

Overview

Lecture T4:
. What is an algorithm?

- Turing machine
- Which problems can be solved on a computer?
- not the halting problem

Lecture T5:

- Which algorithms will be useful in practice? - polynomial vs. exponential algorithms

This lecture:
. Which problems can be solved on a computer in a reasonable amount of time?

- probably not the travelling salesperson problem (TSP)

Some Hard Problems

TSP
SCHEDULE
Clique
SAT

- Is there a way to assign truth values to a given Boolean formula that makes it true?

Boolean formula: $\left(x^{\prime}+y+z\right)\left(x+y^{\prime}+z\right)(y+z)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$

Yes, $x=$ true, $y=$ true, $z=$ false.

Properties of Algorithms

What is an algorithm?

- Informally, a step-by-step set of instructions that can be applied in the same way to all instances of a problem.
- Formally, a deterministic Turing machine. [Recall Lectures T3, T4.] - always produces the same answer given the same input

Properties of Algorithms

A given problem can be solved by many different algorithms
. Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)

- Efficient: polynomial time for ALL inputs.
- mergesort requires $N \log _{2} N$ steps
- Inefficient: "exponential time" for SOME inputs.
- brute force TSP takes $\mathrm{N}!>2^{\mathrm{N}}$ steps

Robust definition has led to explosion of useful algorithms for wide spectrum of problems.

Exponential Growth

Exponential growth dwarfs technological change.

- Suppose each electron in the universe had power of today's supercomputers.
. And each works for the life of the universe in an effort to solve TSP problem using N ! algorithm from Lecture P6.

Some Numbers	
auantity number Home PC instructions/second 10^{9} Supercomputer instructions per second 10^{12} Seconds per vear 10^{9} Age of universe in vears (estimated) 10^{13} Electrons in universe (estimated) 10^{79}	

- Will not succeed

1000 ! >> $10^{1000} \gg 10^{79 *} 10^{13 *} 10^{9} * 10^{12}$

Complexity Class P

Definition of P

- Set of all decision problems solvable in polynomial time on a deterministic Turing machine.
- Definition important because of Strong Church-Turing thesis.

Strong Church-Turing thesis:
. P is the set of all decision problems solvable in polynomial time on real computers.

Evidence supporting thesis:

- True for all physical computers.
can create deterministic TM that simulates TOY machine in polynomial time (and vice versa)
can create deterministic TM that simulates any physical machine in polynomial time (and vice versa)
- Possible exception:
- quantum computers - no conventional gates

Complexity Class NP

Definition of NP:

- Set of all decision problems solvable in polynomial time on a nondeterministic Turing machine.
- Definition important because it links many fundamental problems.

Equivalent definition:
. Set of all decision problems that can be verified in polynomial time on a deterministic Turing machine.

FACTOR: Is there a nontrivial factor of $X=23,536,481,273$ that is less than $L=110,000$?
. Witness: 104,729 (a factor of X).

- Can efficiently verify that $X / \mathbf{1 0 4 , 7 2 9}=\mathbf{2 2 4}, \mathbf{7 3 7}$

$$
\Rightarrow X \text { is a yes-instance. }
$$

. Conclusion: FACTOR is in NP.

Complexity Class NP

Definition of NP:

- Set of all decision problems solvable in polynomial time on a nondeterministic Turing machine.
. Definition important because it links many fundamental problems.

Equivalent definition:

- Set of all decision problems that can be verified in polynomial time on a deterministic Turing machine.

SAT: is the formula $\left(x^{\prime}+y+z\right)\left(x+y^{\prime}+z\right)(y+z)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$ satisfiable?

- Witness: $(x, y, z)=$ (true, true, false)
. Easy to verify that input is a yes-instance given witness.
. Conclusion: SAT is in NP.

Complexity Class NP

Definition of NP:

- Set of all decision problems solvable in polynomial time on a nondeterministic Turing machine.
- Definition important because it links many fundamental problems.

Equivalent definition:
. Set of all decision problems that can be verified in polynomial time on a deterministic Turing machine.

BIG PROBLEM: need to know solution ahead of time.

- Real computers can simulate by guessing all possibilities.
. Simulation takes exponential time unless you get "lucky."

The Main Question

Does $\mathrm{P}=\mathrm{NP}$?

- Is every problem that is solvable in poly time on a nondeterministic TM also solvable in poly time on a deterministic TM?
- Is the verification problem as hard as the original decision problem?

Most important open problem in theoretical computer science. Also ranked \#3 in all of mathematics. (Smale, 1999)

The Main Question

Does $\mathrm{P}=\mathrm{NP}$?
. Is every problem that is solvable in poly time on a nondeterministic TM also solvable in poly time on a deterministic TM?

- Is the verification problem as hard as the original decision problem?

If yes, then:

- Efficient algorithms for TSP and factoring.
. Cryptography is impossible (except for one-time pads) on conventional machines.
. Modern banking system will collapse.

If no, then:

- Can't hope to write efficient algorithm for TSP
. But maybe efficient algorithm still exists for factoring???

The Main Question

Does $\mathrm{P}=\mathrm{NP}$?

- Is every problem that is solvable in poly time on a nondeterministic TM also solvable in poly time on a deterministic TM?
. Is the verification problem as hard as the original decision problem?

Probably no, since:

- Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP problems without success.
- Consensus opinion: $\mathbf{P} \neq$ NP.

But maybe yes, since:
. No success in proving $\mathbf{P} \neq$ NP either.

NP-Complete

Definition of NP-complete:

- A problem with the property that if it can be solved in poly time, then so can every other problem in NP (hardest problems in NP).

If $\mathbf{P} \neq \mathbf{N}$

If $P=N P$

NP-Complete

Definition of NP-complete:

- A problem with the property that if it can be solved in poly time, then so can every other problem in NP (hardest problems in NP).

Links together a huge number of fundamental problems:
. TSP, SCHEDULE, SAT, CLIQUE, thousands more.
. Note: FACTOR is in NP but not known to be NP-complete.

- Given an efficient algorithm for TSP, can efficiently solve SCHEDULE, SAT, CLIQUE, FACTOR, etc.

Notorious complexity class.

- Only exponential algorithms known for these problems.
- Called intractable - unlikely that they can be solved given limited computing resources.

Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.

- For problems A and B, we can often show: if A can be solved efficiently, then so can B.
. In this case, we say B reduces to A. (B is "easier" than A).

AAT reduces to CLIQUE

- Given any input to SAT, we create a corresponding input to CLIQUE that will help us solve the original SAT problem.
- Specifically, for a SAT formula with K clauses, we construct a CLIQUE input that has a clique of size K if and only if the original Boolean formula is satisfiable.
- If we had an efficient algorithm for CLIQUE, we could apply our transformation, solve the associated CLIQUE problem, and obtain the yes-no answer for the original SAT problem.

Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.
. For problems A and B, we can often show: if A can be solved efficiently, then so can B.
. In this case, we say B reduces to A. (B is "easier" than A).
Warmup: PRIMALITY reduces to FACTOR.

- Given any instance of PRIMALITY (i.e., positive integer p), we can determine the yes-no answer by using $X=L=p$ as input to
FACTOR and returning opposite answer.
- original instance: Is $p=23,536,481,273$ prime?
- transformed instance: Does $X=23,536,481,273$ have a nontrivia factor less than $L=23,536,481,273$?
- if answer to transformed instance is no, then answer to original instance is yes
- if answer to transformed instances is yes, then answer to original instance is no

SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
. Two people know each other except if:
- they come from the same clause
- they represent t and t ' for some variable t

SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
- Two people know each other except if:
- they come from the same clause
- they represent t and t ' for some variable t
- Clique of size $4 \Rightarrow$ satisfiable assignment.
- set variable in clique to true
$-(x, y, z)=(t r u e$, true, false)

```
Boolean formula:
(\mp@subsup{x}{}{\prime}+y+z)(x+\mp@subsup{y}{}{\prime}+z)(y+z)(\mp@subsup{x}{}{\prime}+\mp@subsup{y}{}{\prime}+\mp@subsup{z}{}{\prime})
```


CLIQUE is NP-Complete

CLIQUE is NP-complete.
. CLIQUE is in NP.

- SAT is NP-complete.
. SAT reduces to CLIQUE.
Thousands of problems shown to be NP-complete in this way.
But, how was the first problem shown to be NP-complete?

SAT reduces to CLIQUE

SAT reduces to CLIQUE

- Associate a person to each variable occurrence in each clause.
- Two people know each other except if:
- they come from the same clause
-they represent t and t ' for some variable t
- Clique of size $4 \Rightarrow$ satisfiable assignment.
- Satisfiable assignment \Rightarrow clique of size 4
- (x, y, z) = (false, false, true)
- choose one true literal from each clause

Boolean formula:
$\left(x^{\prime}+y+z\right)\left(x+y^{\prime}+z\right)(y+z)\left(x^{\prime}+y^{\prime}+z^{\prime}\right)$

The "World's First" NP-Complete Problem

SAT is NP-complete. (Cook-Levin, 1960's)

Idea of proof:

- By definition, nondeterministic TM can solve problem in NP in polynomial time.
- Polynomial-size Boolean formula can describe (nondeterministic) TM
- Given any problem in NP, establish a correspondence with some instance of SAT.
- SAT solution gives simulation of TM solving the corresponding problem.
- IF SAT can be solved in polynomial time, then so can any problem in NP (e.g., TSP).

Stephen Cook

Coping With NP-Completeness

Hope that worst case doesn't occur.

- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be "easy."
- TSP where all points are on a line or circle
-13,509 US city TSP problem solved (Cook et. al., 1998)

Coping With NP-Completeness

Hope that worst case doesn't occur.

Summary

Many fundamental problems are NP-complete.
. TSP, SAT, SCHEDULE.
Change the problem.

Exploit NP-completeness.
Theory says we probably won't be able to design efficient algorithms for NP-complete problems.
. You will likely run into these problems in your scientific life.
. If you know about NP-completeness, you can identify them and avoid wasting time.

Theorem: if $\mathbf{P}=$ NP then cryptography is essentially impossible on conventional machines.

