
4/13/00 Copyright © 2000, Kevin Wayne

Lecture T5: Analysis of Algorithm

4/13/00 Copyright © 2000, Kevin Wayne T5.2

Overview

Lecture T4:

■ What is an algorithm?
– Turing machine.

■ Is it possible, in principle, to write a program to solve any problem?
– No. Halting problem and others are unsolvable.

This Lecture:

■ For many problems, there may be several competing algorithms.
– Which one should I use?

■ Computational complexity:
– Rigorous and useful framework for comparing algorithms and

predicting performance.

■ Use sorting as a case study.

4/13/00 Copyright © 2000, Kevin Wayne T5.3

Design and Analysis of Algorithms

Algorithm.

■ "Step-by-step recipe" used to solve a problem.

■ Generally independent of programming language or machine on which it
is to be executed.

Design.

■ Find a method to solve the problem.

Analysis.

■ Evaluate its effectiveness
and predict theoretical performance.

Implementation.

■ Write actual code and test your theory.

Design

AnalysisImplementation

4/13/00 Copyright © 2000, Kevin Wayne T5.4

Better Machines vs. Better Algorithms

New machine.

■ Costs $$$ or more.

■ Makes "everything" finish sooner.

■ Incremental quantitative improvements (60% per year).

■ May not help much with some problems.

New algorithm.

■ Costs $ or less.

■ Dramatic qualitative improvements possible! (million times faster)

■ May make the difference, allowing specific problem to be solved.

■ May not help much with some problems.

4/13/00 Copyright © 2000, Kevin Wayne T5.5

Impact of Better Algorithms

Example 1: N-body-simulation.

■ Simulate the gravitational interactions among N bodies.
– See Assignment 9.
– Physicists want N = # atoms in universe.

■ Brute force method takes N2 steps.

■ Appel (1985) algorithm takes N log N time
and enables new research.

Example 2: Discrete Fourier Transform (DFT).

■ Multiplying polynomials.

– foundation of signal processing
– CD players, analyzing astronomical data, etc.

■ Brute force method takes N2 steps.

■ Runge-König (1924), Cooley-Tukey (1965) FFT algorithm takes
N log N time and enables new technology.

4/13/00 Copyright © 2000, Kevin Wayne T5.6

Case Study: Sorting

Sorting problem:

■ Given an array of N integers, rearrange them so that they are in
increasing order.

■ Among most fundamental problems.

Hanley

name

Haskell

Hauser

Hayes

Hill

Hong

Hornet

Hsu

Hauser

name

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

Hill

4/13/00 Copyright © 2000, Kevin Wayne T5.9

Sorting problem:

■ Given an array of N integers, rearrange them so that they are in
increasing order.

Insertion sort

■ Brute-force sorting solution.

■ Move left-to-right through array.

■ Exchange next element with larger elements to its left, one-by-one.

Case Study: Sorting

4/13/00 Copyright © 2000, Kevin Wayne T5.10

Generic Item to Be Sorted

Define generic Item type to be sorted.

■ Associated operations:
– less, show, swap, rand

■ Example: integers.

typedef int Item;

int ITEMless(Item a, Item b);
void ITEMshow(Item a);
void ITEMswap(Item *pa, Item *pb);
int ITEMscan(Item *pa);

ITEM.h

swap 2 Items

return 1 if a < b

4/13/00 Copyright © 2000, Kevin Wayne T5.11

Item Implementation

#include <stdio.h>
#include "ITEM.h"

int ITEMless(Item a, Item b) {
return (a < b);

}

void ITEMswap(Item *pa, Item *pb) {
Item t;
t = *pa; *pa = *pb; *pb = t;

}

void ITEMshow(Item a) {
printf("%4d ", a);

}

void ITEMscan(Item *pa) {
return scanf("%d", pa);

}

item.c

swap integers – need
to use pointers

4/13/00 Copyright © 2000, Kevin Wayne T5.12

Generic Sorting Program

#include <stdio.h>
#include <stdlib.h>
#include "Item.h"
#define N 2000000

int main(void) {
int i, n = 0;
Item a[N];

while(ITEMscan(&a[n]) != EOF)
n++;

sort(a, 0, n-1);

for (i = 0; i < n; i++)
ITEMprint(a[i]);

return 0;
}

sort.c (see Sedgewick 6.1)

Read input.

Call generic sort
function.

Print results.

Max number of
items to sort.

4/13/00 Copyright © 2000, Kevin Wayne T5.13

Insertion Sort Function

void insertionsort(Item a[], int left, int right) {
int i, j;

for (i = left + 1; i <= right; i++)
for (j = i; j > left; j--)

if (ITEMless(a[j], a[j-1]))
ITEMswap(&a[j], &a[j-1]);

else
break;

}

insertionsort.c (see Sedgewick Program 6.1)

4/13/00 Copyright © 2000, Kevin Wayne T5.14

Profiling Insertion Sort Empirically

Use lcc “profiling” capability.

■ Automatically generates a file “prof.out” that has frequency counts for
each instruction.

■ Striking feature:
– HUGE numbers! % lcc -b insertion.c

% a.out < sort1000.txt
% bprint

Unix

void insertionsort(Item a[], int left, int right) <1>{
int i, j;
for (<1>i = left + 1; <1000>i <= right; <999>i++)

for (<999>j = i; <256320>j > left; <255321>j--)
if (<256313>ITEMless(a[j], a[j-1]))

<255321>ITEMswap(&a[j], &a[j-1]);
else

<992>break;
<1>}

prof.out

4/13/00 Copyright © 2000, Kevin Wayne T5.15

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Worst case.

■ Elements in reverse sorted order.
– ith iteration requires i - 1 compare and exchange operations
– total = 0 + 1 + 2 + . . . + N-1 = N (N-1) / 2

E F G H I J D C B A

unsorted active sorted

4/13/00 Copyright © 2000, Kevin Wayne T5.16

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Best case.

■ Elements in sorted order already.
– ith iteration requires only 1 compare operation
– total = 0 + 1 + 1 + . . . + 1 = N -1

A B C D E F G H I J

unsorted active sorted

4/13/00 Copyright © 2000, Kevin Wayne T5.17

Profiling Insertion Sort Analytically

How long does insertion sort take?

■ Depends on number of elements N to sort.

■ Depends on specific input.

■ Depends on how long compare and exchange operation takes.

Average case.

■ Elements are randomly ordered.
– ith iteration requires i / 2 comparison on average
– total = 0 + 1/2 + 2/2 + . . . + (N-1)/2 = N (N-1) / 4
– check with profile: 249750 vs. 256313

B E F R T U O R C E

unsorted active sorted

4/13/00 Copyright © 2000, Kevin Wayne T5.19

Estimating the Running Time

Total run time:

■ Sum over all instructions: frequency * cost.

Frequency:

■ Determined by algorithm and input.
■ Can use lcc -b (or analysis) to help estimate.

Cost:

■ Determined by compiler and machine.

■ Could estimate by lcc -S (plus manuals).

4/13/00 Copyright © 2000, Kevin Wayne T5.20

Easier alternative.

(i) Analyze asymptotic growth.

(ii) For small N, run and measure time.

For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

■ Estimate time as a function of input size.
– N, N log N, N2, N3, 2N, N!

■ Big-Oh notation hides constant factors and lower order terms.
– 6N3 + 17N2 + 56 is O(N3)

Insertion sort is O(N2). Takes 0.1 sec for N = 1,000.

■ How long for N = 10,000? 10 sec (100 times as long)

■ N = 1 million? 1.1 days (another factor of 104)

■ N = 1 billion? 31 centuries (another factor of 106)

Estimating the Running Time

Donald Knuth

4/13/00 Copyright © 2000, Kevin Wayne T5.21

Average Case vs. Worst Case

Worst-case analysis.

■ Take running time of worst input of size N.

■ Advantages:
– performance guarantee

■ Disadvantage:
– pathological inputs can determine run time

Average case analysis.

■ Take average run time over all inputs of some class.

■ Advantage:
– can be more accurate measure of performance

■ Disadvantage:
– hard to quantify what input distributions will look like in practice
– difficult to analyze for complicated algorithms, distributions

– no performance guarantee

4/13/00 Copyright © 2000, Kevin Wayne T5.26

Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)

■ Divide array into two halves.

■ Sort each half separately.

■ Merge two halves to make sorted whole.
! How do we merge efficiently?

M E R G E S O R T M E

O R T M EM E R G E S divide

E M O R TE E G M R S sort

E E E G M M O R R S T merge

4/13/00 Copyright © 2000, Kevin Wayne T5.27

Profiling Mergesort Analytically

How long does mergesort take?

■ Bottleneck = merging (and copying).
– merging two files of size N/2 requires N comparisons

■ T(N) = comparisons to mergesort
array of N elements.

{







+
=

= otherwise)2/(2
1 if0

)T(
merginghalves both sorting

NNT
N

N
43421

Unwind recurrence: (assume N = 2k).

T(N) = 2 T(N/2) + N = 2 (2 T(N/4) + N/2) + N
= 4 T(N/4) + 2N = 4 (2 T(N/8) + N/4) + 2N
= 8 T(N/8) + 3N
= 16 T(N/16) + 4N
. . .

= N T(1) + k N
= 0 + N log2 N

4/13/00 Copyright © 2000, Kevin Wayne T5.28

Profiling Mergesort Analytically

How long does mergesort take?

■ Bottleneck = merging (and copying).
– merging two files of size N/2 requires N comparisons

■ N log2 N comparisons to sort *any* array of N elements.
– even already sorted array!

How much space?
! Can’t do "in-place" like insertion sort.
! Need extra array of size N.

4/13/00 Copyright © 2000, Kevin Wayne T5.29

Implementing Mergesort

Item aux[MAXN];

void mergesort(Item a[], int left, int right) {
int mid = (right + left) / 2;
if (right <= left)

return;
mergesort(a, left, mid);
mergesort(a, mid + 1, right);
merge(a, left, mid, right);

}

mergesort (see Sedgewick Program 8.3)

assume scratch array

4/13/00 Copyright © 2000, Kevin Wayne T5.30

Implementing Mergesort

void merge(Item a[], int left, int mid, int right) {
int i, j, k;

for (i = mid+1; i > left; i--)
aux[i-1] = a[i-1];

for (j = mid; j < right; j++)
aux[right+mid-j] = a[j+1];

for (k = left; k <= right; k++)
if (ITEMless(aux[i], aux[j]))

a[k] = aux[i++];
else

a[k] = aux[j--];
}

merge (see Sedgewick Program 8.2)

copy to
temporary array

merge two sorted
sequences

4/13/00 Copyright © 2000, Kevin Wayne T5.34

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

Q U I C K S O R T I S C O O L

partitioning
element

I C K I C L Q U S O R T S O O

C C I I K O O O Q R S S T U

4/13/00 Copyright © 2000, Kevin Wayne T5.35

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

void quicksort(Item a[], int left, int right) {
int m;
if (right > left) {
m = partition(a, left, right);
quicksort(a, left, m - 1);
quicksort(a, m + 1, right);

}
}

quicksort.c (see Sedgewick Program 7.1)

4/13/00 Copyright © 2000, Kevin Wayne T5.36

Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

■ Partition array so that:
– some partitioning element a[m] is in its final position
– no larger element to the left of m
– no smaller element to the right of m

■ Sort each "half" recursively.

■ How do we partition efficiently?
– N - 1 comparisons
– no extra space!

4/13/00 Copyright © 2000, Kevin Wayne T5.37

int partition(Item a[], int left, int right) {
int i = left-1; /* left to right pointer */
int j = right; /* right to left pointer */
Item p = a[right]; /* partition element */

for(;;) {
while (ITEMless(a[++i], p))
;

while (ITEMless(p, a[--j]))
if (j == left)
break;

if (i >= j)
break;

ITEMswap(&a[i], &a[j]);
}

ITEMswap(&a[i], &a[right]);
return i;

}

partition (see Sedgewick Program 7.2)

Implementing Partition

find element on left to swap

look for element on right to
swap, but don’t run off end

pointers cross

swap partition
element

4/13/00 Copyright © 2000, Kevin Wayne T5.38

Profiling Quicksort Empirically

void quicksort(Item a[], int left, int right) <1337>{
int p;
if (<1337>right <= left)

return<669>;
<668>p = partition(a, left, right);
<668>quicksort(a, left, p-1);
<668>quicksort(a, p+1, right);

<1337>}

prof.out

Striking feature: no
HUGE numbers!

4/13/00 Copyright © 2000, Kevin Wayne T5.39

int partition(Item a[], int left, int right) <668>{
int i = <668>left-1, j = <668>right;
Item swap, p = <668>a[right];

for(<668>;<1678>;<1678>) {
while (<5708>ITEMless(a[++i], p))

<3362>;
while (<6664>ITEMless(p, a[--j]))

if (<4495>j == left)
<177>break;

if (<2346>i >= j)
<668>break;

<1678>ITEMswap(&a[i], &a[j]);
}
<668>ITEMswap(&a[i], &a[right]);
return <668>i;

<668>}

prof.out (cont)

Profiling Quicksort Empirically

Striking feature: no
HUGE numbers!

4/13/00 Copyright © 2000, Kevin Wayne T5.40

Profiling Quicksort Analytically

Intuition.

■ Assume all elements unique.

■ Assume we always select median as partition element.

■ T(N) = # comparisons.

{







+
=

= otherwise)2/(2

1 if0
)T(

ngpartitionihalves both sorting

NNT

N
N

43421

If N is a power of 2.
⇒ T(N) = N log2 N

How can we
find median in

O(N) time?

4/13/00 Copyright © 2000, Kevin Wayne T5.42

Profiling Quicksort Analytically

Average case.

■ Assume partition element chosen at random and all elements are
unique.

■ Denote ith largest element by i.

■ Probability that i and j (where j > i) are compared = 1
2

+− ij

Expected # of comparisons =

NN
j

N

j
N

jij

N

N

j

N

i

i

jji

ln2

1
2

1
2

1
2

1
2

1

1

1 2

=

∫≈

∑≤

∑ ∑=∑
+−

=

= =<

4/13/00 Copyright © 2000, Kevin Wayne T5.43

Profiling Quicksort Analytically

Average case. (roughly 2 N ln N)

■ Check with profile: 13815 vs. 12372 (5708 + 6664).

■ Running time for N = 100,000 about 1.2 seconds.

■ How long for N = 1 million ?
– slightly more than 10 times (about 12 seconds)
– on arizona, 13.7

Best case. (N log2N)

■ Always partition on median.

Worst case. (N2 / 2)

■ Novices beware: could be slow for some inputs.

■ Already sorted file: takes N2/2 + N/2 comparisons.
– all partitions are degenerate

4/13/00 Copyright © 2000, Kevin Wayne T5.44

Profiling Quicksort Analytically

Partition on random element:

■ No bad inputs.

■ Algorithm can get unlucky and take N2 time.

Partition on median element.

■ Guaranteed N log N performance.

■ But need to find median element in O(N) time.
– see COS 226/423

Bob Tarjan, et al (1973)

4/13/00 Copyright © 2000, Kevin Wayne T5.45

Sorting Analysis Summary

Running time estimates:

■ Home pc executes 108 comparisons/second.

■ Supercomputer executes 1012 comparisons/second.

■ Implementations and analysis validate each other.

■ Further refinements possible.
– design-analysis-implement cycle

Good algorithms are more powerful than supercomputers.

 Insertion Sort (N2)
computer thousand million billion
home pc instant 2 hour 310 years

super instant 1 sec 1.6 weeks

Quicksort (N lg N)

thousand million billion

instant 0.3 sec 6 min

instant instant instant

4/13/00 Copyright © 2000, Kevin Wayne T5.46

Sorting Analysis Summary

Sorting algorithms have different performance characteristics.

■ Other choices: bubblesort, heapsort, shellsort, selection sort, shaker
sort, radix sort, BST sort, solitaire sort, hybrid methods.
Q. Which one should I use?
A. Depends on application.

 Comparison of Different Sorting Algorithms

Attribute insertion quicksort mergesort

Worst case complexity N2 N2 N log2 N

Best case complexity N N log2 N N log2 N

Average case complexity N2 N log2 N N log2 N

Already sorted N N2 N log2 N

Reverse sorted N2 N2 N log2 N

Space N N 2 N

Stable yes no yes

4/13/00 Copyright © 2000, Kevin Wayne T5.47

Computational Complexity

Framework to study efficiency of algorithms.

■ Depends on machine model, average case, worst case.

■ UPPER BOUND = algorithm to solve the problem.

■ LOWER BOUND = proof that no algorithm can do better.

■ OPTIMAL ALGORITHM: lower bound = upper bound.

Example: sorting.
■ Measure costs in terms of comparisons.

■ Upper bound = N log2 N (mergesort).
– quicksort usually faster, but mergesort never slow

■ Lower bound = N log2 N - N log2 e
(applies to any comparison-based algorithm).

– Why?

4/13/00 Copyright © 2000, Kevin Wayne T5.48

Comparison Based Sorting

a1 < a2

a1 < a3

a2 < a3 a1 < a3

a2 < a32, 1, 3

2, 3, 1 3, 2, 11, 3, 2 3, 1, 2

1, 2, 3

YES

YES

YES

YES

YES

NO

NO

NO

NO

NO

4/13/00 Copyright © 2000, Kevin Wayne T5.49

Lower Bound

Lower bound = N log2N (applies to any comparison-based algorithm).

■ Worst case dictated by tree height h.

■ N! different orderings.

■ One (or more) leaves corresponding to each ordering.

■ Binary tree with N! leaves must have

)log(

loglog

)/(log

)!(log

2

22

2

2

NN

eNNN

eN

Nh
N

Θ=
−=

≥
≥

Stirling’s formula

4/13/00 Copyright © 2000, Kevin Wayne T5.50

Computational Complexity

Caveats.

■ Worst or average case may be unrealistic.

■ Costs ignored in analysis may dominate.

■ Machine model may be restrictive.

Complexity studies provide:

■ Starting point for practical implementations.

■ Indication of approaches to be avoided.

4/13/00 Copyright © 2000, Kevin Wayne T5.51

Summary

How can I evaluate the performance of a proposed algorithm?

■ Computational experiments.

■ Complexity theory.

What if it’s not fast enough?

■ Use a faster computer.
– performance improves incrementally

■ Understand why.

■ Develop a better algorithm (if possible).
– performance can improve dramatically

