
Lecture T6: NP-completeness

Is there a tour of length at most 1570?

Overview

Lecture T4:

■ What is an algorithm?
– Turing machine

■ Which problems can be solved on a computer?
– not the halting problem

Lecture T5:

■ Which algorithms will be useful in practice?
– polynomial vs. exponential algorithms

This lecture:

■ Which problems can be solved on a computer in a reasonable
amount of time?

– probably not the travelling salesperson problem (TSP)

Some Hard Problems

TSP

■ A travelling salesperson needs to visit N cities. Is there a route of
length at most D?

Is there a tour of length at most 1570? Yes, red tour = 1565.

Some Hard Problems

TSP

SCHEDULE

■ A set of jobs of varying length need to be processed on two
identical machines before a certain deadline T. Can the jobs be
arranged so that the deadline is met?

A D

F

B C

GE

Machine 2

Machine 1

Time T0

length of job F

Some Hard Problems

TSP

SCHEDULE

CLIQUE

■ Given N people and their pairwise relationships. Is there a group
of S people such that every pair in the group knows each other.

ba c

h g

f

e

d

i

j

k

Friendship Graph
People: a, b, c, d, e, . . ., k

Friendships: (a, e), (a, f), (a, g), . . ., (h, k)

Clique size: S = 4?

Some Hard Problems

TSP

SCHEDULE

CLIQUE

SAT

■ Is there a way to assign truth values to a given Boolean formula
that makes it true?

Boolean formula: (x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)

Yes, x = true, y = true, z = false.

Some Hard Problems

TSP

SCHEDULE

CLIQUE

SAT

FACTOR

■ Given two positive integers X and L, is there a nontrivial factor of X
that is less than L?

■ Factoring is at the heart of RSA encryption.

Input: X = 23,536,481,273, L = 110,000

Yes, since X = 224,737 * 104,729.

Some Hard Problems

TSP

SCHEDULE

CLIQUE

SAT

FACTOR

Richard Karp (1960’s)

These problems are
intimately related!

Properties of Algorithms

What is an algorithm?

■ Informally, a step-by-step set of instructions that can be applied in
the same way to all instances of a problem.

■ Formally, a deterministic Turing machine. [Recall Lectures T3, T4.]
– always produces the same answer given the same input

Properties of Algorithms

A given problem can be solved by many different algorithms.

■ Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)

■ Efficient: polynomial time for ALL inputs.
– mergesort requires N log2N steps

■ Inefficient: "exponential time" for SOME inputs.
– brute force TSP takes N! > 2N steps

Robust definition has led to explosion of useful algorithms for wide
spectrum of problems.

Properties of Computers

Modern computers have varying characteristics:

■ 1970’s mainframe.

■ 1980’s personal computer.

■ 1990’s microprocessor.

■ Supercomputer.

■ Network of computers.

From a theoretical standpoint, they’re all the same.

■ 1930’s Turing machine.

For example, none of these machine can solve general 1,000 city TSP
problems. . . .

Exponential Growth

Exponential growth dwarfs technological change.

■ Suppose each electron in the uni verse had power of today’s
supercomputers.

■ And each works for the life of the universe in an effort to solve TSP
problem using N! algorithm from Lecture P6.

■ Will not su cceed!

1000! >> 101000 >> 1079 * 1013 * 109 * 1012

Some Numbers

quantity number

Home PC instructions/second 109

Supercomputer instructions per second 1012

Seconds per year 109

Age of universe in years (estimated) 1013

Electrons in universe (estimated) 1079

Complexity Class P

Definition of P:
■ Set of all decision problems solvable in polynomial time on a

deterministic Turing machine.
■ Definition important because of Strong Church-Turing thesis.

Strong Church-Turing thesis:
■ P is the set of all decision problems solvable in polynomial time on

real computers.

Evidence supporting thesis:
■ True for all physical computers.

– can create deterministic TM that simulates TOY machine in
polynomial time (and vice versa)

– can create deterministic TM that simulates any physical machine
in polynomial time (and vice versa)

■ Possible exception:
– quantum computers – no conventional gates

Complexity Class NP

Definition of NP:

■ Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

■ Definition important b ecause it links many fundamental problems.

Equivalent definition:

■ Set of all decision problems that can be verified in polynomial time
on a deterministic Turing machine.

FACTOR: Is there a nontrivial factor of X = 23,536,481,273 that is less
than L = 110,000?

■ Witness: 104,729 (a factor of X).

■ Can efficiently verify that X / 104,729 = 224,737
⇒ X is a yes-instance.

■ Conclusion: FACTOR is in NP.

Complexity Class NP

Definition of NP:

■ Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

■ Definition important b ecause it links many fundamental problems.

Equivalent definition:

■ Set of all decision problems that can be verified in polynomial time
on a deterministic Turing machine.

SAT: is the formula (x' + y + z) (x + y' + z) (y + z) (x' + y' + z')
satisfiable?

■ Witness: (x,y,z) = (true, true, false) .

■ Easy to verify that input is a yes-instance given witness.

■ Conclusion: SAT is in NP.

Complexity Class NP

Definition of NP:

■ Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

■ Definition important b ecause it links many fundamental problems.

Equivalent definition:

■ Set of all decision problems that can be verified in polynomial time
on a deterministic Turing machine.

BIG PROBLEM: need to know s olution ahead of time.

■ Real computers can simulate by guessing
all possibilities.

■ Simulation t akes ex ponential time unless
you get "lucky."

The Main Question

Does P = NP?

■ Is every problem that is solvable in poly time on a nondeterministic
TM also solvable in poly time on a deterministic TM?

■ Is the verification problem as hard as the original decision
problem?

Most important open problem in theoretical computer science. Also
ranked #3 in all of mathematics. (Smale, 1999)

NP

P

If P ≠ NP If P = NP

P = NP

The Main Question

Does P = NP?

■ Is every problem that is solvable in poly time on a nondeterministic
TM also solvable in poly time on a deterministic TM?

■ Is the verification problem as hard as the original decision
problem?

If yes, then:

■ Efficient algorithms for TSP and factoring.

■ Cryptography is impossible (except for one-time pads) on
conventional machines.

■ Modern banking system will collapse.

If no, then:

■ Can’t hope to write efficient algorithm for TSP.

■ But maybe efficient algorithm still exists for factoring???

The Main Question

Does P = NP?

■ Is every problem that is solvable in poly time on a nondeterministic
TM also solvable in poly time on a deterministic TM?

■ Is the verification problem as hard as the original decision
problem?

Probably no, since:

■ Thousands of researchers have spent four d ecades in search of
polynomial algorithms for many fundamental NP problems without
success.

■ Consensus opinion: P ≠ NP.

But maybe yes, since:

■ No success in proving P ≠ NP either.

NP-Complete

Definition of NP-complete:

■ A problem with the property that if it can be solved in poly time,
then so can every other problem in NP (hardest problems in NP).

P = NP = NP-complete

NP

NP-
completeP

If P ≠ NP If P = NP

NP-Complete

Definition of NP-complete:

■ A problem with the property that if it can be solved in poly time,
then so can every other problem in NP (hardest problems in NP).

Links together a huge number of fundamental problems:

■ TSP, SCHEDULE, SAT, CLIQUE, thousands more.

■ Note: FACTOR is in NP but not known to be NP-complete.

■ Given an efficient algorithm for TSP, can efficiently solve
SCHEDULE, SAT, CLIQUE, FACTOR, etc.

Notorious complexity class.

■ Only exponential algorithms known for these problems.

■ Called intractable - unlikely that they can be solved given limited
computing resources.

Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show: if A can be solved
efficiently, then so can B.

■ In this case, we say B reduces to A. (B is "easier" than A).

Warmup: PRIMALITY reduces to FACTOR.

■ Given any instance of PRIMALITY (i.e., positive integer p), we can
determine the yes-no answer by using X = L = p as input to
FACTOR and returning opposite answer.

– original instance: Is p = 23,536,481,273 prime?
– transformed instance: Does X = 23,536,481,273 have a nontrivial

factor less than L = 23,536,481,273?
– if answer to transformed instance is no, then answer to original

instance is yes
– if answer to transformed instances is yes, then answer to

original instance is no

Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

■ For problems A and B, we can often show: if A can be solved
efficiently, then so can B.

■ In this case, we say B reduces to A. (B is "easier" than A).

SAT reduces to CLIQUE

■ Given any input to SAT, we create a corresponding input to
CLIQUE that will help us solve the original SAT problem.

■ Specifically, for a SAT formula with K clauses, we construct a
CLIQUE input that has a clique of size K if and only if the original
Boolean formula is satisfiable.

■ If we had an efficient algorithm for CLIQUE, we could apply our
transformation, solve the associated CLIQUE problem, and obtain
the yes-no answer for the original SAT problem.

SAT reduces to CLIQUE

SAT reduces to CLIQUE

■ Associate a person to each variable occurrence in each clause.

■ Two people know each other except if:
– they come from the same clause
– they represent t and t’ for some variable t

yx’ z

y z

z

y’

x

z’

y’

x’

Boolean formula:

(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')

SAT reduces to CLIQUE

SAT reduces to CLIQUE

■ Associate a person to each variable occurrence in each clause.

■ Two people know each other except if:
– they come from the same clause
– they represent t and t’ for some variable t

■ Clique of size 4 ⇒ satisfiable assignment.
– set variable in clique to true
– (x, y, z) = (true, true, false)

Boolean formula:

(x’ + y + z) (x + y’ + z) (y + z) (x’ + y’ + z’)

yx’ z

y z

z

y’

x

z’

y’

x’

SAT reduces to CLIQUE

SAT reduces to CLIQUE

■ Associate a person to each variable occurrence in each clause.

■ Two people know each other except if:
– they come from the same clause
– they represent t and t’ for some variable t

■ Clique of size 4 ⇒ satisfiable assignment.

■ Satisfiable assignment ⇒ clique of size 4
– (x, y, z) = (false, false, true)
– choose one true literal from each

clause
yx’ z

y z

z

y’

x

z’

y’

x’

Boolean formula:

(x' + y + z) (x + y' + z) (y + z) (x' + y' + z')

CLIQUE is NP-Complete

CLIQUE is NP-complete.

■ CLIQUE is in NP.

■ SAT is NP-complete.

■ SAT reduces to CLIQUE.

Thousands of problems shown to be NP-complete in this way.

But, how was the first problem shown to be NP-complete?

The "World’s First" NP-Complete Problem

SAT is NP-complete. (Cook-Levin, 1960’s)

Idea of proof:

■ By definition, nondeterministic TM can solve
problem in NP in polynomial time.

■ Polynomial-size Boolean formula can describe
(nondeterministic) TM.

■ Given any problem in NP, establish a
correspondence with some instance of SAT.

■ SAT solution gi ves simulat ion of TM solving
the corresponding problem.

■ IF SAT can be solved in polynomial time, then
so can any problem in NP (e.g., T SP). Stephen Cook

Coping With NP-Completeness

Hope that worst case doesn’t occur.

■ Complexity theory deals with worst case behavior. The instance(s)
you want to solve may be "easy."

– TSP where all points are on a line or circle
– 13,509 US city TSP problem solved (Cook et. al., 1998)

Bill Cook

Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.

■ Develop a heuristic, and hope it produces a good solution.
– TSP assignment.

■ Design an approximation algorithm: algorithm that is guaranteed
to find a high-quality solution in polynomial time.

– active area of research, but not always possible
– Euclidean TSP tour within 1% of optimal

(Arora, 1997)

Sanjeev Arora

Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.

Exploit NP-completeness.

Keep trying to prove P = NP.

Summary

Many fundamental problems are NP-complete.

■ TSP, SAT, SCHEDULE.

Theory says we probably won’t be able to design efficient algorithms
for NP-complete problems.

■ You will likely run into these problems in your scientific life.

■ If you know about NP-completeness, you can identify them and
avoid wasting time.

Theorem: if P = NP then cryptography is essentially impossible on
conventional machines.

