
Lecture T4: Pattern Matching

0

1

1

0

0

0

2

1

1

3/29/00 Copyright © 2000, Kevin Wayne T1.8

Introduction to Theoretical CS

Two fundamental questions.

■ What can a computer do?

■ How fast can it do it?

General approach.

■ Don’t talk about specific machines or problems.

■ Consider minimal abstract machines.

■ Consider general classes of related problems.

Today.

■ Simplest type of machine that is still interesting = FSA.

■ Class of (pattern matching) problems that it can solve.

Future lectures.

■ More complicated machines and problems.

3/29/00 Copyright © 2000, Kevin Wayne T1.9

Why Learn Theory

In theory . . .

■ Deeper understanding of what is a computer and computing.

■ Foundation of all modern computers.

■ Pure science.

■ Philosophical implications.

In practice . . .

■ Web search: theory of pattern matching.

■ Sequential circuit: theory of finite state automata.

■ Compilers: theory of context free grammar.

■ Cryptography: theory of complexity.

3/29/00 Copyright © 2000, Kevin Wayne T1.10

Web Search Example

Standard Web search for ’+censorship +net’ might yield 1 million
hits, ordered as follows:

■ www.epic.org/free_speech/action

■ www.zepa.net/hypermail/asfar/1998/07/0466.html

■ www.eserver.org/internet/censorship.html

■ www.tiac.net/users/sojourn/censor0596.html

■ www.anatomy.usyd.edu.au/danny/usenet/aus.net.news/

Observation: not many useful pages.

3/29/00 Copyright © 2000, Kevin Wayne T1.11

Web Search Example

Standard Web search for ’+censorship +net’ might yield 1 million
hits, ordered as follows:

Jon Kleinberg’s clever algorithm produces "authoritative" pages without
human fine-tuning:

■ www.eff.org (Electronic Frontier Foundation)

■ www.cdt.org (Center for Democracy and Technology)

■ www.vtw.org (Voters Telecommunications Watch)

■ www.aclu.org (American Civil Liberties Union)

■ Based on theoretical principles.

■ Involves computing eigenvectors of Web matrix!

■ Use google.com

3/29/00 Copyright © 2000, Kevin Wayne T1.12

Unix Tools

Unix.

■ A large number of simple tools.

Some fundamental pattern matching tools.

■ egrep, awk, sed, more, emacs, perl

■ Useful for variety of applications including Web search.

■ Not C programming, though tools are as powerful.

■ Directly related to fundamentals tenets of computer science.

3/29/00 Copyright © 2000, Kevin Wayne T1.13

egrep

General regular expressions pattern matching.

■ Acts as filter.

■ Sends lines from stdin to stdout that "match" argument string.

%egrep ’beth’ classlist
02/Condliffe/Elizabeth/3/condlife
03/Danaher/Elizabeth/8/edanaher
03/Smythe/Elizabeth/6/esmythe
03/Bethke/Kristen/3/kbethke

% egrep ’/3/’ classlist
03/Marin/Anthony/3/amarin
03/Parker/Andrew/3/aparker
. . .
03/Weiss/Jacob/3/weiss

%egrep ’zeuglodon’ mobydick.txt
rechristened the monster zeuglodon and in his

Elementary Examples

Find all lines in file
classlist with
substring ’beth’

List all people in
precept 3.

3/29/00 Copyright © 2000, Kevin Wayne T1.14

Crossword Puzzle or Scrabble Too Hard?

/usr/dict/words is a list of (25,143) words in dictionary.

% egrep ’hh’ /usr/dict/words
beachhead
highhanded
withheld
withhold

% egrep ’u.u.u’ /usr/dict/words
cumulus

% egrep ’..oo..oo’ /usr/dict/words
bloodroot
schoolbook
schoolroom

% egrep -c ’..oo..oo’ /usr/dict/words
3

More Examples

A dot matches any
single character

Why not "cookbook"?

count number
of matches

Two consecutive h’s.

3/29/00 Copyright © 2000, Kevin Wayne T1.15

Excerpts From "man egrep"

% man egrep

Name: egrep - search file using full regular expressions

Syntax: egrep [option...] expression [file...]

Description: Search the input files (standard input default) for lines
matching a pattern. Normally, each line found is copied to the standard
output.

Take care when using special characters in the expression because they
are also meaningful to the Shell. It is safest to enclose the entire
expression argument in single quotes.

Options:
-c Produces count of matching lines only.
-i Considers upper and lowercase letter identical.

-n Precedes each matching line with its line number.
-v Displays all lines that do not match.

Restrictions: Lines are limited to 256 chars; longer lines are truncated.

Unix

3/29/00 Copyright © 2000, Kevin Wayne T1.16

Grep Pattern Conventions

Conventions for egrep:

c any non-special character matches itself

. any single character

r* zero or more occurrence of r

(r) grouping

r1|r2 logical OR

[...] any character in [a-z]

[^ ...] any character not in [a-z]

^ beginning of line

$ end of line

3/29/00 Copyright © 2000, Kevin Wayne T1.17

Still More Examples

% egrep ’n(ie|ei)ther’ /usr/dict/words
neither

% egrep ’actg(atac)*gcta’ human.data
ggtactggctaggac

% egrep ’actg(atac)*gcta’ student.data
tatactgatacatacatacgctattac

% egrep ’^y.(..)*y$’ /usr/dict/words
yesterday

% grep -v ’[aeiou]’ /usr/dict/words |
grep ’......’

rhythm
syzygy

Unix

Do spell checking
by specifying what
you know.

Find all words with
no vowels and 6 or
more letters.

Starts and ends
with y, odd number
of characters.

3/29/00 Copyright © 2000, Kevin Wayne T1.18

Pattern Matching Alternatives in Unix

Pattern matching.

■ grep, egrep

■ more

Substitution editing.

■ emacs, ex

■ sed: filter, line by line substitution

sed ’s/apples/oranges/g’ file.txt

Pattern matching languages.

■ awk, perl

■ Matching, substitution, pattern manipulation, variables, numeric
capabilities, control and logic.

3/29/00 Copyright © 2000, Kevin Wayne T1.19

Regular Expressions

Specifying "pattern" for grep can be complex.
^[^aeiou]*a[^aeiou]*e[^aeiou]*i[^aeiou]*o[^aeiou]*u[^aeiou]*

! facetious

What kinds of patterns can be specified?

■ Match all lines containing an even number?

■ Match all lines containing a prime number?

Which aspects are essential?
■ Unix egrep regular expressions are useful.

■ But more complex than theoretical minimum.

3/29/00 Copyright © 2000, Kevin Wayne T1.20

Regular Expressions

Rules for creating regular expressions (RE’s):

0 or 1 symbols

(a) grouping

ab concatenation

a + b logical OR

a* closure (0 or more replications)

where a and b are regular expressions.

Examples:

(10)* ε, 10, 1010, 101010, ...
0(0 + 1)*0 00, 000, 010, 0000, 0110, ...

(1*01*01*01*)* ε, 000, 000000, 11101110101111, ...

ε = empty string

use + instead of |

3/29/00 Copyright © 2000, Kevin Wayne T1.21

Formal Languages

An alphabet is a finite set of symbols.

■ Binary alphabet = {0, 1}

■ Lower-case alphabet = {a, b, c, d, ..., y, z}

■ Genetic alphabet = {a, c, t, g}

A string is a finite sequence of symbols in the alphabet.

■ ’0111011011’ is a string in the binary alphabet.

■ ’tigers’ is a string in the lower-case alphabet.

■ ’acctgaacta’ is a string in the genetic alphabet.

A formal language is an (unordered) set of strings in an alphabet.

■ Can have infinitely many strings.

■ Examples:
{0, 010, 0110, 01110, 011110, 0111110, ...}

{11, 1111, 111111, 11111111, 1111111111, ...}

3/29/00 Copyright © 2000, Kevin Wayne T1.22

Why Study Formal Languages?

Can cast any computation as a language recognition problem.

■ Is x = 23,536,481,273 a prime number?

! L = {2, 3, 5, 7, 11, 13, 17, . . . }
! Is x in language L?

3/29/00 Copyright © 2000, Kevin Wayne T1.23

Regular Languages

Every RE describes a language (the set of all strings that match).

■ (1*01*01*)* describes the language of all bit strings with an even
number of 0’s: {1, 11, 1001, 00101110111, ...}

Regular language.

■ Any language that can be described by a RE.

Which languages are regular? (all but one of the following)

All bit strings that: Example

■ Begin with 0 and end with 1. 00010110111

■ Have a multiple of 3 0’s. 11000110100

■ Have more 1’s than 0’s. 01111001100

■ Have no consecutive 1’s. 01001010010

3/29/00 Copyright © 2000, Kevin Wayne T1.25

Machines

Can cast any computation as a language recognition problem.

■ Is x = 23,536,481,273 a prime number?

– L = {2, 3, 5, 7, 11, 13, 17, . . . }
– Is x in language L?

Start by trying to understand simple languages.

■ Build a machine to recognize regular languages.

3/29/00 Copyright © 2000, Kevin Wayne T1.27

Finite State Automata

Simple machine with N states.

■ Start in state 0.

■ Read an input bit.

■ Move to new state

– depends on input bit and current
state

■ Stop when last bit read.

– ’yes’ if end in accept state(s)

– ’no’ otherwise

’Yes’ also called accepted or recognized
inputs from a language.

■ FSA to right accepts all bit strings of
the form 10(10)*

■ Rejects all others.

1

0

00 1 1

1

3

1

2

0

start state

accept state

0

3/29/00 Copyright © 2000, Kevin Wayne T1.28

C Code for 10(10)* FSA

int main(void) {
int c, state = START_STATE;
while ((c = getchar()) != EOF) {

if (state == 0 && c == ’0’) state = 2;
if (state == 0 && c == ’1’) state = 1;
if (state == 1 && c == ’0’) state = 3;
if (state == 1 && c == ’1’) state = 2;
if (state == 2 && c == ’0’) state = 2;
if (state == 2 && c == ’1’) state = 2;
if (state == 3 && c == ’0’) state = 2;
if (state == 3 && c == ’1’) state = 1;

}

if (state == ACCEPT_STATE)
printf("Accepted\n");

else
printf("Rejected\n");

return 0;

fsa1.c

3/29/00 Copyright © 2000, Kevin Wayne T1.29

Better C Code for FSA

#include <stdio.h>
#define STATES 4
#define ALPHABET_SIZE 2
#define START_STATE 0
#define ACCEPT_STATE 3

int main(void) {
int c, state = START_STATE
int transition[STATES][ALPHABET_SIZE] =

{ {2, 1}, {3, 2}, {2, 2}, {2, 1} };

while ((c = getchar()) != EOF)
if (c >= ’0’ && c < ’0’ + ALPHABET_SIZE)

state = transition[state][c - ’0’];

if (state == ACCEPT_STATE) printf("Accepted\n");
else printf("Rejected\n");
return 0;

}

fsa.c

3/29/00 Copyright © 2000, Kevin Wayne T1.30

A Second Example

Consider the following two state FSA.

What bit strings does it accept?

■ Yes: 0, 11110, 00000, 100100111011, all bit strings with an odd
number of 0’s.

■ No: 1, 1111, 00, 1011100111011, all bit strings with an even
number of 0’s.

■ Recognizes same language as (1*01*01*)* (1*01*)

0

1

10

1

0

even # of 0’s exactly one 0

3/29/00 Copyright © 2000, Kevin Wayne T1.35

A Third Example

Build an FSA that accepts all strings that contain ’acat’ as a substring.

■ tgacatg

■ acacatg

Finish building:

φ a ac aca acat
a c a t

c acgt

g

a

cgt

gt

cgt
a

3/29/00 Copyright © 2000, Kevin Wayne T1.36

More Applications

3/29/00 Copyright © 2000, Kevin Wayne T1.37

Duality Between FSA’s and RE’s

Observation: every FSA we create generates a regular language.
(the inputs accepted can be specified by a regular expression)

Is this always the case?

! Yes. It’s no coincidence.

What about the OTHER way around? Suppose I give you a regular
expression. Can you always create a FSA that accepts precisely the same
strings?

! Yes.

I don’t see why?

Stay tuned: see Lecture T2.

3/29/00 Copyright © 2000, Kevin Wayne T1.38

Limitations of FSA

FSA are simple machines.

■ N states ⇒ can’t remember more than N things.
■ Some languages require remembering more than N things.

No FSA can recognize the language of all bit strings with an equal number
of 0’s and 1’s.

A warmup exercise:

0 1

0

If 01xyz accepted then so is 00001xyz

0

3/29/00 Copyright © 2000, Kevin Wayne T1.39

Limitations of FSA

No FSA can recognize the language of all bit strings with an equal number
of 0’s and 1’s.

■ Suppose an N-state FSA can recognize this language.
■ Consider following input: 0000000011111111

■ FSA must accept this string.

■ Some state x is revisited during first N+1 0’s since only N states.
0000000011111111

x x

■ Machine would accept same string without intervening 0’s.
000011111111

■ This string doesn’t have an equal number of 0’s and 1’s.

N+1 0’s N+1 1’s

3/29/00 Copyright © 2000, Kevin Wayne T1.40

Limitations of Regular Languages

Consequence: there are languages that are not regular.

■ No FSA can recognize the language of all bit strings with an equal
number of 0’s and 1’s.

■ We claimed that FSA’s are equivalent to regular expressions, i.e.,

– for any regular language, there is a FSA that accepts precisely those
strings

– the language of all strings accepted by any specific FSA is regular

■ Hence, the language above cannot be regular.

"FSA’s can’t count."

3/29/00 Copyright © 2000, Kevin Wayne T1.41

Looking Ahead

Today.

■ Defined a simple abstract machine = FSA.

■ Capable of pattern matching.

■ Incapable of "counting."

■ Need to consider more powerful machines.

Future lectures.

■ Define an abstract machine.

■ Understand how it works and what it can do.

■ Find things it can’t do.

■ Define a more powerful machine.

■ Repeat until we run out of problems or machines.

Hmm. Which will we
run out of first?

3/29/00 Copyright © 2000, Kevin Wayne T1.42

FSA to decide if input (convert binary to decimal) is divisible by 3?

What bit strings does it accept?

■ Yes: 11 (310), 110 (610), 1001 (910), 1100 (1210), 1111 (1510), integers
whose binary representation is divisible by 3.

■ No: 1, 10, 100, 101, 111, integers not divisible by 3.

A Fourth Example

0 is start and accept state 0

1

1

0

0

0

2

1

1

3/29/00 Copyright © 2000, Kevin Wayne T1.43

A Fourth Example

FSA to decide if input (convert binary to decimal) is divisible by 3?

How does it work?

■ State 0: input so far is divisible by 3.

■ State 1: input has remainder 1 upon division by 3.

■ State 2: input has remainder 2 upon division by 3.

■ Transition example.

– Input 1100 (12) ends in state 0.

– If next bit is 0 then stay in state 0. Adding 0 to last bit is same as
multiplying number by 2. Remains divisible by 3.

0

1

1

0

0

0

2

1

1

3/29/00 Copyright © 2000, Kevin Wayne T1.44

An Application: Bounce Filter

Bounce filter: remove isolated 0’s and 1’s in input.

■ Input: 0 1 0 0 0 1 1 0 1 1 1 1

■ Output (one-bit delay): - 0 0 0 0 0 1 1 1 1 1 1 1

■ x/y: if input is x, then change state and OUTPUT y

10/0
0/0

1/0

31/1
1/1

0/1
2

0

0/0

1/1

3/29/00 Copyright © 2000, Kevin Wayne T1.45

An Application: Bounce Filter

Bounce filter: remove isolated 0’s and 1’s in input.

■ Input: 0 1 0 0 0 1 1 0 1 1 1 1

■ Output (one-bit delay): - 0 0 0 0 0 1 1 1 1 1 1 1

■ x/y: if input is x, then change state and OUTPUT y

State interpretations.

■ 0: at least two consecutive 0’s

■ 1: sequence of 0’s followed by a 1

■ 2: at least two consecutive 1’s

■ 3: sequence of 1’s followed by a 0

