Lecture P9: Trees

1/27/00 Copyright © 2000, Kevin Wayne

Overview

Culmination of the programming portion of this class.
. Solve a database searching problem.

Trees
. Versatile and useful data structure.
. A naturally recursive data structure.
. Application of stacks and queues.

1/27/00 Copyright © 2000, Kevin Wayne

Searching a Database

Database entries.
Names and social security numbers.

Desired operations. SSH Last Nane

e

Insert student.
1920342006 Al am

2012121991 Baer

. Search for name given ID number. 2021230087 Bagyenda
1779999898 Bal estri
2328761212 Benjanin
1229993434 Ber ube

Delete student.

Goal.
. All operations fast, even for huge

databases.

Data structure that supports these
operations is called a SYMBOL TABLE.

1/27/00 Copyright © 2000, Kevin Wayne

Searching a Database

Other applications.
. Online phone book looks up names and telephone numbers.
. Spell checker looks up words in dictionary.
Internet domain server looks up IP addresses.

. Compiler looks up variable names to find type and memory address.

1/27/00 Copyright © 2000, Kevin Wayne

Representing the Database Entries

Define | t em h file to encapsulate generic database entry.

. Don’t want to use internals of item type when we write database code.
- want our insert and search code to work for any item type

—ideally It em would be an ADT

 str Koy)
return A == B;

typedef int Key;
typedef struct {
Key ID;
char name[30];
} ltem;
Item NULLitem = {-1, "};

int eq(Key, Key);
int less(Key, Key);
Key key(ltem);
void print(ltem);

#include “ITEM.h”

int less(Key A, Key B) {
return A < B;

}
Key key(ltem A) {
return A.ID;

}

void print(ltem A) {
printf(“%9d %20s”,
A.ID, A.name);

}

1/27/00

Copyright © 2000, Kevin Wayne

Symbol Table ADT

Define ST. h file to specify database operations.
. Make it a true ADT.

1/27/00

ST.h (Sedgewick 12.1)

I tem STsear ch(Key);
void STinsert(ltem;
void STprint(void);
int STcount(void);
voi d STdel ete(lten);

Copyright © 2000, Kevin Wayne

Sorted Array

Maintain array of ltems.
. Store in sorted order.

Representation of Database

=1

. Use BINARY SEARCH to find database | t emwith designated Key.

STarray.c (Sedgewick 12.6)

r #def i ne MAXSI ZE 10000
Array 0 I'tem st[MAXSI ZE] ;
database ltems.

Itemsearch(int |, int r, Key k) {

Key k not found. ::.' >
Divide and
conquer.

int m= (1+r)/2;

if (I >r) return NULLitem

it eq(k, key(st[m)) <(==mKeyk found.
return st[ni;

if less(k, key(st[n]))
return search(l, m1, k);

return search(ml, r, Kk);

1/27/00

Copyright © 2000, Kevin Wayne

Sorted Array Representation of Database

Maintain array of ltems.
. Store in sorted order.
. Use BINARY SEARCH to find database | t emwith designated Key.

“Wrapper” for STarray.c (Sedgewick 12.6)

search function.

1/27/00

Item STsearch(Key k) {

int N= Stcount();

return search(0, N1, k);
}

Copyright © 2000, Kevin Wayne

Cost of Binary Search

How many “comparisons” to find a name in database of size N?
. [og, NO= number of digits in binary representation of N.
. Divide list in half each time.

5000 O 2500 00 1250 00 625 0 312 0 156 O 78 O 39
i og90o40201

The log functions grows very slowly.

. log, (thousand) = 10 2N = x
. log, (million) = 20 x =log,N
. log, (billion) = 30

Without binary search (or if unsorted), may need to look at EVERY Item.
. Savings is enormous for large files.

1/27/00 Copyright © 2000, Kevin Wayne

Insert Using Sorted Array Representation

Problem 1: insertion is slow.
. Want to keep entries in sorted order.
. Have to move larger keys over one position to right.

4 |6 (14/20(25|26|32|47 (55|56 |58 |82 [

Demo: inserting 25 into a sorted array.

1/27/00 Copyright © 2000, Kevin Wayne P9.10

Insert Using Sorted Array Representation

Problem 1: insertion is slow.
. Want to keep entries in sorted order.
. Have to move larger keys over one position to right.
. Exercise: write code for insertion.

4 |6 (14/20(25|26|32|47 (55|56 |58 |82 [

Demo: inserting 25 into a sorted array.

Problem 2: need to fix maximum database size ahead of time.

1/27/00 Copyright © 2000, Kevin Wayne

P9.11

Linked List Representation of Database

Keep items in a linked list.
. Store in sorted order.

typedef struct node* |ink;
struct node {

Itemitem

l'i nk next;

Insert. }
. Only need to change links.
. No need to “move” large amounts of data.

[Bz (2 [
=

1/27/00 Copyright © 2000, Kevin Wayne P9.12

Linked List Representation of Database

Keep items in a linked list.
. Store in sorted order.

typedef struct node* |ink;
struct node {

Itemitem

l'i nk next;

Insert. }

. Only need to change links.
No need to “move” large amounts of data.

1/27/00 Copyright © 2000, Kevin Wayne

P9.13

Linked List Representation of Database

Search.
. Can't use binary search since no DIRECT access to middle element.
Use sequential search.
- may need to search entire linked list to find desired Key
- much slower than binary search

I tem STsear ch(Key k) {
link x;
for (x = head; x != NULL; x = x->next)
if (eq(k, key(x)) return x->item
return NULLi tem
}

1/27/00 Copyright © 2000, Kevin Wayne P9.14

Summary

Database entries.
Names and social security numbers.

Is there any way
to have fast insert
AND search?

Desired operations.
P -
Insert, delete, search. ()

Goal.
Make all of these operations FAST even for huge databases.

Tradeoff.
. ARRAY: fast search, slow insert/delete.
LINKED LIST: fast insert/delete, slow search.

1/27/00 Copyright © 2000, Kevin Wayne

P9.15

Binary Tree

Yes. Use TWO links per node.

1/27/00 Copyright © 2000, Kevin Wayne P9.16

Binary Treein C

STbst.h

typedef struct STnode* |ink; 51
struct STnode {
Itemitem ;
link left; Item

},"”k”gh“ left |right
l'i nk head;

Represent in C with two links per 66
node.

Leftmost arrow corresponds to
left link

Rightmost to right link.

INULL| [NULL| [NULL| [NULL| INULL| [NULL]

1/27/00 Copyright © 2000, Kevin Wayne P9.17

Binary Search Tree

Binary tree in “sorted” order.
Maintain ordering property for ALL subtrees.

root (middle value)

left subtree right subtree
(smaller values) (smaller values)
1/27/00 Copyright © 2000, Kevin Wayne P9.18

Binary Search Tree

Binary tree in “sorted” order.
Maintain ordering property for ALL subtrees.

1/27/00 Copyright © 2000, Kevin Wayne P9.19

Binary Search Tree

Binary tree in “sorted” order.
Many BST's for the same input data.
Have different tree shapes.

1/27/00 Copyright © 2000, Kevin Wayne P9.20

Search in Binary Search Tree

=1

Search for Key k in binary search tree.
. Analogous to binary search in sorted array.

Search algorithm:
. Start at head node.
If Key of current node is k, return node.
. Go LEFT if current node has Key < k.
. Go RIGHT if current node has Key > k.

1/27/00 Copyright © 2000, Kevin Wayne

P9.21

F

1 |
|—>if (eq(k, key(h->item)

Look for Key k |_
in right subtree. }

Search in BST's

Search for Key K.

SThbst.c (Sedgewick 12.7)
Itemsearch (link h, Key k) {

if (h == NULL) _
return NULLItem <',:: Key k not in tree.

ound Key k.

return h->item
if (less(k, key(h->item)
return search(h->left, k);
>return search(h->right, k);

Look for Key k
in left subtree.

Search for Key k
Item STsear ch(Key k) { in BST tree

return search(head, Kk); rooted at head.

} I

1/27/00 Copyright © 2000, Kevin Wayne P9.22

Cost of BST Search

Depends on tree shape.
Proportional to length of path from root to Key.
. “Balanced”
-2 log, N comparisons
- proportional to binary search cost

. “Unbalanced”
- takes N comparisons for degenerate tree shapes

- can be as slow as sequential search

Algorithm works for any tree shape.
. With cleverness (see COS 226), can assure tree is always balanced.

1/27/00 Copyright © 2000, Kevin Wayne

P9.23

Insert Using BST's

How to insert new database Item.
. Search for key of database Item.
. Search ends at NULL pointer.
. New Item “belongs” here.
. Allocate memory for new Item, and link it to tree.

1/27/00 Copyright © 2000, Kevin Wayne P9.24

Insert Using BST's

link insert(link h, Itemitem {
Key k = key(iten);
Key k2 = key(h->item;
link x;
if (h == NULL) {
Allocate link x = mall oc(sizeof *x);
memory and > x->item= item

insert here. x->| ef t x->right = NULL;

return x;

}
if (less(k, k2))

Divide-and- I_::> h->left = insert(h->left, item;
conquer. el se h->right = insert(h->right, iten);

return h;

}

void STinsert(ltemitem { <ﬁ Wrapper function.

head = insert(head, item;
}

1/27/00 Copyright © 2000, Kevin Wayne

P9.25

Insertion Costin BST

Depends on tree shape.
. Cost is proportional to length of path from root to node.

Tree shape depends on order keys are inserted.
Insert in random order.
- Leads to “well-balanced” tree
- average length of path from root to node is 1.44 log, N

Insert in sorted or reverse-sorted order.
- degenerates into linked list

- takes N -1 comparisons

. With cleverness, can ensure tree is always balanced.
- see COS 226

1/27/00 Copyright © 2000, Kevin Wayne P9.26

Question

Current code searches for a name given an ID number.

What if we want to search for an ID number given a name?
e

typedef char Key[30]; int eg(Key A Key B) {
typedef struct { return strcnmp(A, B) == 0;

int ID }
Key name;
} Item int less(Key A Key B) {
return strcnp(A, B) < 0;
Item NULLitem = {-1, ""}; }

Key key(ltemA) {
return A nane;

int eq(Key, Key);
int |ess(Key, Key);
Key key(ltem); }

1/27/00 Copyright © 2000, Kevin Wayne

P9.27

Other Types of Trees

Trees.
Nodes need not have exactly two children.
. Order of children may not be important.

Examples.
Family tree.

1/27/00 Copyright © 2000, Kevin Wayne P9.28

Other Types of Trees

Trees.
Nodes need not have exactly two children.

. Order of children may not be important.

Examples.
Family tree.
Parse tree.
(a*(b+c))-(d+e)

1/27/00 Copyright © 2000, Kevin Wayne

P9.29

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. “Tree traversal.”

wrapper function :::> void STprint(void) {

traverse(head);

}

traversel norder(link h) {

if (h == NULL) return;

traverse left subtree traverse(h->left);

print(h->items process node h

traverse right subtree traverse(h->right);

1/27/00 Copyright © 2000, Kevin Wayne

Other Types of Trees

/

Trees.
. Nodes need not have exactly two children. /R

. Order of children may not be important. bin b etc u

Examples.
Family tree. aaclarke cs126 zrnye
Parse tree.
Unix file hierarchy.
- not binary files grades submit
mandel stock tsp
POINT.h point.c tsp13509.txt

1/27/00 Copyright © 2000, Kevin Wayne

P9.30

P9.31

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. “Tree traversal.”
. Goal realized no matter what order nodes are visited.
- inorder: visit between recursive calls

traversel norder(link h) {
if (h == NULL) return;
traverse(h->left);
print(h->item;
traverse(h->right);

}

1/27/00 Copyright © 2000, Kevin Wayne

P9.32

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. “Tree traversal.”
. Goal realized no matter what order nodes are visited.
- inorder: visit between recursive calls
- preorder: visit before recursive calls

preorder

traversePreorder(link h) {
if (h == NULL) return;
print(h->item;
traverse(h->left);
traverse(h->right);

1/27/00 Copyright © 2000, Kevin Wayne

P9.33

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. “Tree traversal.”
. Goal realized no matter what order nodes are visited.
- inorder: visit between recursive calls
- preorder: visit before recursive calls
- postorder: visit after recursive calls

postorder

traversePostorder (link h) {
if (h == NULL) return;
traverse(h->left);
traverse(h->right);
print(h->item;

}

1/27/00 Copyright © 2000, Kevin Wayne

P9.34

Traversing Binary Trees

Goal: visit (process) each node in tree in some order.
. “Tree traversal.”
. Goal realized no matter what order nodes are visited.
- inorder: visit between recursive calls
- preorder: visit before recursive calls
- postorder: visit after recursive calls

#

1/27/00 Copyright © 2000, Kevin Wayne

P9.35

Preorder Traversal With Explicit Stack

preorder traversal with stack

traverse(link h) {
E STACKpush(h);
while (!STACKenpty()) {

h = STACKpop();
print(h->item;
Push right node if (h->right !'= NULL)

before left, so that left ——— >> STACKpush(h->right);

node is visited first. if (h->left I'= NULL)
STACKpush(h->l eft);

Visit the top node on the stack.
Push its children onto stack.

Works for general trees.
Generalizes to DEPTH-
FIRST-SEARCH in graphs.

1/27/00 Copyright © 2000, Kevin Wayne

P9.36

Level Traversal With Queue

Q. What happens if we replace stack with QUEUE?

Level order traversal.

=1

. Visit nodes in order from distance to root.

Works for general trees.
Generalizes to BREADTH-
FIRST-SEARCH in graphs.

level traversal with queue

traverse(link h) {
QUEUEput (h);
while (! QUEUEenpty()) {
h = QUEUEget ();
print(h->item;
if (h->left !'= NULL)
QUEUEput (h->l eft);
i f(h->right !'= NULL)
QUEUEput (h->right);

1/27/00 Copyright © 2000, Kevin Wayne

P9.37

Summary
How to insert and search a database using:
. Arrays.
Linked lists.

Binary search trees.

Performance characteristics using different data structures.

The meaning of different traversal orders and how the code for them works.

1/27/00 Copyright © 2000, Kevin Wayne P9.38

