
1/27/00 Copyright © 2000, Kevin Wayne P9.1

Lecture P9: Trees

1/27/00 Copyright © 2000, Kevin Wayne P9.2

Overview

Culmination of the programming portion of this class.

■ Solve a database searching problem.

Trees

■ Versatile and useful data structure.

■ A naturally recursive data structure.

■ Application of stacks and queues.

1/27/00 Copyright © 2000, Kevin Wayne P9.3

Searching a Database

Database entries.

■ Names and social security numbers.

Desired operations.

■ Insert student.

■ Delete student.

■ Search for name given ID number.

Goal.

■ All operations fast, even for huge
databases.

Data structure that supports these
operations is called a SYMBOL TABLE.

SS# Last Name e

1920342006 Alam
2012121991 Baer
2021230087 Bagyenda
1779999898 Balestri
2328761212 Benjamin
1229993434 Berube

search key

1/27/00 Copyright © 2000, Kevin Wayne P9.4

Searching a Database

Other applications.

■ Online phone book looks up names and telephone numbers.

■ Spell checker looks up words in dictionary.

■ Internet domain server looks up IP addresses.

■ Compiler looks up variable names to find type and memory address.

1/27/00 Copyright © 2000, Kevin Wayne P9.5

Representing the Database Entries

Define Item.h file to encapsulate generic database entry.

■ Don’t want to use internals of item type when we write database code.

– want our insert and search code to work for any item type
– ideally Item would be an ADT

■ Key is field in search.
#include “ITEM.h”
int eq(Key A, Key B) {

return A == B;
}
int less(Key A, Key B) {

return A < B;
}
Key key(Item A) {

return A.ID;
}
void print(Item A) {

printf(“%9d %20s”,
A.ID, A.name);

}

Item.c

typedef int Key;
typedef struct {

Key ID;
char name[30];

} Item;
Item NULLitem = {-1, ""};

int eq(Key, Key);
int less(Key, Key);
Key key(Item);
void print(Item);

ITEM.h

1/27/00 Copyright © 2000, Kevin Wayne P9.6

Symbol Table ADT

Define ST.h file to specify database operations.

■ Make it a true ADT.

Item STsearch(Key);
void STinsert(Item);
void STprint(void);
int STcount(void);
void STdelete(Item);

ST.h (Sedgewick 12.1)

1/27/00 Copyright © 2000, Kevin Wayne P9.7

Sorted Array Representation of Database

Maintain array of Items.

■ Store in sorted order.

■ Use BINARY SEARCH to find database Item with designated Key.

#define MAXSIZE 10000
Item st[MAXSIZE];

Item search(int l, int r, Key k) {
int m = (l+r)/2;
if (l > r) return NULLitem;
if eq(k, key(st[m]))

return st[m];
if less(k, key(st[m]))

return search(l, m-1, k);
return search(m+1, r, k);

}

STarray.c (Sedgewick 12.6)

Array of
database Items.

Key k found.
Key k not found.

Divide and
conquer.

1/27/00 Copyright © 2000, Kevin Wayne P9.8

Sorted Array Representation of Database

Maintain array of Items.

■ Store in sorted order.

■ Use BINARY SEARCH to find database Item with designated Key.

Item STsearch(Key k) {
int N = Stcount();
return search(0, N-1, k);

}

STarray.c (Sedgewick 12.6)“Wrapper” for
search function.

1/27/00 Copyright © 2000, Kevin Wayne P9.9

Cost of Binary Search

How many “comparisons” to find a name in database of size N?

■ log2 N = number of digits in binary representation of N.

■ Divide list in half each time.

5000 ⇒ 2500 ⇒ 1250 ⇒ 625 ⇒ 312 ⇒ 156 ⇒ 78 ⇒ 39
⇒ 18 ⇒ 9 ⇒ 4 ⇒ 2 ⇒ 1

The log functions grows very slowly.

■ log2 (thousand) ≈ 10

■ log2 (million) ≈ 20

■ log2 (billion) ≈ 30

Without binary search (or if unsorted), may need to look at EVERY Item.

■ Savings is enormous for large files.

2N = x
x = log2 N

1/27/00 Copyright © 2000, Kevin Wayne P9.10

14 20 26 32 47 55 56 58 8264

Insert Using Sorted Array Representation

Problem 1: insertion is slow.

■ Want to keep entries in sorted order.

■ Have to move larger keys over one position to right.

82585655473226

Demo: inserting 25 into a sorted array.

25

1/27/00 Copyright © 2000, Kevin Wayne P9.11

Problem 1: insertion is slow.

■ Want to keep entries in sorted order.

■ Have to move larger keys over one position to right.

■ Exercise: write code for insertion.

Problem 2: need to fix maximum database size ahead of time.

Insert Using Sorted Array Representation

14 20 26 32 47 55 56 58 8264 82585655473226

Demo: inserting 25 into a sorted array.

25

1/27/00 Copyright © 2000, Kevin Wayne P9.12

20 NULL14 26 32 47

Linked List Representation of Database

Keep items in a linked list.

■ Store in sorted order.

Insert.

■ Only need to change links.

■ No need to “move” large amounts of data.

typedef struct node* link;
struct node {

Item item;
link next;

}

STlist.c

25

1/27/00 Copyright © 2000, Kevin Wayne P9.13

20 NULL14 26 32 47

25

Linked List Representation of Database

Keep items in a linked list.

■ Store in sorted order.

Insert.

■ Only need to change links.

■ No need to “move” large amounts of data.

typedef struct node* link;
struct node {

Item item;
link next;

}

STlist.c

1/27/00 Copyright © 2000, Kevin Wayne P9.14

Linked List Representation of Database

Search.

■ Can’t use binary search since no DIRECT access to middle element.

■ Use sequential search.
– may need to search entire linked list to find desired Key

– much slower than binary search

Item STsearch(Key k) {
link x;
for (x = head; x != NULL; x = x->next)

if (eq(k, key(x)) return x->item;
return NULLitem;

}

STlist.c

1/27/00 Copyright © 2000, Kevin Wayne P9.15

Summary

Database entries.

■ Names and social security numbers.

Desired operations.

■ Insert, delete, search.

Goal.

■ Make all of these operations FAST even for huge databases.

Tradeoff.

■ ARRAY: fast search, slow insert/delete.

■ LINKED LIST: fast insert/delete, slow search.

Is there any way
to have fast insert

AND search?

1/27/00 Copyright © 2000, Kevin Wayne P9.16

Binary Tree

Yes. Use TWO links per node.

14

84 43

13 06 33 97

6499 7253 2551

root

leaf

parent

left child right child

1/27/00 Copyright © 2000, Kevin Wayne P9.17

Binary Tree in C

Represent in C with two links per
node.

■ Leftmost arrow corresponds to
left link

■ Rightmost to right link.

typedef struct STnode* link;
struct STnode {

Item item;
link left;
link right;

};
link head;

STbst.h

item

rightleft

51

14 21

66 19NULL 32

NULL NULL NULL NULLNULLNULL

1/27/00 Copyright © 2000, Kevin Wayne P9.18

Binary Search Tree

Binary tree in “sorted” order.

■ Maintain ordering property for ALL subtrees.

left subtree
(smaller values)

right subtree
(smaller values)

root (middle value)

1/27/00 Copyright © 2000, Kevin Wayne P9.19

Binary Search Tree

Binary tree in “sorted” order.

■ Maintain ordering property for ALL subtrees.

51

14 72

06 33 53 97

6425 4313 9984

1/27/00 Copyright © 2000, Kevin Wayne P9.20

Binary Search Tree

Binary tree in “sorted” order.

■ Many BST’s for the same input data.

■ Have different tree shapes.

99

25

06 72

13 43 97

533314 84

51 64

1/27/00 Copyright © 2000, Kevin Wayne P9.21

Search in Binary Search Tree

Search for Key k in binary search tree.

■ Analogous to binary search in sorted array.

Search algorithm:

■ Start at head node.

■ If Key of current node is k, return node.

■ Go LEFT if current node has Key < k.

■ Go RIGHT if current node has Key > k.

1/27/00 Copyright © 2000, Kevin Wayne P9.22

Search in BST’s

Search for Key k.

Item search (link h, Key k) {
if (h == NULL)

return NULLitem;
if (eq(k, key(h->item))

return h->item;
if (less(k, key(h->item))

return search(h->left, k);
return search(h->right, k);
}

Item STsearch(Key k) {
return search(head, k);

}

STbst.c (Sedgewick 12.7)

Found Key k.

Look for Key k
in right subtree.

Look for Key k
in left subtree.

Key k not in tree.

Search for Key k
in BST tree
rooted at head.

1/27/00 Copyright © 2000, Kevin Wayne P9.23

Cost of BST Search

Depends on tree shape.

■ Proportional to length of path from root to Key.

■ “Balanced”

– 2 log2 N comparisons
– proportional to binary search cost

■ “Unbalanced”

– takes N comparisons for degenerate tree shapes
– can be as slow as sequential search

Algorithm works for any tree shape.

■ With cleverness (see COS 226), can assure tree is always balanced.

1/27/00 Copyright © 2000, Kevin Wayne P9.24

Insert Using BST’s

How to insert new database Item.

■ Search for key of database Item.

■ Search ends at NULL pointer.

■ New Item “belongs” here.

■ Allocate memory for new Item, and link it to tree.

1/27/00 Copyright © 2000, Kevin Wayne P9.25

Insert Using BST’s

link insert(link h, Item item) {
Key k = key(item);
Key k2 = key(h->item);
link x;
if (h == NULL) {

link x = malloc(sizeof *x);
x->item = item;
x->left = x->right = NULL;
return x;

}
if (less(k, k2))

h->left = insert(h->left, item);
else h->right = insert(h->right, item);
return h;

}

void STinsert(Item item) {
head = insert(head, item);

}

BST.c (Sedgewick 12.7)

Allocate
memory and
insert here.

Divide-and-
conquer.

Wrapper function.

1/27/00 Copyright © 2000, Kevin Wayne P9.26

Insertion Cost in BST

Depends on tree shape.

■ Cost is proportional to length of path from root to node.

Tree shape depends on order keys are inserted.

■ Insert in random order.

– Leads to “well-balanced” tree
– average length of path from root to node is 1.44 log2 N

■ Insert in sorted or reverse-sorted order.

– degenerates into linked list
– takes N -1 comparisons

■ With cleverness, can ensure tree is always balanced.

– see COS 226

1/27/00 Copyright © 2000, Kevin Wayne P9.27

Question

Current code searches for a name given an ID number.

What if we want to search for an ID number given a name?
! Easy, redefine Item type.

#include <string.h>
int eq(Key A, Key B) {

return strcmp(A, B) == 0;
}

int less(Key A, Key B) {
return strcmp(A, B) < 0;

}

Key key(Item A) {
return A.name;

}

Item.c

typedef char Key[30];
typedef struct {

int ID;
Key name;

} Item;

Item NULLitem = {-1, ""};

int eq(Key, Key);
int less(Key, Key);
Key key(Item);

Item.h

1/27/00 Copyright © 2000, Kevin Wayne P9.28

Other Types of Trees

Trees.

■ Nodes need not have exactly two children.

■ Order of children may not be important.

Examples.

■ Family tree.

me

mom dad

mom’s
mom

mom’s
dad

dad’s
mom

dad’s
dad

1/27/00 Copyright © 2000, Kevin Wayne P9.29

Other Types of Trees

Trees.

■ Nodes need not have exactly two children.

■ Order of children may not be important.

Examples.

■ Family tree.

■ Parse tree.

(a * (b + c)) - (d + e)

-

* +

a + d e

b c

1/27/00 Copyright © 2000, Kevin Wayne P9.30

Other Types of Trees

Trees.

■ Nodes need not have exactly two children.

■ Order of children may not be important.

Examples.

■ Family tree.

■ Parse tree.

■ Unix file hierarchy.

– not binary

/

bin lib uetc

zrnyecs126

files

mandel stock

POINT.h

submit

aaclarke

tsp

point.c tsp13509.txt

grades

1/27/00 Copyright © 2000, Kevin Wayne P9.31

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.

■ “Tree traversal.”

traverseInorder(link h) {
if (h == NULL) return;
traverse(h->left);
print(h->item);
traverse(h->right);

}

inorder

traverse left subtree

traverse right subtree
process node h

void STprint(void) {
traverse(head);

}

STbst.c

wrapper function

1/27/00 Copyright © 2000, Kevin Wayne P9.32

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.

■ “Tree traversal.”

■ Goal realized no matter what order nodes are visited.

– inorder: visit between recursive calls

traverseInorder(link h) {
if (h == NULL) return;
traverse(h->left);
print(h->item);
traverse(h->right);

}

inorder

1/27/00 Copyright © 2000, Kevin Wayne P9.33

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.

■ “Tree traversal.”

■ Goal realized no matter what order nodes are visited.

– inorder: visit between recursive calls
– preorder: visit before recursive calls

traversePreorder(link h) {
if (h == NULL) return;
print(h->item);
traverse(h->left);
traverse(h->right);

}

preorder

1/27/00 Copyright © 2000, Kevin Wayne P9.34

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.

■ “Tree traversal.”

■ Goal realized no matter what order nodes are visited.

– inorder: visit between recursive calls
– preorder: visit before recursive calls

– postorder: visit after recursive calls

traversePostorder(link h) {
if (h == NULL) return;
traverse(h->left);
traverse(h->right);
print(h->item);

}

postorder

1/27/00 Copyright © 2000, Kevin Wayne P9.35

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.

■ “Tree traversal.”

■ Goal realized no matter what order nodes are visited.

– inorder: visit between recursive calls
– preorder: visit before recursive calls

– postorder: visit after recursive calls

! Important note: inorder traversal of BST gives free sort!

1/27/00 Copyright © 2000, Kevin Wayne P9.36

Preorder Traversal With Explicit Stack

Visit the top node on the stack.

■ Push its children onto stack.

traverse(link h) {
STACKpush(h);
while (!STACKempty()) {

h = STACKpop();
print(h->item);
if (h->right != NULL)

STACKpush(h->right);
if (h->left != NULL)

STACKpush(h->left);
}

}

preorder traversal with stack

Push right node
before left, so that left
node is visited first.

Works for general trees.
Generalizes to DEPTH-
FIRST-SEARCH in graphs.

1/27/00 Copyright © 2000, Kevin Wayne P9.37

Level Traversal With Queue

Q. What happens if we replace stack with QUEUE?

■ Level order traversal.

■ Visit nodes in order from distance to root.

traverse(link h) {
QUEUEput(h);
while (!QUEUEempty()) {

h = QUEUEget();
print(h->item);
if (h->left != NULL)

QUEUEput(h->left);
if(h->right != NULL)

QUEUEput(h->right);
}

}

level traversal with queue

Works for general trees.
Generalizes to BREADTH-
FIRST-SEARCH in graphs.

1/27/00 Copyright © 2000, Kevin Wayne P9.38

Summary

How to insert and search a database using:

■ Arrays.

■ Linked lists.

■ Binary search trees.

Performance characteristics using different data structures.

The meaning of different traversal orders and how the code for them works.

