
QSplat: A Multiresolution Point Rendering System for Large Meshes

Szymon Rusinkiewicz
Marc Levoy

Stanford Universityy

Abstract

Advances in 3D scanning technologies have enabled the practical cre-
ation of meshes with hundreds of millions of polygons. Traditional
algorithms for display, simplification, and progressive transmission of
meshes are impractical for data sets of this size. We describe a system
for representing and progressively displaying these meshes that com-
bines a multiresolution hierarchy based on bounding spheres with a
rendering system based on points. A single data structure is used
for view frustum culling, backface culling, level-of-detail selection,
and rendering. The representation is compact and can be computed
quickly, making it suitable for large data sets. Our implementa-
tion, written for use in a large-scale 3D digitization project, launches
quickly, maintains a user-settable interactive frame rate regardless of
object complexity or camera position, yields reasonable image qual-
ity during motion, and refines progressively when idle to a high final
image quality. We have demonstrated the system on scanned models
containing hundreds of millions of samples.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]:
Picture/Image Generation – Display Algorithms; I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling – Curve,
surface, solid, and object representations; I.3.6 [Computer Graph-
ics]: Methodology and Techniques – Graphics data structures and data
types.

Keywords: Rendering systems, Spatial data structures, Level of detail
algorithms, Compression algorithms

1 Introduction

A significant recent trend in computer graphics has been the shift to-
wards using sampled representations of real objects during rendering.
An example of this trend has been the increased use of 3D scanning
systems, which produce three-dimensional sampled models of phys-
ical objects. One problem with 3D scanners, however, is handling

yStanford Computer Graphics Lab
Gates Building 3B
Stanford University
Stanford, CA 94305
{smr,levoy}@graphics.stanford.edu

the large amounts of data they produce. Over the past several years,
improvements in the hardware and software components of 3D scan-
ning systems have increased the practically attainable sizes of scanned
meshes to hundreds of millions of samples.

Current workstations can not display meshes of this size in real
time, and the running time and space requirements of traditional
mesh simplification and progressive display algorithms make these
approaches impractical for scanned meshes containing more than a
few million samples. Moreover, many such techniques focus on op-
timizing the placement of individual edges and vertices, expending a
relatively large amount of effort per vertex. Scanned data, however,
has a large number of vertices and their locations are often impre-
cise due to noise. This suggests an alternative approach in which
individual points are treated as relatively unimportant, and conse-
quently less effort is spent per primitive. Recent research employing
this paradigm includes the spline-fitting system by Krishnamurthy and
Levoy [Krishnamurthy 96], the range image merging system by Cur-
less and Levoy [Curless 96], and Yemez and Schmitt’s rendering sys-
tem based on octree particles [Yemez 99]. These algorithms do not
treat range data as exact, and in fact do not preserve the 3D locations
of any samples of the original mesh.

Following this trend of algorithms with low per-primitive cost, we
have developed a new algorithm for interactive display of large meshes.
The implementation, dubbed QSplat, was designed during the course
of a large 3D digitization project [Levoy 00]. Because it uses a simple
rendering algorithm based on traversing a bounding sphere hierarchy,
it is suitable for browsing the models generated during this project,
which contain 100 million to 1 billion samples. Additionally, QSplat
does not maintain the connectivity of the input mesh (which in the
case of scanned data inherently is only useful to resolve depth disconti-
nuities and has little other meaning), instead relying on a point-based
representation and splat rendering. As a result, our system has lower
preprocessing and rendering costs than comparable polygon-based sys-
tems. QSplat launches quickly, adjusts level of detail to maintain an
interactive frame rate, and has a compact in-memory and on-disk rep-
resentation.

In this paper, we present the QSplat data structure and rendering
algorithm and discuss some of the tradeoffs and design decisions in-
volved in making it practical for large meshes. We describe the ren-
dering performance of the system, and discuss its preprocessing costs.
Finally, we consider its relation to previous algorithms for displaying
large meshes, and describe some future extensions for rendering other
kinds of large geometric data sets.

2 QSplat Data Structure and Algorithms

QSplat uses a hierarchy of bounding spheres [Rubin 80, Arvo 89] for
visibility culling, level-of-detail control, and rendering. Each node of
the tree contains the sphere center and radius, a normal, the width
of a normal cone [Shirman 93], and optionally a color. One could

1

Permission to make digital or hard copies of part or all of this work or 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page.  To copy otherwise, to 
republish, to post on servers, or to redistribute to lists, requires prior specific 
permission and/or a fee.   
 SIGGRAPH 2000, New Orleans, LA  USA 
 © ACM 2000 1-58113-208-5/00/07 ...$5.00 

343



generate such a bounding sphere hierarchy from polygons, voxels, or
point clouds, though for our application we only needed an algorithm
for generating the hierarchy from triangular meshes. The hierarchy is
constructed as a preprocess, and is written to disk.

2.1 Rendering Algorithm

Once the hierarchy has been constructed, the following algorithm is
used for display:

TraverseHierarchy(node)
{

if (node not visible)
skip this branch of the tree

else if (node is a leaf node)
draw a splat

else if (benefit of recursing further is too low)
draw a splat

else
for each child in children(node)

TraverseHierarchy(child)
}

We now examine several stages of this basic algorithm in detail.

Visibility Culling: As we recurse the bounding sphere hierarchy, we
cull nodes that are not visible. Frustum culling is performed by testing
each sphere against the planes of the view frustum. If the sphere lies
outside, it and its subtree are discarded and not processed further. If
the sphere lies entirely inside the frustum, this fact is noted and no
further frustum culling is attempted on the children of the node.

We also perform backface culling during rendering, using the nor-
mal and cone of normals stored at each node. If the cone faces entirely
away from the viewer, the node and its subtree are discarded. We also
detect the case of a cone pointing entirely towards the viewer, and
mark its children as not candidates for backface culling.

Determining When to Recurse: The heuristic used by QSplat to
decide how far to recurse is based on projected size on the screen. That
is, a node is subdivided if the area of the sphere, projected onto the
viewing plane, exceeds a threshold. The cutoff is adjusted from frame
to frame to maintain a user-selected frame rate. We currently use a
simple feedback scheme that adjusts the threshold area by the ratio of
actual to desired rendering time on the previous frame. Funkhouser
and Séquin have demonstrated a predictive algorithm for LOD con-
trol that results in smaller frame-to-frame variation of rendering times
[Funkhouser 93]; however, we have not implemented this. We also
have not incorporated any algorithm for smooth transitions as sections
of the model change from one level of detail to another, such as the
geomorphs in Hoppe’s progressive mesh system [Hoppe 98]. Given
the modest changes in appearance as we refine and the quick changes
in viewpoint typical in our application, we have not found the absence
of smoothing visually significant; other applications, however, might
benefit from smoother transitions.

Although screen-space area is the most popular metric for LOD
control, other heuristics have been proposed for determining how far
to recurse [Duchaineau 97, Hoppe 97]. Within the framework of our
system, one could incorporate rules for recursing further around sil-
houette edges (using per-node normals), in areas of high curvature
(using normal cone widths), or in the central “foveal” region of the
screen (which uses only projected position).

The above implementation of frame rate control is used during in-
teractive manipulation of the model. Once the user stops moving the
mouse, we redraw the scene with successively smaller thresholds until

a size of one pixel is reached. Figure 1 shows a sample scene rendered
by QSplat at several levels of refinement.

Drawing Splats: Once we have either reached a leaf node or de-
cided to stop recursing, we draw a splat representing the current sphere
[Westover 89]. The size of the splat is based on the projected diameter
of the current sphere, and its color is obtained from a lighting calcu-
lation based on the current per-sphere normal and color. Splats are
drawn with Z-buffering enabled to resolve occlusion. We discuss the
shape of each splat in Section 3.3.

2.2 Preprocessing Algorithm
Our preprocessing algorithm begins with a triangular mesh represent-
ing the model to be encoded. Although one could build up a QSplat
hierarchy directly from a point cloud, starting with a mesh makes it
easy to compute the normals at each node. If we did not have a mesh,
we would have to compute normals by fitting a plane to the vertices
in a small neighborhood around each point. Beginning with a mesh
also makes it possible to assign sphere sizes to the input vertices (which
become the leaf nodes in our bounding sphere hierarchy) such that no
holes are left during rendering. In order to guarantee this, the sizes
must be chosen such that if two vertices are connected by an edge of
the original mesh, the spheres placed at those vertices are large enough
to touch. Our current algorithm makes the size of the sphere at a ver-
tex equal to the maximum size of the bounding spheres of all triangles
that touch that vertex. This is a conservative method – it may result
in spheres that are too large, but is guaranteed not to leave any holes.

Once we have assigned leaf sphere sizes, we use the following algo-
rithm to build up the rest of the tree:

BuildTree(vertices[begin..end])
{

if (begin == end)
return Sphere(vertices[begin])

else
midpoint = PartitionAlongLongestAxis(vertices[begin..end])

leftsubtree = BuildTree(vertices[begin..midpoint])
rightsubtree = BuildTree(vertices[midpoint+1..end])

return BoundingSphere(leftsubtree, rightsubtree)
}

The algorithm builds up the tree by splitting the set of vertices
along the longest axis of its bounding box, recursively computing the
two subtrees, and finding the bounding sphere of the two children
spheres. As the tree is built up, per-vertex properties (such as normal
and color) at interior nodes are set to the average of these properties
in the subtrees. When the recursion reaches a single vertex, we simply
create a sphere whose center is the position of the vertex. Because the
total size of a tree depends on the branching factor at each node, we
combine nodes in the tree to increase the average branching factor to
approximately 4. This reduces the number of interior nodes, thereby
reducing the storage requirements for the tree. The final step of pre-
processing is quantizing all of the properties at each node, as described
in Section 3.1.

3 Design Decisions and Tradeoffs

Let us now consider some of the decisions made in the implementa-
tion of QSplat that make it suitable for our application of visualizing
large scanned data sets. We describe how tradeoffs in quantization,
file layout, splat shape, and the choice of splatting were affected by
our goals of fast rendering and compact representation.

2

344



15-pixel cutoff
130,712 points

132 ms

10-pixel cutoff
259,975 points

215 ms

5-pixel cutoff
1,017,149 points

722 ms

1-pixel cutoff
14,835,967 points

8308 ms

Figure 1: A model of Michelangelo’s statue of St. Matthew rendered by QSplat at several levels of refinement. Rendering was done on an SGI Onyx2 with
InfiniteReality graphics, at a screen resolution of 1280x1024. The model was generated from a mesh with 127 million samples, representing a statue 2.7 meters tall
at 0.25 mm resolution. The images at right are closeups of the outlined areas at left.

3

345



3 bits 16 bits2 bits14 bits

Structure

(b) File Layout for
  Circled Nodes at Left

(c) Node Layout

Tree

13 bits

(a) Bounding Sphere Hierarchy

Width of
Optional ColorPosition and radius Normal Normal Cone

Figure 2: QSplat file and node layout. (a) The tree is stored in breadth-first order (i.e., the order given by the red arrows). (b) The link from parent to child nodes
is established by a single pointer from a group of parents to the first child. The pointer is not present if all of the “parent” siblings are leaf nodes. All pointers are 32
bits. (c) A single quantized node occupies 48 bits (32 without color).

3.1 Node Layout and Quantization

The layout of each node in the bounding sphere hierarchy is shown in
Figure 2c. A node contains the location and size of a sphere relative
to its parent, a normal, the width of a cone of normals, an optional
color, and a few bits used in representing the structure of the tree. We
discuss the structure of the tree and the layout of nodes within the file
in Section 3.2.

Position and radius: The position and radius of each sphere is en-
coded relative to its parent in the bounding sphere hierarchy. In order
to save space, these quantities are quantized to 13 values. That is, the
radius of a sphere can range from 1=13 to 13=13 of the radius of its par-
ent, and the offset of the center of a sphere relative to the center of
its parent (in each of X, Y, and Z) is some multiple of 1=13 of the di-
ameter of the parent sphere. The quantization proceeds top-down, so
the position and size of a child sphere is encoded relative to the quan-
tized position of its parent; thus, quantization error does not propagate
down the mesh. In order to guarantee that the quantization process
does not introduce any holes, the quantized radius is always rounded
up to the nearest representable value that ensures that the quantized
sphere completely encloses the true sphere.

Note that not all of the 134 possible combinations of (x, y, z) center
offset and radius ratio are valid, since many result in child spheres that
are not enclosed by their parents. In fact, only 7621 of the possible
combinations are valid, which means that we can encode the quan-
tized position and radius using only 13 bits (using a lookup table).
For a parent sphere of radius 1, this encoding scheme gives a mean
quantization error of 0.04 in the x, y, and z components of a child
sphere, and a mean error of 0.15 in the child sphere’s radius. The er-
ror in the radius is larger than the error in position because the radius
is first increased by the quantization error in the position of the sphere
(to ensure that the quantized sphere encloses the true sphere), and is
then always rounded up to the next representable value. We could ob-
tain lower quantization error in the radius by not insisting that the
quantized sphere completely enclose the original. Doing so, how-
ever, would introduce the possibility that spheres that should touch
no longer do so after the quantization. This could produce holes in
our renderings.

The idea of representing geometric quantities such as sphere po-
sitions by encoding them incrementally, thereby essentially spreading
out the bits of the quantities among the levels in the hierarchy, rep-
resents a departure from traditional approaches to mesh compression,
which rely on encoding the differences between vertex positions along
some path along the edges of the mesh [Taubin 98]. This “hierarchical
delta coding” is, in fact, closer to the wavelet representation of geom-
etry used in the multiresolution analysis of Eck et. al. [Eck 95]. Our
space requirement of 13 bits per node appears competitive with state-
of-the-art geometric compression methods, which average 9-15 bits
per vertex depending on initial quantization of vertex positions. This
is not an entirely valid comparison, however, since traditional geomet-
ric compression methods also represent mesh connectivity (which we
discard), and since our 13 bits per node also includes sphere radius.

The position and radius of each node are decoded on-the-fly during
rendering. Because of this, our data structure is not only compact on
disk, but also requires less memory during rendering than methods
that must decompress their data before rendering.

Normals: The normal at each node is stored quantized to 14 bits.
The representable normals correspond to points on a 52 � 52 grid
on each of the 6 faces of a cube, warped to sample normal space more
uniformly. A lookup table is used during rendering do decode the rep-
resentable normals. In practice the use of only 52 � 52 � 6 = 16224 dif-
ferent normals (leading to a mean quantization error of approximately
0.01 radian) produces no visible artifacts in the diffuse shading com-
ponent, but some banding artifacts are visible around specular high-
lights in broad areas of low curvature. It would be possible to eliminate
these artifacts, as well as achieve better compression, by moving to an
incremental encoding of each normal relative to the normal of the
parent sphere. This would, however, increase the computational com-
plexity of the inner loop of the algorithm, resulting in a time-space
tradeoff. Unlike the range of node positions, the space of normals is
bounded, so a fixed quantization table suffices for encoding the nor-
mals of arbitrary scenes. Therefore, at this time we have chosen to use
a fixed quantization for the normals, which requires only a single table
lookup at run time. As processor speed increases, we anticipate that
the incremental quantization scheme will become more attractive.

4

346



Colors: Colors are currently stored quantized 5-6-5 to 16 bits. As
in the case of normals, an incremental encoding of colors would save
space but be more expensive at run time.

Normal cones: After some experimentation, we have decided to
quantize the width of the cone of normals at each node to just 2 bits.
The four representable values correspond to cones whose half-angles
have sines of 1=16, 4=16, 9=16, and 16=16. On typical data sets, backface
culling with these quantized normal cones discards over 90 percent of
nodes that would be culled using exact normal cone widths. Note that
we are always conservative in representing normal cone widths, so we
never discard geometry that should be displayed. As with normals and
colors, the normal cone widths could be represented relative to the
widths at the parent nodes, but this would slow down rendering.

3.2 File Layout and Pointers
The nodes of the bounding sphere hierarchy are laid out (both in
memory and on disk) in breadth-first order. A primary consequence
of this is that the first part of the file contains the entire mesh at
low resolution. Thus, we only need to read in the first part of a
file in order to visualize the model at low resolution; we see greater
detail as more of the file is read in from disk. We currently use OS-
provided memory mapping as the basis for working-set management,
so high-resolution data for a given section of the model is read in
from disk when the user looks at it. This progressive loading is im-
portant for usability with large models, for which the time to load
the entire data set from disk may be several minutes. Because data
is loaded as it is needed, rendering performance will be lower the
first time the user zooms in on some area of the model – due to
our feedback-based approach to frame rate control, there is a glitch
in the frame rate. Subsequent frames that touch the same area of the
model, however, are rendered at full speed. Speculative prefetching
has been explored as a method for reducing this performance varia-
tion [Funkhouser 92, Funkhouser 96, Aliaga 99], but we currently do
not implement this.

Several pointerless schemes have been proposed for tree encod-
ing, including linear octrees and methods based on complete trees
[Samet 90]. These data structures, however, are inappropriate for our
application. Linear octrees and related ideas require the entire tree to
be traversed to recover its structure, which is impractical in our sys-
tem. Data structures based on complete trees can be used for partial
traversals, but because the algorithm we use to generate our trees is
based on axis-aligned bisections, we can not guarantee that the result-
ing trees will be complete and balanced. Furthermore, modifying the
preprocessing algorithm to generate complete trees would not be de-
sirable, since putting an equal number of vertices in each subtree can
potentially put the splitting planes significantly off-center. Given the
amount of quantization we perform on child sphere centers, this could
lead to significant inaccuracies in the compressed tree.

Although we can not use pointerless encodings for our trees, we
should at least attempt to minimize the number of pointers required.
Given that we store the tree in breadth-first order, it is sufficient to
have one pointer for each group of siblings in the tree (i.e. children
of a single parent sphere), that points to the children of these nodes.
Furthermore, that pointer is not necessary if none of these spheres
have children (i.e. they are all leaf nodes). Using this scheme, approx-
imately 8 to 10 percent of the total storage cost is devoted to pointers,
which we judged to be sufficiently small that we did not pursue more
complicated schemes for reducing pointer costs further. In order to be
able to traverse the tree, we store at each node two bits encoding the
number of children of the node (0, 2, 3, or 4 children – nodes with
a single child are not permitted), and one bit indicating whether all
children of this node are leaf nodes.

The total storage requirements for a tree may now be computed
as the number of nodes in the tree multiplied by the cost per node,
plus the overhead due to pointers. For a tree with average branching
factor 3.5, the total number of nodes will be 1.4 times the number
of leaf nodes, making the net storage requirements for the entire tree
approximately 9 bytes times the number of leaf nodes, or 6 bytes if
colors are not stored.

3.3 Splat Shape
The choice of kernel used to represent a rendered point sample can
have a significant effect on the quality of the final image. The sim-
plest, fastest option is a non-antialiased OpenGL point, which is ren-
dered as a square. A second choice is an opaque circle, which may
be rendered as a group of small triangles or, less expensively in most
OpenGL implementations, as a single texture-mapped polygon. An-
other possibility is a fuzzy spot, with an alpha that falls off radially with
a Gaussian or some approximation. The particular approximation we
use is a spline in opacity that falls to 1=2 at the nominal radius of the
splat. These last two options will be slower to draw, since they require
sending more data to the graphics pipeline. In addition, drawing a
Gaussian splat requires special care regarding the order in which the
splats are drawn, because of the interaction between blending and Z-
buffering. Levoy and Whitted discuss this problem in the context of a
software-only renderer [Levoy 85]; they propose an approach based on
buckets to ensure that both occlusion and blending happen correctly.
In OpenGL we can use multipass rendering to implement the correct
behavior. For the first pass, depth is offset away from the viewer by
some amount z0 , and we render only into the depth buffer. For the
second pass we turn off depth offset and render additively into the
color buffer, with depth comparison but not depth update enabled.
This has the effect of blending together all splats within a depth range
z0 of the surface, while maintaining correct occlusion. Figure 3 com-
pares these three choices of splat kernel. Because per-splat drawing
time on current hardware is different for each kernel, we present com-
parisons at both constant splat size and constant running time.

Another option we have in choosing splat shape is the choice of
whether the splats are always round (or square in the case of OpenGL
points) or elliptical. In the latter case, the normal at each node is used
to determine the eccentricity and orientation of the ellipse. When the
normals point towards the viewer, the splats will be circular. Other-
wise, the minor axis of each ellipse will point along the projection of
the normal onto the viewing plane, and the ratio of minor to major
axes will equal n̂ � v̂, where n is the normal of the splat and v is a vector
pointing towards the viewer. This improves the quality of silhouette
edges compared to circular splats, reducing noise and thickening. We
compare the use of circular and elliptical splats in Figure 4.

Because we construct our bounding sphere hierarchy such that
spheres placed along a continuous surface will never leave holes, we
can guarantee that the square and circular kernels will always result
in hole-free reconstructions. Our approximation to a Gaussian kernel
is also guaranteed to produce full opacity in areas that started out as
continuous surfaces. When we move to elliptical kernels, we can no
longer guarantee hole-free reconstructions because normals need not
be continuous along the surface. In practice, we do occasionally see
holes when using elliptical kernels, especially around silhouette edges.
We have found that restricting the maximum foreshortening of ellipses
(e.g. clamping the maximum ratio of major to minor axis to 10) fills
in practically all of these holes.

3.4 Consequences of a Point-Based System
The fact that QSplat uses points as its rendering primitives makes it
most suitable for certain kinds of scenes. In particular, point render-

5

347



Figure 3: Choices for splat shape. We show a scene rendered using squares, circles, and Gaussians as splat kernels. In the top row, each image uses the same recursion
threshold of 20 pixels. Relative to squares, circles take roughly twice as long to render, and Gaussians take approximately four times as long. The Gaussians, however,
exhibit significantly less aliasing. In the bottom row, the threshold for each image is adjusted to produce the same rendering time in each case. According to this
criterion, the square kernels appear to offer the highest quality.

Figure 4: Circular vs. elliptical splats. In the left image, all splats are circular with diameter 20 pixels. In the right image, we draw elliptical splats rotated and
foreshortened depending on per-node normals. This reduces thickening and noise around silhouette edges. Recursion depth has deliberately been limited to make
the splats large enough to see in this visualization.

6

348



(a) (b) (c)

Points Polygons – same number of primitives as (a) Polygons – same number of vertices as (a)
Same rendering time as (a) Twice the rendering time of (a)

Figure 5: Comparison of renderings using point and polygon primitives.

ing systems are most effective for objects with uniformly-sized geo-
metric detail, and in applications where it is not necessary to look at
the model at significantly higher resolution than the spacing between
samples. If the model has large, flat or subtly curved surfaces, polyg-
onal models can be more compact and faster to draw. Similarly, if it
is necessary to zoom in such that the spacing of samples is large com-
pared to pixel size, polygons offer higher visual quality, especially near
sharp edges and corners. Figure 5 shows a comparison between point-
and polygon-based renderings.

QSplat was developed with the intent of visualizing scanned mod-
els that contained significant amounts of fine detail at scales near the
scanning resolution. We used the Volumetric Range Image Processing
(VRIP) system [Curless 96] to merge raw scans into our final mod-
els, and the marching cubes algorithm [Cline 88] to extract a polyg-
onal mesh. Since the latter produces samples with a uniform spac-
ing, point rendering was well-suited for our application domain. For
scenes with large, smooth regions, we expect that QSplat would be less
effective relative to polygon-based systems. The visual quality of the
resulting models would still be good, however, if the large polygons
were diced, as in the REYES architecture [Cook 87]. For applications
containing both high-frequency detail and large flat regions, hybrid
point/polygon schemes might be appropriate.

4 Performance

As described in Section 3, the goal of interactivity dictated many de-
sign decisions for our system. In addition to these, we have optimized
our implementation in several ways in order to increase the size of the
models we can visualize.

4.1 Rendering Performance

The majority of rendering time in our system is spent in an inner loop
that traverses the hierarchy, computes the position and radius of each
node, performs visibility culling, and decides whether to draw a point
or recurse further. This inner loop was tuned to eliminate expensive
operations, especially at lower levels of the tree. For example, we do
not perform an exact perspective divide at the low levels of the tree,
switching to an approximation when the screen-space size of a node
reaches a few pixels. As a result, on average our algorithm can render
between 1.5 and 2.5 million points per second on an SGI Onyx2 once
data has been read in from disk. The exact rate varies depending on
caching effects (for example, we observe a speedup when the working

set fits in L2 cache) and how much data is culled at which levels in the
tree.

Our display rate may be compared to the 480 thousand polygons
per second (on identical hardware) reported by Hoppe for his im-
plementation of progressive meshes [Hoppe 98] or the 180 thousand
polygons per second for the ROAM system [Duchaineau 97]. For our
application, we typically use frame rates of 5-10 Hz, meaning that we
draw 200 to 300 thousand points per frame during interactive ren-
dering. Note that unlike the above two systems, QSplat makes no
explicit use of frame-to-frame coherence, such as cached lists of prim-
itives likely to be visible. QSplat’s rendering performance is summa-
rized in Figure 6.

The simplicity of our algorithm makes it well suited for implemen-
tation on low-end machines. As an extreme example, we have imple-
mented QSplat on a laptop computer with no 3D graphics hardware
(366 MHz Intel Pentium II processor, 128 MB memory). Because
rendering is performed in software, the system is fill limited. For a
typical window size of 500x500 and frame rate of 5 Hz, the imple-
mentation can traverse 250 to 400 thousand points per second, has a
40 million pixel per second fill rate, and typically draws 50 to 70 thou-
sand splats per frame. At this resolution the implementation is still
comfortably usable. Although most present desktop systems do have
3D graphics hardware, the same is not true for portable and handheld
systems, and in applications such as digital television set-top boxes.
We believe that QSplat might be well-suited for such environments.

4.2 Preprocessing Performance
Although preprocessing time is not as important as rendering time,
it is still significant for practical visualization of very large meshes.
Hoppe reports 10 hours as the preprocessing time for a progressive
mesh of 200 thousand vertices [Hoppe 97]. Luebke and Erikson
report 121 seconds as the preprocessing time for 281 thousand ver-
tices for their implementation of hierarchical dynamic simplification
[Luebke 97]. In contrast, our preprocessing time for 200 thousand
vertices is under 5 seconds (on the same hardware). Figure 6 presents
some statistics about the preprocessing time and space requirements
of the models used in this paper’s figures.

Another class of algorithms with which we can compare our pre-
processing time is algorithms for mesh simplification and decima-
tion. Although these algorithms have different goals than QSplat,
they are also commonly used for generating multiresolution represen-
tations or simplifying meshes for display. Lindstrom and Turk have
published a comparison of several recent mesh simplification meth-

7

349



David’s head, 1mm, color David, 2mm St. Matthew, 0.25mm

Typical performance Interactive Static Interactive Static Interactive Static
Traverse tree 22 ms 448 ms 30 ms 392 ms 27 ms 951 ms
Compute position and size 19 ms 126 ms 30 ms 307 ms 31 ms 879 ms
Frustum culling 1 ms 4 ms 1 ms 3 ms 1 ms 3 ms
Backface culling 1 ms 22 ms 2 ms 25 ms 1 ms 35 ms
Draw splats 77 ms 364 ms 46 ms 324 ms 50 ms 1281 ms
Total rendering time 120 ms 838 ms 109 ms 1051 ms 110 ms 3149 ms
Points rendered 125,183 931,093 267,542 2,026,496 263,915 8,110,665

Preprocessing statistics
Input points (= leaf nodes) 2,000,651 4,251,890 127,072,827
Interior nodes 974,114 2,068,752 50,285,122
Bytes per node 6 4 4
Space taken by pointers 1.3 MB 2.7 MB 84 MB
Total file size 18 MB 27 MB 761 MB
Preprocessing time 0.7 min 1.4 min 59 min

Figure 6: Typical QSplat rendering and preprocessing statistics for three models. The columns marked “interactive” indicate typical performance when the user
is manipulating the model. The columns labeled “static” are typical of performance when the user has stopped moving the mouse and the scene has refined to its
highest-quality version. Variation of up to 30% has been observed in these timings, depending on details such as cache performance. All times were measured on an
SGI Onyx2 with InfiniteReality graphics; rendering was done at 1280x1024 resolution.

ods [Lindstrom 98]. They report times of between 30 seconds and 45
minutes for simplification of a bunny mesh with 35000 vertices. One
method that paper did not consider was the voxel-based simplification
of Rossignac and Borrel [Rossignac 93], which takes under one second
on identical hardware to that used by Lindstrom and Turk. Our pre-
processing time for this mesh is 0.6 seconds. Thus, our algorithm is
significantly faster than most of the contemporary mesh decimation
algorithms, and competitive with Rossignac and Borrel’s method.

5 Previous Work

Previous approaches for representing and displaying large models can
be grouped into point rendering, visibility culling, level-of-detail con-
trol, and geometric compression.

5.1 Point Rendering
Computer graphics systems traditionally have used triangles as ren-
dering primitives. In an attempt to decrease the setup and rasteri-
zation costs of triangles for scenes containing a large amount of ge-
ometry, a number of simpler primitives have been proposed. The
use of points as a display primitive for continuous surfaces was in-
troduced by Levoy and Whitted [Levoy 85], and more recently has
been revisited by Grossman and Dally [Grossman 98]. Point render-
ing has been incorporated into commercial products – the Animatek
Caviar system, for example, uses point rendering for animated char-
acters in video games [Animatek]. Particles have also been used in
more specialized contexts, such as rendering fire, smoke, and trees
[Csuri 79, Reeves 83, Max 95].

A concept related to point rendering is splatting in volume render-
ing [Westover 89]. For large volumes, it is natural to use a hierarchical

data structure to achieve compression of regions of empty space, and
Laur and Hanrahan have investigated hierarchical splatting for vol-
umes represented using octrees [Laur 91]. Although splatting is best
suited to the case in which the projected voxel size is on the order
of the pixel size, other regimes have also been examined. The di-
viding cubes algorithm proposed by Cline et. al. is intended for use
when voxels are larger than pixels [Cline 88]. For voxels smaller than
pixels, Swan et. al. have proposed algorithms for producing correctly
antialiased results [Swan 97].

5.2 Visibility Culling

Frustum and backface culling algorithms, such as those used by QS-
plat, have appeared in a large number of computer graphics systems.
Hierarchical frustum culling based on data structures such as oc-
trees has been a standard feature of most systems for rendering large
scenes [Samet 90]. Backface culling of primitives is commonly im-
plemented in hardware, and Kumar and Manocha have presented an
algorithm for hierarchical backface culling based on cones of normals
[Kumar 96].

Another class of visibility culling algorithms includes methods for
occlusion culling. Greene et. al. describe a general algorithm to discard
primitives that are blocked by closer geometry using a hierarchical Z-
buffer [Greene 93]. Other, more specialized occlusion algorithms can
also be used if the scene is highly structured. Systems for architec-
tural flythroughs, for example, often use the notion of cells and por-
tals to cull away entire rooms that are not visible [Teller 91]. QSplat
currently does not perform any sort of occlusion culling – it would
provide minimal benefit for viewing the scanned models we are con-
sidering. Occlusion culling would, however, be a useful addition for
scenes of greater depth complexity.

8

350



5.3 Level of Detail Control
Rendering a large data set at low magnification will often cause primi-
tives to be smaller than output device pixels. In order to minimize ren-
dering time in these cases, it is desirable to switch to a lower-resolution
data set with primitives that more closely match the output display
resolution. Among LOD algorithms, one may differentiate those that
store entire objects at discrete levels of detail from methods that per-
form finer-grained LOD control. The algorithms in the latter class
can control the number of primitives continuously, minimizing “pop-
ping” artifacts, and often vary the level of detail throughout the scene
to compensate for the varying magnification of perspective projection.

Multiresolution analysis represents an object as a “base mesh,” with
a series of corrections stored as wavelet coefficients [Eck 95]. Certain
et al. have implemented a real-time viewer based on multiresolution
meshes that can select an arbitrary number of wavelet coefficients to
be used, and so draw a mesh with any desired number of polygons
[Certain 96]. Their viewer also includes features such as progressive
transmission and separate sets of wavelet coefficients for geometry and
color.

Progressive meshes use a base mesh together with a series of vertex
split operations [Hoppe 96]. Progressive meshes have been incorpo-
rated into a real-time viewer that performs view-dependent refine-
ment for real-time flythroughs of scenes of several million polygons
[Hoppe 97, Hoppe 98]. The viewer can not only select an arbitrary
number of polygons to draw, but also refine different parts of an object
to different resolutions. Other recent systems that allow level of de-
tail to vary throughout the scene include the ROAM terrain rendering
system [Duchaineau 97], and LDI trees [Chang 99]. The implemen-
tation of LOD control in QSplat has the same goal as these systems,
permitting the level of detail to vary smoothly throughout a scene ac-
cording to projected screen size.

5.4 Geometric Compression
The goal of geometric compression is to reduce the storage and mem-
ory requirements of large meshes, as well as their transmission costs.
Deering has presented a system for compression of mesh connectivity,
vertex locations, colors, and normals, which was later implemented
in hardware [Deering 95]. More recent research, such as the Topo-
logical Surgery scheme by Taubin and Rossignac, has focused on re-
ducing the cost of representing mesh connectivity and improving the
compression of vertex positions [Taubin 98]. Pajarola and Rossignac
have applied compression to progressive meshes, yielding a scheme
that combines level-of-detail control and progressive refinement with
a compact representation [Pajarola 99]. Their algorithm, however, has
higher preprocessing and decoding costs than QSplat.

6 Conclusions and Future Work

The QSplat system has demonstrated real-time progressive rendering
of large models. QSplat’s architecture matches the rendering speed
of state-of-the-art progressive display algorithms, has preprocessing
times comparable to the fastest presently-available mesh decimators,
and achieves compression ratios close to those of current geometric
compression techniques.

Because the QSplat viewer is lightweight and can be implemented
on low-cost hardware, we believe it has the potential for permitting
3D rendering in applications where it was previously impractical, for
example built-in kiosks in museums. On May 6, 1999, we set up
QSplat on a computer in the Medici Chapel in Florence, displaying
our partially-completed computer model of the statue of Dawn, and
we let the tourists play (see Figure 7).

Figure 7: Tourists in the Medici Chapel using QSplat to fly around our 3D
model of Michelangelo’s statue of Dawn. We simplified the interface to only al-
low rotating, translating, and relighting the model. Nevertheless, some tourists
managed to get the viewer into various confusing states, typically by zooming
in too far. This underscores the need for a simple, robust, and constrained user
interface. We found that most tourists appreciated having a computer model
of the statue at which they were looking; having the capability to see the statue
from other views, and to change its virtual lighting, made looking at the statue
a more active, hands-on experience.

Several previously-introduced techniques could be incorporated
into the present QSplat framework to make it more time and space
efficient:

� Huffman coding [Huffman 52] or another lossless compression
scheme could be used to make the current representation more
compact. This would be useful for offline storage or transmis-
sion across low-bandwidth communications links, but would re-
quire the model to be decompressed before rendering.

� For cases when rendering speed is more important than com-
pact representation, the algorithm could be sped up by elimi-
nating the compression and incremental encoding of sphere po-
sitions and sizes (as described in Section 3.1), and simply storing
these quantities as floats. In addition, normal masks and visibility
masks, such as those used by Grossman and Dally, could speed
up rendering if there is a significant amount of large-scale occlu-
sion [Zhang 97, Grossman 98]. A further gain in speed could
be achieved by parallelizing the rendering algorithm, distribut-
ing portions of the tree to different processors. We can already
parallelize our preprocessing algorithm by breaking up the mesh
into tiles, though we have reported single-processor results in
this paper.

� Further analysis is necessary to understand the temporal coher-
ence and caching behavior of QSplat. A large amount of sys-
tems research has been done on frame rate control and work-
ing set management techniques in terrain rendering and archi-
tectural walkthrough systems [Funkhouser 96], and those algo-
rithms would improve the smoothness of user interaction with
QSplat.

The following are potential areas of future research for combining
the QSplat approach with different kinds of algorithms within com-
puter graphics:

� The bounding sphere hierarchy used by QSplat is well-suited as
an acceleration data structure for ray tracing. Potentially, this
could be used for high-quality renderings with advanced render-
ing effects of models stored in the QSplat format.

9

351



� Instancing would be easy to incorporate into our tree-based data
structure and rendering algorithm, greatly reducing the memory
requirements for many classes of procedurally-defined scenes.
This could be thought of as a new form of view-dependent
sprite, permitting efficient inclusion of geometry at multiple lo-
cations within a scene.

� Items other than normals and colors could be stored at each
node. Transparency (alpha), BRDFs, and BTDFs would be ob-
vious candidates that would increase the visual complexity rep-
resentable by QSplat, giving it capabilities similar to those of
modern volumetric renderers [Kajiya 89]. More complicated
objects such as light fields, view-dependent textures, spatially-
varying BRDFs, and layered depth images could potentially also
be stored at each node, creating hybrids of point rendering sys-
tems and contemporary image-based renderers.

Acknowledgments

Thanks to Dave Koller, Jonathan Shade, Matt Ginzton, Kari Pulli,
Lucas Pereira, James Davis, and the whole DMich gang. The Digital
Michelangelo Project was sponsored by Stanford University, Interval
Research Corporation, and the Paul Allen Foundation for the Arts.

References
[Aliaga 99] Aliaga, D., Cohen, J., Wilson, A., Baker, E., Zhang, H., Erik-

son, C., Hoff, K., Hudson, T., Stuerzlinger, W., Bastos, R., Whit-
ton, M., Brooks, F., and Manocha, D. “MMR: An Interactive Massive
Model Rendering System Using Geometric and Image-Based Accelera-
tion,” Proc. Symposium on Interactive 3D Graphics, 1999.

[Animatek] AnimaTek International, Inc., “Caviar Technology,” Web page:
http://www.animatek.com/products_caviar.htm

[Arvo 89] Arvo, J. and Kirk, D. “A Survey of Ray Tracing Acceleration Tech-
niques,” An Introduction to Ray Tracing, Glassner, A. S. ed., Academic
Press, 1989.

[Certain 96] Certain, A., Popović, J, DeRose, T., Duchamp, T., Salesin, D.,
and Stuetzle, W. “Interactive Multiresolution Surface Viewing,” Proc.
SIGGRAPH, 1996.

[Chang 99] Chang, C., Bishop, G., and Lastra, A. “LDI Tree: A Hierarchical
Representation for Image-Based Rendering,” Proc. SIGGRAPH, 1999.

[Cline 88] Cline, H. E., Lorensen, W. E., Ludke, S., Crawford, C. R., and
Teeter, B. C. “Two Algorithms for the Three-Dimensional Reconstruc-
tion of Tomograms,” Medical Physics, Vol. 15, No. 3, 1988.

[Cook 87] Cook, R., Carpenter, L., and Catmull, E. “The Reyes Image Ren-
dering Architecture,” Proc. SIGGRAPH, 1987.

[Csuri 79] Csuri, C., Hackathorn, R., Parent, R., Carlson, W., and Howard,
M. “Towards an Interactive High Visual Complexity Animation Sys-
tem,” Proc. SIGGRAPH, 1979.

[Curless 96] Curless, B. and Levoy, M. “A Volumetric Method for Building
Complex Models from Range Images,” Proc. SIGGRAPH, 1996.

[Deering 95] Deering, M. “Geometry Compression,” Proc. SIGGRAPH,
1995.

[Duchaineau 97] Duchaineau, M., Wolinsky, M., Sigeti, D,. Miller, M.,
Aldrich, C., and Mineev-Weinstein, M. “ROAMing Terrain: Real-time
Optimally Adapting Meshes,” Proc. Visualization, 1997.

[Eck 95] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M.,
and Stuetzle, W. “Multiresolution Analysis of Arbitrary Meshes,” Proc.
SIGGRAPH, 1995.

[Funkhouser 92] Funkhouser, T., Séquin, C., and Teller, S. “Management of
Large Amounts of Data in Interactive Building Walkthroughs,” Proc.
Symposium on Interactive 3D Graphics, 1992.

[Funkhouser 93] Funkhouser, T. and Séquin, C. “Adaptive Display Algo-
rithm for Interactive Frame Rates During Visualization of Complex Vir-
tual Environments,” Proc. SIGGRAPH, 1993.

[Funkhouser 96] Funkhouser, T. “Database Management for Interactive Dis-
play of Large Architectural Models,” Graphics Interface, 1996.

[Greene 93] Greene, N., Kass, M., and Miller, G. “Hierarchical Z-buffer Vis-
ibility,” Proc. SIGGRAPH, 1993.

[Grossman 98] Grossman, J. and Dally, W. “Point Sample Rendering,” Proc.
Eurographics Rendering Workshop, 1998.

[Hoppe 96] Hoppe, H. “Progressive Meshes,” Proc. SIGGRAPH, 1996.

[Hoppe 97] Hoppe, H. “View-Dependent Refinement of Progressive
Meshes,” Proc. SIGGRAPH, 1997.

[Hoppe 98] Hoppe, H. “Smooth View-Dependent Level-of-Detail Control
and its Application to Terrain Rendering,” Proc. Visualization, 1998.

[Huffman 52] Huffman, D. “A Method for the Construction of Minimum
Redundancy Codes,” Proc. IRE, Vol. 40, No. 9, 1952.

[Kajiya 89] Kajiya, J. and Kay, T. “Rendering Fur with Three Dimensional
Textures,” Proc. SIGGRAPH, 1989.

[Krishnamurthy 96] Krishnamurthy, V. and Levoy, M. “Fitting Smooth Sur-
faces to Dense Polygon Meshes,” Proc. SIGGRAPH, 1986.

[Kumar 96] Kumar, S., Manocha, D., Garrett, W., and Lin, M. “Hierarchical
Back-Face Computation,” Proc. Eurographics Rendering Workshop, 1996.

[Laur 91] Laur, D. and Hanrahan, P. “Hierarchical Splatting: A Progres-
sive Refinement Algorithm for Volume Rendering,” Proc. SIGGRAPH,
1991.

[Levoy 85] Levoy, M. and Whitted, T. “The Use of Points as a Display Prim-
itive,” Technical Report TR 85-022, University of North Carolina at
Chapel Hill, 1985.

[Levoy 00] Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D.,
Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J.,
and Fulk, D. “The Digital Michelangelo Project: 3D Scanning of Large
Statues,” Proc. SIGGRAPH, 2000.

[Lindstrom 98] Lindstrom, P. and Turk, G. “Fast and Memory Efficient
Polygonal Simplification,” Proc. Visualization, 1998.

[Luebke 97] Luebke, D., and Erikson, C. “View-Dependent Simplification
of Arbitrary Polygonal Environments,” Proc. SIGGRAPH, 1997.

[Max 95] Max, N. and Ohsaki, K. “Rendering Trees from Precomputed Z-
buffer Views,” Proc. Eurographics Rendering Workshop, 1995.

[Pajarola 99] Pajarola, R. and Rossignac, J. “Compressed Progressive
Meshes,” Technical Report GIT-GVU-99-05, Georgia Institute of Tech-
nology, 1999.

[Reeves 83] Reeves, W. “Particle Systems – A Technique for Modeling a Class
of Fuzzy Objects,” Proc. SIGGRAPH, 1983.

[Rossignac 93] Rossignac, J. and Borrel, P. “Multi-Resolution 3D Approxi-
mations for Rendering Complex Scenes,” Geometric Modeling in Com-
puter Graphics, 1993.

[Rubin 80] Rubin, S. M. and Whitted, T. “A 3-Dimensional Representation
for Fast Rendering of Complex Scenes,” Proc. SIGGRAPH, 1980.

[Samet 90] Samet, H. Applications of Spatial Data Structures, Addison-Wesley,
1990.

[Shirman 93] Shirman, L. and Abi-Ezzi, S. “The Cone of Normals Technique
for Fast Processing of Curved Patches,” Proc. Eurographics, 1993.

[Swan 97] Swan, J., Mueller, K., Möller, T., Shareef, N., Crawfis, R., and
Yagel, R. “An Anti-Aliasing Technique for Splatting,” Proc. Visualization,
1997.

[Taubin 98] Taubin, G. and Rossignac, J. “Geometric Compression Through
Topological Surgery,” ACM Trans. on Graphics, Vol. 17, No. 2, 1998.

[Teller 91] Teller, S. and Séquin, C. “Visibility Preprocessing for Interactive
Walkthroughs,” Proc. SIGGRAPH, 1991.

[Westover 89] Westover, L. “Interactive Volume Rendering,” Proc. Volume Vi-
sualization Workshop, University of North Carolina at Chapel Hill, 1989.

[Yemez 99] Yemez, Y. and Schmitt, F. “Progressive Multilevel Meshes from
Octree Particles,” Proc. 3D Digital Imaging and Modeling, 1999.

[Zhang 97] Zhang, H. and Hoff, K. “Fast Backface Culling Using Normal
Masks,” Proc. Symposium on Interactive 3D Graphics, 1997.

10

352


