
COS 217: Introduction to Programming Systems

Debugging

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 5

Goals of this Lecture
Help you learn about:

•Strategies and tools for debugging your code

Why?
•Debugging large programs can be difficult
•A mature programmer knows a wide variety of debugging strategies
•A mature programmer knows about tools that facilitate debugging

• Debuggers
• Version control systems
• Profilers (a future lecture)

How to get the most out of this lecture …

Fully “participate” in the Bug Hunts!

3

@brett_jordan

https://unsplash.com/@brett_jordan

1. UNDERSTAND ERROR MESSAGES

4

@markusspiske

https://unsplash.com/@markusspiske

Understand Error Messages

Debugging at build-time is easier than
debugging at run-time, if and only if you…
Understand the error messages!

5

What are the
errors? (No
fair looking at
the next slide!)

#include <stdio,h>
/* Print "hello, world" to stdout and

return 0.
int main(void)
{ printf("hello, world\n")

return 0;
}

Understand Error Messages

Which tool
(preprocessor,
compiler, or
linker) reports the
error(s)?

$ gcc217 hello.c -o hello
hello.c:1:19: fatal error: stdio,h: No such file or directory
#include <stdio,h>

^
compilation terminated.

6

#include <stdio,h>
/* Print "hello, world" to stdout and

return 0.
int main(void)
{ printf("hello, world\n")

return 0;
}

Understand Error Messages

#include <stdio.h>
/* Print "hello, world" to stdout and

return 0.
int main(void)
{ printf("hello, world\n")

return 0;
}

What are the
errors? (No
fair looking at
the next slide!)

7

Understand Error Messages

Which tool
(preprocessor,
compiler, or
linker) reports the
error(s)?

$ gcc217 hello.c -o hello
hello.c:2:1: error: unterminated comment
/* Print "hello, world" to stdout and
^

8

#include <stdio.h>
/* Print "hello, world" to stdout and

return 0.
int main(void)
{ printf("hello, world\n")

return 0;
}

Understand Error Messages

#include <stdio.h>
/* Print "hello, world" to stdout and

return 0. */
int main(void)
{ printf("hello, world\n")

return 0;
}

What are the
errors? (No
fair looking at
the next slide!)

9

Understand Error Messages

Which tool
(preprocessor,
compiler, or
linker) reports the
error(s)?

$ gcc217 hello.c -o hello
hello.c: In function 'main':
hello.c:6:4: error: expected ';' before 'return'

return 0;
^

hello.c:7:1: warning: control reaches end of non-void
function [-Wreturn-type]
}
^

10

#include <stdio.h>
/* Print "hello, world" to stdout and

return 0. */
int main(void)
{ printf("hello, world\n")

return 0;
}

$ gcc217 hello.c -o hello
hello.c: In function 'main':
hello.c:6:4: error: expected ';' before 'return'

return 0;
^

hello.c:7:1: warning: control reaches end of non-void
function [-Wreturn-type]
}
^

Understand Error Messages

#include <stdio.h>
/* Print "hello, world" to stdout and

return 0. */
int main(void)
{ prntf("hello, world\n");

return 0;
}

What are the
errors? (No
fair looking at
the next slide!)

11

Understand Error Messages

Which tool
(preprocessor,
compiler, or
linker) reports the
error(s)?

$ gcc217 hello.c -o hello
hello.c: In function 'main':
hello.c:6:4: warning: implicit declaration of function
'prntf' [-Wimplicit-function-declaration]

prntf("hello, world\n");
^

/tmp/cc2Q1XR0.o: In function `main':
hello.c:(.text+0x10): undefined reference to `prntf'
collect2: error: ld returned 1 exit status

12

#include <stdio.h>
/* Print "hello, world" to stdout and

return 0. */
int main(void)
{ prntf("hello, world\n");

return 0;
}

Understand Error Messages

#include <stdio.h>
/* Print "hello, world" to stdout and

return 0. */
int main(void)
{ prıntf("hello, world\n");

return 0;
}

What are the
errors?

13

Understand Error Messages

#include <stdio.h>
#include <stdlib.h>
int main(void)
{

enum StateType
{ STATE_REGULAR,

STATE_INWORD
}
printf("just hanging around\n");
return EXIT_SUCCESS;

}

What are the
errors? (No
fair looking at
the next slide!)

14

Understand Error Messages

$ gcc217 states.c -o states
states.c:9:11: error: expected declaration specifiers or ‘...’
before string constant

What does this
error message
even mean?

#include <stdio.h>
#include <stdlib.h>
int main(void)
{

enum StateType
{ STATE_REGULAR,

STATE_INWORD
}
printf("just hanging around\n");
return EXIT_SUCCESS;

}

15

#include <stdio.h>
#include <stdlib.h>
int main(void)
{

enum StateType
{ STATE_REGULAR,

STATE_INWORD
};
printf("just hanging around\n");
return EXIT_SUCCESS;

}

Understand Error Messages
Caveats concerning error messages

• Line # in error message may be approximate
• Error message may seem nonsensical
• Compiler may not report the real error

Tips for eliminating error messages
• Clarity facilitates debugging

• Make sure code is indented properly
• Look for missing “punctuation”

• ; at ends of structure and enumerated type definitions
• ; at ends of function declarations
• ; at ends of do-while loops

• Work incrementally
• Start at first error message
• Fix, rebuild, repeat

16

2. THINK
BEFORE

WRITING17

@alvarordesign

https://unsplash.com/@alvarordesign

Think Before Writing

Inappropriate changes could make matters worse, so…

Think before changing your code
•Explain the code to:

• Yourself
• Someone else
• A rubber duck / Teddy bear / stuffed tiger?

•Do experiments
• But make sure they're disciplined

18

3. LOOK FOR
COMMON BUGS

19

@lucieaurelien

https://unsplash.com/@lucieaurelien

Look for Common Bugs

Some of our “favorites”:
int i;
…
scanf("%d", i);

char c;
…
c = getchar();

switch (i)
{ case 0:

…
break;

case 1:
…

case 2:
…

}

if (i = 5)
…

if (5 < i < 10)
…

if (i & j)
…

while (c = getchar() != EOF)
…

What are
the
errors?

20

Look for Common Bugs

Some of our “favorites”:

for (i = 0; i < 10; i++)
{ for (j = 0; j < 10; i++)

{ ...
}

} What are
the errors?for (i = 0; i < 10; i++)

{ for (j = 10; j >= 0; j++)
{ ...
}

}

21

Look for Common Bugs

Some of our “favorites”:

{ int i;
…
i = 5;
if (something)
{ int i;

…
i = 6;
…

}
…
printf("%d\n", i);
…

}

What value is
written if this
statement is
present? Absent?

22

4. DIVIDE &
CONQUER

23 @namzo

https://unsplash.com/@namzo

Divide and Conquer

Divide and conquer to debug a program:
•Incrementally find smallest input file that illustrates the bug

•Approach 1: Remove input
• Start with file
• Incrementally remove lines

until bug disappears
• Examine most-recently-removed lines

•Approach 2: Add input
• Start with small subset of file
• Incrementally add lines

until bug appears
• Examine most-recently-added lines24

! ! OK

OK OK !

Divide and Conquer

Divide and conquer: To debug a module…

•Incrementally find smallest client subset that illustrates the bug

•Approach 1: Remove code
• Start with test client
• Incrementally inactivate lines of code until bug disappears
• Examine most-recently-removed lines

•Approach 2: Add code
• Start with minimal client
• Incrementally add lines of test client until bug appears
• Examine most-recently-added lines

25

5. FOCUS
ON NEW
CHANGES26

@loic

https://unsplash.com/@loic

Focus on Recent Changes

Focus on recent changes

•Corollary: Debug now, not later

Monotonous but Easier:

(1) Compose a little
(2) Test a little
(3) Debug a little
(4) Compose a little
(5) Test a little
(6) Debug a little
…

Attractive but Difficult:

(1) Compose entire program
(2) Test entire program
(3) Debug entire program

27

Focus on Recent Changes

Focus on recent change (cont.)

•Corollary: Maintain old versions

Low overhead but
Difficult recovery:

(1) Change code
(2) Note new bug
(3) Try to remember what

changed since last
version

Higher overhead but
Easier recovery:

(1) Backup current version
(2) Change code
(3) Note new bug
(4) Compare code with

last version to
determine what changed

28

Maintaining Old Versions

Use a Revision Control System

(Since you have to set it up anyway to get the files,
you might as well use it!)

Allows programmer to:
• Check-in source code files from working copy to repository
• Commit revisions from working copy to repository

• saves all old versions
• Update source code files from repository to working copy

• Can retrieve old versions

•Appropriate for one-developer projects
•Extremely useful, almost necessary for multideveloper projects!

30

6. ADD (MORE)
INTERNAL TESTS

31

@alexloup

https://unsplash.com/@alexloup

Add More Internal Tests

•Internal tests help find bugs (see “Testing” lecture)

•Internal test also can help eliminate bugs
• Validating parameters & checking invariants

can eliminate some functions from the bug hunt

32

7. DISPLAY
TO OUTPUT

33

@austinchan

https://unsplash.com/@austinchan

Display Output

Write values of important variables at critical spots

•Possibly poor:

•Maybe better:

•Better still:

printf("%d", keyvariable);
stdout is buffered;
program may crash
before output appears

printf("%d", keyvariable);
fflush(stdout);

printf("%d\n", keyvariable);

Call fflush() to flush
stdout buffer explicitly

Printing '\n' flushes
the stdout buffer, but
not if stdout is
redirected to a file

34

Display Output

•Maybe even better:

•Maybe even better still:

fprintf(stderr, "%d", keyvariable);

FILE *fp = fopen("logfile", "w");
…
fprintf(fp, "%d", keyvariable);
fflush(fp);

Write debugging
output to stderr;
debugging output can
be separated from
normal output via
redirection

Write to a log file

Bonus: stderr is
unbuffered

35

8. USE A
DEBUGGER

36 @t_ahmetler

https://unsplash.com/@t_ahmetler

The GDB Debugger

GNU Debugger
•Part of the GNU development environment
•Integrated with Emacs editor
•Allows user to:

• Run program
• Set breakpoints
• Step through code one line at a time
• Examine values of variables during run
• Etc.

For details see precept materials
37

COS 217: Introduction to Programming Systems

Debugging Dynamic Memory Bugs

38

9. COMMON CULPRITS

(This overlaps with 3. “Look for Common Bugs” but is more constrained. 39

@hjmckean

https://unsplash.com/@hjmckean

Look for Common DMM Bugs

Some of our “favorites”:
int *p;
… /* code not involving p */
*p = somevalue;

char *p;
…
fgets(p, 1024, stdin);

int *p;
…
p = (int*)malloc(sizeof(int));
*p = 5;
…
free(p);
…
*p = 6;

What are
the errors?

40

Look for Common DMM Bugs

Some of our “favorites”:
int *p;
…
p = (int*)malloc(sizeof(int));
…
*p = 5;
p = (int*)malloc(sizeof(int));

int *p;
…
p = (int*)malloc(sizeof(int));
…
*p = 5;
…
free(p);
…
free(p);

What are
the errors?

41

10. DIAGNOSE
SEGFAULTS
WITH GDB42

@bill_oxford

https://unsplash.com/@bill_oxford

Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
•Then issue the gdb where command
•Output will lead you to the line that caused the fault

• But that line may not be where the error resides!

43

11. MANUALLY
INSPECT MALLOCS

44

@markusspiske

https://unsplash.com/@markusspiske

Manually Inspect Malloc Calls

Manually inspect each call of malloc()
•Make sure it allocates enough memory

Do the same for calloc() and realloc()

45

Manually Inspect Malloc Calls

Some of our “favorites”:

char *s1 = "hello, world";
char *s2;
s2 = (char*)malloc(strlen(s1));
strcpy(s2, s1);

long double *p;
p = (long double*)malloc(sizeof(long double*));

char *s1 = ”hello, world";
char *s2;
s2 = (char*)malloc(sizeof(s1));
strcpy(s2, s1);

long double *p;
p = (long double*)malloc(sizeof(p));

What are
the errors?

46

12. HARD-CODE MALLOC AMOUNTS
47

@seansinspired

https://unsplash.com/@seansinspired

Hard-Code Malloc Calls

Temporarily change each call of malloc() to request a large
number of bytes
•Say, 10000 bytes
•If the error disappears, then at least one of your calls is requesting too few bytes

Then incrementally restore each call of malloc()
to its previous form
•When the error reappears, you might have found the culprit

Do the same for calloc() and realloc()48

13. COMMENT OUT CALLS TO FREE

free

49

Comment-Out Free Calls

Temporarily comment-out every call of free()
•If the error disappears, then program is

• Freeing memory too soon, or
• Freeing memory that already has been freed, or
• Freeing memory that should not be freed,
• Etc.

Then incrementally “comment-in” each call of free()
•When the error reappears, you might have found the culprit

50

14. USE A MEMORY PROFILER TOOL

51

52

