Lecture T6: NP-completeness

>

e —

P

Is there a tour of length at most 1570?

Overview
Lecture T4:

. What is an algorithm?
- Turing machine

Which problems can be solved on a computer?
- not the halting problem

Lecture T5:

Which algorithms will be useful in practice?
- polynomial vs. exponential algorithms

This lecture:

Which problems can be solved on a computer in a reasonable
amount of time?

- probably not the travelling salesperson problem (TSP)

Some Hard Problems

TSP

A travelling salesperson needs to visit N cities. Is there aroute of
length at most D?

Is there a tour of length at most 1570? Yes, red tour = 1565

Some Hard Problems

TSP
SCHEDULE

A set of jobs of varying length need to be processed on two

identical machines before a certain deadline T. Can the jobs be
arranged so that the deadline is met?

A _NEEEE c J§ o

LE]
%_/
length of job F

Machine 1 |

Machine 2 |

o

Time T i

Some Hard Problems

TSP
SCHEDULE
CLIQUE

. Given N people and their pairwise relationships. Is there a group
of S people such that every pair in the group knows each other.

Friendship Graph

People: a,b,c,d, e, ... k
Friendships: (a,e), (a, f), (@, 9), ... (h, k)
Clique size: S=4?

Some Hard Problems

TSP
SCHEDULE
CLIQUE
SAT

. Is there away to assign truth values to a given Boolean formula
that makes it true?

Boolean formula: (X' +y+2z)(x+y +z)(y+z) (X' +y +27)

Yes, x =true,y =true, z = false.

Some Hard Problems

TSP
SCHEDULE
CLIQUE
SAT
FACTOR

. Given two positive integers X and L, is there a nontrivial factor of X
that is less than L?

. Factoring is at the heart of RSA encryption.

Input: X =23,536,481,273, L =110,000
Yes, since X =224,737 * 104,729.

Some Hard Problems

TSP
SCHEDULE
CLIQUE
SAT

FACTOR These problems are
intimately related!

Richard Karp (1960’s)

Properties of Algorithms

What is an algorithm?
Informally, a step-by-step set of instructions that can be applied in
the same way to all instances of a problem.
Formally, a deterministic Turing machine. [Recall Lectures T3, T4.]
- always produces the same answer given the same input

Properties of Algorithms

A given problem can be solved by many different algorithms.
. Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)
Efficient: polynomial time for ALL inputs.
- mergesort requires N log,N steps
Inefficient: "exponential time" for SOME inputs.
- brute force TSP takes N! > 2N steps

Robust definition has led to explosion of useful algorithms for wide

spectrum of problems.

Properties of Computers

Modern computers have varying characteristics:
1970’s mainframe.
1980's personal computer.
1990’s microprocessor.
. Supercomputer.
Network of computers.

From a theoretical standpoint, they’re all the same.
1930's Turing machine.

For example, none of these machine can solve general 1,000 city TSP

problems. ...
JOvE

Exponential Growth

Exponential growth dwarfs technological change.
. Suppose each electron in the uni verse had power of today’s
supercomputers.
. And each works for the life of the universe in an effort to solve TSP
problem using N! algorithm from Lecture P6.

Some Numbers

Home PC instructions/second 10°
Supercomputer instructions per second 10%
Seconds per vear 10°
Aae of universe in vears (estimated) 10"
Electrons in universe (estimated) 10"

. Will not su cceed!
1000! >> 101000 >> 1079 * 1013 * 109 * 1012

Complexity Class P

Definition of P:

. Set of all decision problems solvable in polynomial time on a
deterministic Turing machine.
Definition important because of Strong Church-Turing thesis.

Strong Church-Turing thesis:
P is the set of all decision problems solvable in polynomial time on
real computers.

Evidence supporting thesis:
. True for all physical computers.

- can create deterministic TM that simulates TOY machine in
polynomial time (and vice versa)

- can create deterministic TM that simulates any physical machine
in polynomial time (and vice versa)

Possible exception:

- quantum computers — no conventional gates

Complexity Class NP

Definition of NP:

. Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

Definition important b ecause it links many fundamental problems.

Equivalent definition:
. Set of all decision problems that can be verified in polynomial time
on a deterministic Turing machine.

FACTOR: Is there a nontrivial factor of X = 23,536,481,273 that is less
than L = 110,000?

. Witness: 104,729 (a factor of X).

. Can efficiently verify that X / 104,729 = 224,737
O Xis a yes-instance.

. Conclusion: FACTOR is in NP.

Complexity Class NP

Definition of NP:
. Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.
Definition important b ecause it links many fundamental problems.

Equivalent definition:
. Set of all decision problems that can be verified in polynomial time
on a deterministic Turing machine.

SAT: isthe formula (X' +y+2z) (x+y +2) (y+2) (X' +y +2)
satisfiable?
. Witness: (x,y,z) = (true, true, false) .
Easy to verify that input is a yes-instance given witness.
. Conclusion: SAT is in NP.

Complexity Class NP

Definition of NP:

. Set of all decision problems solvable in polynomial time on a
nondeterministic Turing machine.

Definition important b ecause it links many fundamental problems.

Equivalent definition:
. Set of all decision problems that can be verified in polynomial time
on a deterministic Turing machine.

BIG PROBLEM: need to know s olution ahead of time.
Real computers can simulate by guessing
all possibilities.
. Simulation t akes ex ponential time unless
you get "lucky.”

The Main Question

Does P = NP?

. Is every problem that is solvable in poly time on a nondeterministic
TM also solvable in poly time on a deterministic TM?
Is the verification problem as hard as the original decision
problem?

Most important open problem in theoretical computer science. Also
ranked #3 in all of mathematics. (Smale, 1999)

NP

If P#NP If P=NP

The Main Question

Does P = NP?

Is every problem that is solvable in poly time on a nondeterministic
TM also solvable in poly time on a deterministic TM?

Is the verification problem as hard as the original decision
problem?

If yes, then:
Efficient algorithms for TSP and factoring.

. Cryptography is impossible (except for one-time pads) on
conventional machines.

Modern banking system will collapse.

If no, then:
. Can't hope to write efficient algorithm for TSP.
But maybe efficient algorithm still exists for factoring???

The Main Question

Does P = NP?
Is every problem that is solvable in poly time on a nondeterministic
TM also solvable in poly time ona deterministic TM?

Is the verification problem as hard as the original decision
problem?

Probably no, since:

. Thousands of researchers have spent four d ecades in search of
polynomial algorithms for many fundamental NP problems without
success.

. Consensus opinion: P # NP.

But maybe yes, since:
No success in proving P # NP either.

NP-Complete

Definition of NP-complete:

. A problem with the property that if it can be solved in poly time,
then so can every other problem in NP (hardest problems in NP).

NP- P = NP = NP-complete
complete

If P#NP If P=NP

NP-Complete

Definition of NP-complete:

. A problem with the property that if it can be solved in poly time,
then so can every other problem in NP (hardest problems in NP).

Links together a huge number of fundamental problems:
. TSP, SCHEDULE, SAT, CLIQUE, thousands more.
Note: FACTOR is in NP but not known to be NP-complete.

. Given an efficient algorithm for TSP, can efficiently solve
SCHEDULE, SAT, CLIQUE, FACTOR, etc.

Notorious complexity class.

. Only exponential algorithms known for these problems.

. Called intractable - unlikely that they can be solved given limited
computing resources.

Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.

For problems A and B, we can often show: if A can be solved
efficiently, then so can B.
In this case, we say B reduces to A. (B is "easier" than A).

Warmup: PRIMALITY reduces to FACTOR.
. Given any instance of PRIMALITY (i.e., positive integer p), we can

determine the yes-no answer by using X =L = p as input to
FACTOR and returning opposite answer.
- original instance: Is p = 23,536,481,273 prime?
- transformed instance: Does X = 23,536,481,273 have a nontrivial
factor less than L = 23,536,481,273?
- if answer to transformed instance is no, then answer to original
instance is yes
- if answer to transformed instances is yes, then answer to
original instance is no

Reduction

Reduction is a general technique for showing that one problem is
harder (easier) than another.
For problems A and B, we can often show: if A can be solved
efficiently, then so can B.
In this case, we say B reduces to A. (B is "easier" than A).

SAT reduces to CLIQUE

. Given any input to SAT, we create a corresponding input to
CLIQUE that will help us solve the original SAT problem.

. Specifically, for a SAT formula with K clauses, we construct a
CLIQUE input that has a clique of size K if and only if the original
Boolean formula is satisfiable.

If we had an efficient algorithm for CLIQUE, we could apply our
transformation, solve the associated CLIQUE problem, and obtain
the yes-no answer for the original SAT problem.

SAT reduces to CLIQUE

SAT reduces to CLIQUE
. Associate a person to each variable occurrence in each clause.
. Two people know each other except if:

- they come from the same clause
-they represent t and t’ for some variable t

X+y+2)(x+y' +2)(y+2) (X +Yy +2)

Boolean formula:

SAT reduces to CLIQUE

SAT reduces to CLIQUE
. Associate a person to each variable occurrence in each clause.
. Two people know each other except if:
- they come from the same clause
-they represent t and t’ for some variable t
. Clique of size 4 0 satisfiable assignment.
- set variable in clique to true
- (X, Y, z) = (true, true, false)

Boolean formula:

X+y+2) (x+y' +2)(y+2) (X +Yy +2)

SAT reduces to CLIQUE

SAT reduces to CLIQUE
. Associate a person to each variable occurrence in each clause.
. Two people know each other except if:
- they come from the same clause
-they represent t and t’ for some variable t
. Clique of size 4 0 satisfiable assignment.
. Satisfiable assignment O clique of size 4
- (x,y, z) = (false, false, true)

- choose one true literal from each
clause

Boolean formula:

X +y+2) (x+y' +2)(y+2) (X +y +2)

CLIQUE is NP-Complete

CLIQUE is NP-complete.

. CLIQUE is in NP.

. SATis NP-complete.

. SATreduces to CLIQUE.

Thousands of problems shown to be NP-complete in this way.

But, how was the first problem shown to be NP-complete?

SAT is NP-complete. (Cook-Levin, 1960's)

Idea of proof:

. By definition, nondeterministic TM can solve
problem in NP in polynomial time.

. Polynomial-size Boolean formula can describe
(nondeterministic) TM.

. Given any problem in NP, establish a
correspondence with some instance of SAT.

. SAT solution gi ves simulat ion of TM solving
the corresponding problem.

. IF SAT can be solved in polynomial time, then
so can any problem in NP (e.g., T SP).

Stephen Cook

Coping With NP-Completeness

Hope that worst case doesn’t occur.
. Complexity theory deals with worst case behavior. The instance(s)
you want to solve may be "easy."
- TSP where all points are on aline or circle
- 13,509 US city TSP problem solved (Cook et. al., 1998)

Bill Cook

Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.
. Develop a heuristic, and hope it produces a good solution.
- TSP assignment.
. Design an approximation algorithm: algorithm that is guaranteed
to find a high-quality solution in polynomial time. - E -
- active area of research, but not always possible -

- Euclidean TSP tour within 1% of optimal
(Arora, 1997)

Sanjeev Arora

Coping With NP-Completeness
Hope that worst case doesn't occur.
Change the problem.
Exploit NP-completeness.

Keep trying to prove P = NP.

Summary

Many fundamental problems are NP-complete.
. TSP, SAT, SCHEDULE.

Theory says we probably won’t be able to design efficient algorithms
for NP-complete problems.

. You will likely run into these problems in your scientific life.

. If you know about NP-completeness, you can identify them and
avoid wasting time.

Theorem: if P = NP then cryptography is essentially impossible on
conventional machines.

