
COS 217: Introduction to Programming Systems

Crash Course in C (Part 1)

The Design of C Language Features and
Data Types and their Operations and Representations

Goals of this Lecture
Help you learn about:

• The decisions that were made by the designers* of C
• … and thereby…
• The fundamentals of C

Why?
• Learning the design rationale of the C language provides a richer understanding of C itself
• A mature programmer knows the philosophy of a language, not just the syntax

* Dennis Ritchie & subsequent members of standardization committees2

The Design of C
“C is quirky, flawed, and an enormous success.
While accidents of history surely helped, it
evidently satisfied a need for a system
implementation language efficient enough to
displace assembly language, yet sufficiently
abstract and fluent to describe algorithms and
interactions in a wide variety of environments.”

– Dennis Ritchie

3

Designers wanted C to: But also:
Support system programming Support application programming

Be low-level Be portable
Be easy for people to handle Be easy for computers to handle

DECLARATIONS AND ASSIGNMENTS

4

Declaring Variables

Decision: Should C require variable declarations? (Not all languages do!)

Thought process:
• Declaring variables allows compiler to check “spelling”
• Declaring variables allows compiler to allocate memory more efficiently
• Declaring variables’ types produces fewer surprises at runtime
• Declaring variables requires more from the programmer

• Extra verbiage
• Type foresight
• “Do what I mean, not what I say”

5

Declaring Variables
Decisions:

• Require variable declarations
• Provide declaration statement
• Programmer specifies type of variable (and other attributes too)

Examples
• int i;
• int i, j;
• int i = 5;
• const int i = 5; /* value of i cannot change */
• static int i; /* covered later in course */
• extern int i; /* covered later in course */

6

Declaring Variables
Another Decision:

• Unlike Java, declaration statements in C90 must appear before
any other kind of statement in compound statement

7

{
int i;
/* Non-declaration

stmts that use i. */
…
int j;
/* Non-declaration

stmts that use j. */
…

}

{
int i;
int j;
/* Non-declaration

stmts that use i. */
…
/* Non-declaration

stmts that use j. */
…

}

Illegal in C Legal in C

Assignment
Issue: What about assignment?

Thought process
• Must have a way to assign a value to a variable
• Many high-level languages provide an assignment statement
• Would be more expressive to define an assignment operator

• Performs assignment, and then evaluates to a value
• Allows assignment to appear within larger expressions

Decisions
• Provide assignment operator

• =
• Variable on left, expression on right

• Define assignment operator to change the value of a variable,
and emit the new value of that variable

• Right-to-left associativity8

Assignment Operator Examples
Examples

9

i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.

j = i = 0;
/* Side effect: assign 0 to i.

Evaluate to 0.
Side effect: assign 0 to j.
Evaluate to 0. */

while ((i = getchar()) != EOF) …
/* Read a character (maybe).

Side effect: assign that character to i.
Evaluate to that character.
Compare that emitted value to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

CONTROL STATEMENTS

10

Control Statements: History
What the computer does

“under the hood”:

11

/* add up numbers from 1 to n */

sum = 0
i = 1
LOOP:
if (i > n) goto DONE
sum = sum + i
i = i + 1
goto LOOP
DONE:
/* answer in sum */

/* add up numbers from
1 to value in R2 */

1 R0 = 0
2 R1 = 1
3 compare R1, R2
4 if greater goto 8
5 R0 = R0 + R1
6 R1 = R1 + 1
7 goto 3
8 /* answer in R0 */

Early programming
languages (1950’s):

Some high-level conveniences (variable names, labels)
but control flow based on if and goto

Control Statements
Algol-60 language (1960)

• BEGIN-END, IF-THEN-ELSE, WHILE-DO, FOR, (and also GOTO)

Scientific background
• Böhm and Jacopini proved (1966) that any algorithm

can be expressed as the nesting of only 3 control structures:

Corrado Böhm

statement1

statement2 statement1

condition

statement2

TRUE FALSE

statement

condition
TRUE FALSE

Sequence Selection Repetition

12

Control Statements (cont.)

Thought Process
• Dijkstra argued that any algorithm should be expressed

using only those control structures
(Go To Statement Considered Harmful, 1968)

C language design (1972)
• Basically follow ALGOL-60, but

use { braces } instead of the
more heavyweight BEGIN – END

Edsger Dijkstra

13

https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf

Sequence Statement
Compound statement, alias block

14

{
statement1;
statement2;
…

}

statement1

statement2

Selection Statements
if and if-else statements

15

if (expr)
statement1;

if (expr)
statement1;

else
statement2;

statement1

condition

statement2

TRUE FALSE

Selection Statements

switch and break statements
• for multi-path decisions on a single integer expression

16

switch (integerExpr)
{ case integerLiteral1:

…
break;

case integerLiteral2:
…
break;

…
default:

…
}

What happens
if you forget to

break?

Repetition Statements
• while statement:

test at leading edge

• for statement:
test at leading edge,
increment at trailing

• do-while statement:
test at trailing edge

17

while (expr)
statement;

for (initExpr; testExpr; incrExpr)
bodyStatement;

do
statement;

while (expr);

statement

expr
TRUE FALSE

statement

exprTRUE
FALSE

test
TRUE FALSE

body

init

incr

Repetition Statements
Cascading implications

• Declarations must come at the beginning of a block à
cannot declare loop control variable in for statement

18

{
…
for (int i = 0; i < 10; i++)

/* Do something */
…

}

{
int i;
…
for (i = 0; i < 10; i++)

/* Do something */
…

}

Illegal in C

Legal in C

Other Control Statements

Issue: What other control statements should C provide?

Decisions
• break statement

• Breaks out of closest enclosing switch or repetition statement
• continue statement

• Goes back to condition check, skipping remainder of current iteration
• When used within for, still executes increment step

• goto statement grudgingly provided
• Jump to label

19

https://xkcd.com/292/

https://xkcd.com/292/

I/O

20

I/O Facilities

Decisions
• Do not provide I/O facilities in the language
• Instead provide I/O facilities in standard library

• Constant: EOF
• Data type: FILE (described later in course)
• Variables: stdin, stdout, and stderr
• Functions: …

21

Reading Data Types
Issue: What functions should C provide for reading

data of primitive types?

Thought process
• Must convert external form (sequence of character codes) to

internal form
• Could provide getchar(), getshort(), getint(), getfloat(), etc.
• Could provide one parameterized function to read any

primitive type of data

Decisions
• Provide scanf() function
• Can read any primitive type of data
• First parameter is a format string containing conversion specs

See King book for details22

Reading Characters
Issue: Should reading characters be granted special status?

Thought process
• Desirable to have a function to read a single byte from stdin
• Function must have a way to indicate failure, that is, to indicate that no bytes remain

Decisions
• Provide getchar() function
• Make return type of getchar() wider than char

• Make it int; that's the natural word size
• Define getchar() to return EOF (a special non-character int)

to indicate failure

Reminder: there is no such thing as "the EOF character"

23

Writing Data Types
Issue: What functions should C provide for writing data of primitive types?

Thought process
• Must convert internal form to external form (sequence of

character codes)
• Could provide putchar(), putshort(), putint(), putfloat(), etc.
• Could provide one parameterized function to write any

primitive type of data

Decisions
• Provide printf() function
• Can write any primitive type of data
• First parameter is a format string containing conversion specs

See King book for details
24

Writing Characters
Issue: What functions should C provide for writing a character to standard output?

Thought process
• Desirable to have a function to write a single character to stdout

Decisions
• Provide a putchar() function
• Define putchar() to accept one parameter

• For symmetry with getchar(), parameter is an int

25

Other I/O Facilities
Issue: What other I/O functions should C provide?

Decisions
• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

Described in King book, and later in the course
after covering files, arrays, and strings

26

Statements Summary: C vs. Java

27

Java only
• Declarations anywhere within block
• Declare immutable variables with final
• Conditionals of type boolean
• “Labeled” break and continue
• No goto

C only
• Declarations only at beginning block
• Declare immutable variables with const
• Conditionals of any type (checked for zero / nonzero)
• No “labeled” break and continue
• goto provided (but don’t use it except in flattened C at end of course)

NUMBER SYSTEMS

Q: Why do computer programmers confuse
Christmas and Halloween?

A: Because 25 Dec == 31 Oct

28

@bradleyhowington

https://unsplash.com/@bradleyhowington

The Decimal Number System
Name

• “decem” (Latin) ⇒ ten

Characteristics
• For us, these symbols (Not universal …)

• 0 1 2 3 4 5 6 7 8 9

• Positional
• 2945 ≠ 2495
• 2945 = (2*103) + (9*102) + (4*101) + (5*100)

(Most) people use the decimal number system

29

https://bit.ly/3ifUw1b

https://bit.ly/3ifUw1b

The Binary Number System
binary
adjective: being in a state of one of two mutually exclusive conditions such as on or off, true or false, molten or
frozen, presence or absence of a signal.
From Late Latin bīnārius (“consisting of two”).

Characteristics
• Two symbols: 0 1
• Positional: 1010B ≠ 1100B

Most (digital) computers use the binary number system

Terminology
• Bit: a single binary symbol (“binary digit”)
• Byte: (typically) 8 bits
• Nybble: 4 bits

30

Why?

Decimal-Binary Equivalence

31

Decimal Binary
0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Decimal Binary
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111

... ...

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

32

100101B = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
= 32 + 0 + 0 + 4 + 0 + 1
= 37

Least-significant
bit (lsb)

Most-significant
bit (msb)

Integer-Binary Conversion
(Decimal) Integer to binary: do the reverse

• Determine largest power of 2 that’s ≤ number; write template

• Fill in template

34

37 = (?*25)+(?*24)+(?*23)+(?*22)+(?*21)+(?*20)

37 = (1*25)+(0*24)+(0*23)+(1*22)+(0*21)+(1*20)
-32

5
-4
1 100101B

-1
0

Integer-Binary Conversion
Integer to binary division method

• Repeatedly divide by 2, consider remainder

35

37 / 2 = 18 R 1
18 / 2 = 9 R 0
9 / 2 = 4 R 1
4 / 2 = 2 R 0
2 / 2 = 1 R 0
1 / 2 = 0 R 1

Read from bottom
to top: 100101B

The Hexadecimal Number System
Name

• “hexa-” (Ancient Greek ἑξα-) ⇒ six
• “decem” (Latin) ⇒ ten

Characteristics
• Sixteen symbols

• 0 1 2 3 4 5 6 7 8 9 A B C D E F
• Positional

• A13DH ≠ 3DA1H

Computer programmers often use hexadecimal or “hex”
• In C: 0x prefix (0xA13D, etc.)

36

Why?

Decimal-Hexadecimal Equivalence

37

Decimal Hex
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F

Decimal Hex
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17
24 18
25 19
26 1A
27 1B
28 1C
29 1D
30 1E
31 1F

Decimal Hex
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F

... ...

Integer-Hexadecimal Conversion
Hexadecimal to (decimal) integer: expand using positional notation

Integer to hexadecimal: use the division method

38

25H = (2*161) + (5*160)
= 32 + 5
= 37

37 / 16 = 2 R 5
2 / 16 = 0 R 2

Read from bottom
to top: 25H

Binary-Hexadecimal Conversion
Observation: 161 = 24

• Every 1 hexit corresponds to 4 bits

Binary to hexadecimal

Hexadecimal to binary

39

1010000100111101B
A 1 3 DH

Digit count in binary number
not a multiple of 4 ⇒
pad with zeros on left

A 1 3 DH
1010000100111101B

Discard leading zeros from
binary number if appropriate

40

Base Conversion Quick Quiz
Convert binary 101010 into decimal and hex

A. 21 decimal, 1A hex

B. 42 decimal, 2A hex

C. 48 decimal, 32 hex

D. 55 decimal, 4G hex

10 1010
2 A

32 + 10 = 42

2 + 8 + 32 = 42

hint: convert to hex first

The Octal Number System
Name

• “octo” (Latin) ⇒ eight

Characteristics
• Eight symbols

• 0 1 2 3 4 5 6 7
• Positional

• 1743O ≠ 7314O

Computer programmers often use octal (so does Mickey!)
• In C: 0 prefix (01743, etc.)

41

Why?

