-

COS 217: Introduction to Programming Systems

~N

Debugging

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

% PRINCETON UNIVERSITY

-

Goals of this Lecture

Help you learn about:
e Strategies and tools for debugging your code

Why?
* Debugging large programs can be difficult

* A mature programmer knows about tools that facilitate debugging
* Debuggers
e Version control systems
e Profilers (a future lecture)

* A mature programmer knows a wide variety of debugging strategies

-

-

How to get the most out of this lecture ...

(@brett_jordan

Fully “participate” in the Bug Hunts!

https://unsplash.com/@brett_jordan

(@markuggpicke

1. UNDERSTAND ERROR MESSAGES

https://unsplash.com/@markusspiske

(

Understand Error Messages

#include <stdio, h>

/* Print "hello, world" to stdout and
return 0.

int main(void)

{ printf("hello, world\n")
return 0;

I3

Debugging at build-time is easier than

debugging at run-time, if and only if you...

Understand the error messages!

What are the
errors? (No
fair looking at
the next slide!)

-
Understand Error Messages

#include <stdio, h>

/* Print "hello, world" to stdout and
return 0.

Which tool

int main(void) (preprocessor,
{ printf("hello, world\n") compiler, or
) return 0; linker) reports the

error(s)?

$ gcc2l1l7 hello.c -0 hello

hello.c:1:19: fatal error: stdio,h: No such file or directory
#include <stdio, h>

N\

compilation terminated.

-
Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0.

int main(void)

{ printf("hello, world\n")
return 0;

}

What are the
errors? (No
fair looking at
the next slide!)

-
Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0.

Which tool

int main(void) (preprocessor,
{ printf("hello, world\n") compiler, or
) return 0; linker) reports the

error(s)?

$ gcc2l1l7 hello.c -0 hello

hello.c:2:1: error: unterminated comment
/* Print "hello, world" to stdout and

-
Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. x/

int main(void)

{ printf("hello, world\n")
return 0;

}

What are the
errors? (No
fair looking at
the next slide!)

-

Understand Error Messages

10|

-

Understand Error Messages

11

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. x/

int main(void)

{ prntf("hello, world\n");
return 0;

¥

What are the
errors? (No
fair looking at
the next slide!)

-

Understand Error Messages

12

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. x/

int main(void)

{ prntf("hello, world\n");
return 0;

}

Which tool
(preprocessor,
compiler, or
linker) reports the
error(s)?

$ gcc2l1l7 hello.c -0 hello

hello.c: In function 'main':

hello.c:6:4: warning: implicit declaration of function

'prntf' [-Wimplicit-function-declaration]
prntf("hello, world\n");

/tmp/cc2Q1XRO.0: In function "main':
hello.c: (.text+0x10): undefined reference to "prntf'
collect2: error: 1d returned 1 exit status

-
Understand Error Messages

#include <stdio.h>

/* Print "hello, world" to stdout and
return 0. x/

int main(void)

{ printf("hello, world\n");
return 0;

}

What are the
errors?

13

(

Understand Error Messages

14

{

#include <stdio.h>
#include <stdlib.h>
int main(void)

enum StateType

{ STATE_REGULAR,
STATE_INWORD

I3

printf("just hanging around\n");
return EXIT_SUCCESS;

What are the
errors? (No
fair looking at
the next slide!)

-

Understand Error Messages

15

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
enum StateType
{ STATE_REGULAR,
STATE_INWORD
b

printf("just hanging around\n");
return EXIT_SUCCESS;

What does this
error message
even mean?

$ gcc2l7 states.c -0 states

states.c:9:11: error: expected declaration specifiers or
before string constant

{ ’
[|

[

Understand Error Messages

16|

Caveats concerning error messages
e Line # in error message may be approximate
e Error message may seem nonsensical
e Compiler may not report the real error

Tips for eliminating error messages

 Clarity facilitates debugging
 Make sure code is indented properly

e Look for missing “punctuation”
e ; at ends of structure and enumerated type definitions
e ; at ends of function declarations
e ; at ends of do-while loops

* Work incrementally
e Start at first error message
e Fix, rebuild, repeat

17

2. THINK
BEFORE
WRITING

|
@alvarordesign

https://unsplash.com/@alvarordesign

-

Think Before Writing

18|

Inappropriate changes could make matters worse, so...

Think before changing your code

e Explain the code to:

* Yourself
e Someone else
e A rubber duck / Teddy bear / stuffed tiger?

* Do experiments
 But make sure they're disciplined

19

3. LOOK FOR
COMMON BUGS

alucieaurelien

https://unsplash.com/@lucieaurelien

-

Look for Common Bugs

Some of our “favorites”:

int 1i;
switch (i) scanf("%d", 1i);
{ case 0:
- char c;
break; -
case 1: c = getchar();

case 2:

What are
the while (c = getchar() !'= EOF)
errors? ¥ /

if (i = 5) if (1 & §)

if (5 < i < 10)

20,

-

Look for Common Bugs

Some of our “favorites”:

-

Look for Common Bugs

Some of our “favorites”:

4. DIVIDE &
CONQUER

https://unsplash.com/@namzo

[

Divide and Conquer

24

Divide and conquer to debug a program:
* Incrementally find smallest input file that illustrates the bug

e Approach 1: Remove input
e Start with file

* [ncrementally remove lines
until bug disappears

 Examine most-recently-removed lines

e Approach 2: Add input
e Start with small subset of file

* Incrementally add lines
until bug appears
 Examine most-recently-added lines

OK OK

OK
]

!

-

Divide and Conquer

Divide and conquer: To debug a module...

* Incrementally find smallest client subset that illustrates the bug

e Approach 1: Remove code
e Start with test client
e Incrementally inactivate lines of code until bug disappears
 Examine most-recently-removed lines

e Approach 2: Add code
e Start with minimal client
* Incrementally add lines of test client until bug appears

, Examine most-recently-added lines
5

5. FOCUS
ON NEW
CHANGES

26

https://unsplash.com/@loic

-

Focus on Recent Changes

27

Focus on recent changes

e Corollary: Debug now, not later

Attractive but Difficult:

(1) Compose entire program
(2) Test entire program
(3) Debug entire program

Monotonous but Easier:

(1) Compose a little
(2) Test a little

(3) Debug a little
(4) Compose a little
(D) Test a little

(6) Debug a little

-

Focus on Recent Changes

28|

Focus on recent change (cont.)

e Corollary: Maintain old versions

Low overhead but
Difficult recovery:

(1) Change code

(2) Note new bug

(3) Try to remember what
changed since last
version

Higher overhead but
Easier recovery:

(1) Backup current version
(2) Change code
(3) Note new bug
(4) Compare code with
last version to
determine what changed

-

Maintaining Old Versions

30|

Use a Revision Control System

(Since you have to set it up anyway to get the files,
you might as well use it!)

Allows programmer to:

e Check-in source code files from working copy to repository

e Commit revisions from working copy to repository
e saves all old versions

» Update source code files from repository to working copy
e Can retrieve old versions

e Appropriate for one-developer projects
e Extremely useful, almost necessary for multideveloper projects!

6. ADD (MORE)
INTERNAL TESTS

@alexloup

https://unsplash.com/@alexloup

-

Add More Internal Tests

* Internal tests help find bugs (see “Testing” lecture)

* Internal test also can help eliminate bugs

e Validating parameters & checking invariants
can eliminate some functions from the bug hunt

32

33

(. DISPLAY
TO OUTPUT

(@austinchan

https://unsplash.com/@austinchan

[

Display Output

34

Write values of important variables at critical spots

e Possibly poor:

printf("%d", keyvariable); [«

 Maybe better:

printf("%d\n", keyvariable); |«

stdout is buffered;
program may crash
before output appears

e Better still:

Printing '\n"' flushes
the stdout buffer, but
not if stdout is
redirected to a file

printf("sd", keyvariable);
fflush(stdout);

Call fflush() to flush
stdout buffer explicitly

[

Display Output

35|

 Maybe even better:

fprintf(stderr, "%d", keyvariable);

* Maybe even better still:

Write debugging
output to stderr;
debugging output can
be separated from
normal output via
redirection

Bonus: stderr is
unbuffered

FILE xfp = fopen("logfile", "w");

¥printf(fp, "%d", keyvariable);
fflush(fp);

Write to a log file

3. USE A
DEBUGGER

https://unsplash.com/@t_ahmetler

-

The GDB Debugger

37

GNU Debugger

e Part of the GNU development environment
* Integrated with Emacs editor

* Allows user to:
* Run program
e Set breakpoints
e Step through code one line at a time
e Examine values of variables during run
* Etc.

For details see precept materials

-

COS 217: Introduction to Programming Systems

~N

Debugging Dynamic Memory Bugs

% PRINCETON UNIVERSITY

39

9. COMMON CULPRITS

(This overlaps with 3. “Look for Common Bugs” but is more constrained.

https://unsplash.com/@hjmckean

-

Look for Common DMM Bugs

40|

Some of our “favorites”:

-

Look for Common DMM Bugs

41

Some of our “favorites”:

42

10. DIAGNOSE
SEGFAULTS
WITH GDB

‘\. VI‘,_‘ E i
bill_oxford

https://unsplash.com/@bill_oxford

-

Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
e Then issue the gdb where command

e Qutput will lead you to the line that caused the fault
e But that line may not be where the error resides!

43

11. MANUALLY
INSPECT MALLOCS

https://unsplash.com/@markusspiske

-
Manually Inspect Malloc Calls

Manually inspect each call of malloc()
* Make sure it allocates enough memory

Do the same for calloc() and realloc()

45|

-
Manually Inspect Malloc Calls

Some of our “favorites”:

char *s1 = "hello, world";

char *s2;

s2 = (charx)malloc(strlen(sl));
strcpy(s2, sl);

char *s1 = "hello, world"; What are
char xs2; the errors?
s2 = (charx)malloc(sizeof(sl));
strcpy(s2, sl);

long double *p;
p = (long doublex)malloc(sizeof(long doublex));

long double *p;
p = (long doublex)malloc(sizeof(p));

12. HARD-CODE MALLOC AMOUNTS

https://unsplash.com/@seansinspired

(

Hard-Code Malloc Calls

48

Temporarily change each call of malloc () to request a large

number of bytes
e Say, 10000 bytes
e If the error disappears, then at least one of your calls is requesting too few bytes

Then incrementally restore each call of malloc() e

to its previous form
* When the error reappears, you might have found the culprit

| Do the same for calloc() and realloc()

13. COMMENT OUT CALLS TO FREE

[

Comment-Out Free Calls

Temporarily comment-out every call of free()

e If the error disappears, then program is
* Freeing memory too soon, or
* Freeing memory that already has been freed, or
* Freeing memory that should not be freed,
e Etc.

Then incrementally “comment-in” each call of free()
* When the error reappears, you might have found the culprit

50,

Meminfo Valgrind

14. USE A MEMORY PROFILER TOOL [

