your name into that file (e.g.
with fprintf)

2. See “Writing Binary Data”
precept handout. ‘\0’ is just a
single byte of binary data.

4. The address is a
little-endian
two’s complement
unsigned long.

17

Summary
• This lecture:
• Buffer overrun attacks in general
• Assignment 6 “B Attack” principles of operation

• Next precept:
• Assignment 6 “B Attack” recap
• Memory map using gdb
• Writing binary data

• Final 2 lectures:
• Assignment 6 “A Attack” overview
• Machine language details needed for “A Attack”
• Finally finishing the 4-stage build process: the Linker!

• Final precept:
• MiniAssembler and ”A Attack” details18

