
1/27/00 Copyright © 2000, Kevin Wayne P8.1

Lecture P8: WAR Card Game

1/27/00 Copyright © 2000, Kevin Wayne P8.2

Overview

Write a program to play the card game “War.”

Goals.

■ Practice with linked lists and pointers.

■ Appreciate the central role played by data structures.

■ Learn how to design a “large” program.

■ Learn how to read a “large” program.

1/27/00 Copyright © 2000, Kevin Wayne P8.3

WAR Demo

Rules of the game.

■ Each player is dealt half of the cards.

■ Each player plays top card.

– whichever is higher captures both cards
– in event of tie, WAR

■ Repeat until one player has all the cards.

WAR demo.

1/27/00 Copyright © 2000, Kevin Wayne P8.4

Before You Write Any Code

Determine a high-level view of the code you plan to write.

Break it up into manageable pieces.

■ Create the deck of cards.

■ Shuffle the cards.

■ Deal the cards.

■ Play the game.

Determine how you will represent the data.

■ The cards.

■ The deck.

■ The hands.

1/27/00 Copyright © 2000, Kevin Wayne P8.5

Representing The Cards

Represent 52 cards using an integer between 0 and 51.

Clubs
Card number

2 ♣ 0

3 ♣ 1

2 ♣ 2

. . .

K ♣ 11

A ♣ 12

Diamonds
Card number

2 ♦ 13

3 ♦ 14

2 ♦ 15

. . .

K ♦ 24

A ♦ 25

Spades
Card number

2 ♠ 39

3 ♠ 40

2 ♠ 41

. . .

K ♠ 50

A ♠ 51

Hearts
Card number

2 ♥ 26

3 ♥ 27

2 ♥ 28

. . .

K ♥ 37

A ♥ 38

1/27/00 Copyright © 2000, Kevin Wayne P8.6

Representing The Cards

Represent 52 cards using an integer between 0 and 51.

■ War if (rank(c1) == rank(c2))

typedef int Card;

int rank(Card c) {
return c % 13;

}

int suit(Card c) {
return (c % 52) / 13;

}

Card type

c % 52 to allow for
multiple deck war

1/27/00 Copyright © 2000, Kevin Wayne P8.7

Representing The Cards

void showcard(Card c) {
switch (rank(c)) {

case 0: printf(“Deuce of ”); break;
case 1: printf(“Three of ”); break;

. . .

case 12: printf(“Ace of ”); break;
}

switch (suit(c)) {
case 0: printf(“Clubs\n”); break;
case 1: printf(“Diamonds\n”); break;
case 2: printf(“Hearts\n”); break;
case 3: printf(“Spades\n”); break;

}
}

Card type

1/27/00 Copyright © 2000, Kevin Wayne P8.8

Testing the Code

#include <stdio.h>
#define DECKSIZE 52

typedef int Card;

int rank(Card c) {...}
int suit(Card c) {...}
void showCard(Card c) {...}

int main(void) {
Card c;
for (c = 0; c < DECKSIZE; c++)

showCard(c);
return 0;

}

test code

% gcc war.c
% a.out

Deuce of Clubs
Three of Clubs
Four of Clubs
Five of Clubs
Six of Clubs
Seven of Clubs

. . .

King of Spades
Ace of Spades

Unix

1/27/00 Copyright © 2000, Kevin Wayne P8.9

Representing the Deck and Hands

Use a linked list to represent the deck and hands. Why?

■ Draw cards from the top, captured cards go to bottom.

– Need direct access to top and bottom cards.
– No need for direct access to middle cards.

■ Gain practice with linked lists.

typedef struct cardlist* link;
struct cardlist { Card card; link next; };
link Atop, Btop; /* points to first card */
link Abot, Bbot; /* points to last card */

Card pile

Atop Abot

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

1/27/00 Copyright © 2000, Kevin Wayne P8.10

Showing a Hand

Use printf method for debugging.

■ May need to build supplemental functions to print out contents of data
structures.

■ Print out contents of player’s hand.

void showPile(link pile) {
link x;
for (x = pile; x != NULL; x = x->next)

showCard(x->card);
return;

}

showpile

standard linked list
traversal

1/27/00 Copyright © 2000, Kevin Wayne P8.11

Showing a Hand

Use printf method for debugging.

■ May need to build supplemental functions to print out contents of data
structures.

■ Print out contents of player’s hand.

■ Count number of cards in player’s hand.

int countPile(link pile) {
link x;
int cnt = 0;
for (x = pile; x != NULL; x = x->next)

cnt++;
return cnt;

}

countpile

standard linked list
traversal

1/27/00 Copyright © 2000, Kevin Wayne P8.12

Creating the Deck

Goal: create a 52 card deck.

■ Need to dynamically allocate memory.

link makePile(int N) {
Card c;
link x, pile;

pile = malloc(sizeof *deck);
x = deck;
x->card = 0;

for (c = 1; c < N; c++) {
x->next = malloc(sizeof *x);
x = x->next;
x->card = c;

}
x->next = NULL;

return pile;
}

makePile

mark end of deck

start deck with 0th card

add remaining
cards to bottom

1/27/00 Copyright © 2000, Kevin Wayne P8.13

Testing the Code

#include <stdio.h>
#include <stdlib.h>
#define DECKSIZE 52

typedef int Card;

int rank (Card c) {...}
int suit (Card c) {...}
void showCard (Card c) {...}
link makePile (int N) {...}
link showPile (link pile) {...}

int main(void) {
link deck;
deck = makePile(DECKSIZE);
showPile(deck);
return 0;

}

war.c

% gcc war.c
% a.out

Deuce of Clubs
Three of Clubs
Four of Clubs
Five of Clubs
Six of Clubs
Seven of Clubs

. . .

King of Spades
Ace of Spades

Unix

1/27/00 Copyright © 2000, Kevin Wayne P8.14

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

d

Abot = d;
Atop = d;

1/27/00 Copyright © 2000, Kevin Wayne P8.15

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

Abot

d

d = d->next;

1/27/00 Copyright © 2000, Kevin Wayne P8.16

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

d

Bbot = d;
Btop = d;

Abot

1/27/00 Copyright © 2000, Kevin Wayne P8.17

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

d

d = d->next;

Btop

Abot Bbot

1/27/00 Copyright © 2000, Kevin Wayne P8.18

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

d

Abot->next = d;

Btop

Abot Bbot

1/27/00 Copyright © 2000, Kevin Wayne P8.19

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

d

Abot = d;

Btop

Abot Bbot

1/27/00 Copyright © 2000, Kevin Wayne P8.20

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

d

d = d->next;

Btop

Bbot

Abot

1/27/00 Copyright © 2000, Kevin Wayne P8.21

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

d

Btop

Bbot

Bbot->next = d;

Abot

1/27/00 Copyright © 2000, Kevin Wayne P8.22

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop

d

Btop

Bbot

Bbot = d;
d = d->next;

Abot

1/27/00 Copyright © 2000, Kevin Wayne P8.23

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop Btop

Abot->next = d;

Abot

Bbot

d

1/27/00 Copyright © 2000, Kevin Wayne P8.24

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop Btop

Abot = d;
d = d->next;

Abot

Bbot

d

1/27/00 Copyright © 2000, Kevin Wayne P8.25

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop Btop

STOP (d == NULL)
Abot->next = NULL;
Bbot->next = NULL;

Abot

Bbot

d

1/27/00 Copyright © 2000, Kevin Wayne P8.26

Dealing

Deal cards one at a time.

■ Input: deck of cards (linked list).

■ Creates: two new linked lists for players A and B.

– global variable Atop, Btop point to first node
– global variable Abot, Bbot point to last node

■ Does not create (malloc) new nodes.

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop Btop Abot

Bbot

d

NULL

1/27/00 Copyright © 2000, Kevin Wayne P8.27

Dealing

K ♣ 2 ♦ J ♠ Q♦ 5 ♥ NULL

Atop Btop Abot

NULL

Cleaning up the picture:

K ♣ J ♠ 5 ♥ NULL

Abot

2 ♦ Q♦ NULL

Atop

Btop Bbot

Bbot

1/27/00 Copyright © 2000, Kevin Wayne P8.28

Dealing Code

void deal(link d) {
Atop = d; Abot = d; d = d->next;
Btop = d; Bbot = d; d = d->next;
while (d != NULL) {

Abot->next = d; Abot = d; d = d->next;
if (d == NULL) break;
Bbot->next = d; Bbot = d; d = d->next;

}
Abot->next = NULL; Bbot->next = NULL;

}

deal

handles first card of
each pile specially

mark end of piles

handle odd deck size

1/27/00 Copyright © 2000, Kevin Wayne P8.30

Shuffling the Deck

Shuffling Algorithm 2 (from Lecture P3):

■ Traverse linked list containing pile to be shuffled. In ith iteration:

– choose random integer r between 0 and i
– put card previous in rth position into ith position
– put card i in rth position of array

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ NULL

Array index 0 1 2 3 4 5 6 7

Link ? ? ? ? ? ? ? ?

Iteration 0: random number = 0.

1/27/00 Copyright © 2000, Kevin Wayne P8.38

Shuffling the Deck

Shuffling Algorithm 2:

■ Traverse linked list containing pile to be shuffled. In ith iteration:

– choose random integer r between 0 and i
– put card previous in rth position into ith position
– put card i in rth position of array

2♣ 3♣ 4♣ 5♣ 6♣ 7♣ 8♣ 9♣ NULL

Array index 0 1 2 3 4 5 6 7

Link 4 ♣ 6 ♣ 9 ♣ 7 ♣ 8 ♣ 3 ♣ 5 ♣ 2 ♣

1/27/00 Copyright © 2000, Kevin Wayne P8.42

Playing

K ♣ J ♠ 5 ♥ 9 ♥ 9 ♠ NULL

Abot

2 ♦ J ♥ Q♦ 7 ♣ NULL

Atop

Btop Bbot

Aval = rank(Atop->card);
Bval = rank(Btop->card);

A wins if (Aval > Bval)

1/27/00 Copyright © 2000, Kevin Wayne P8.43

Playing

K ♣ J ♠ 5 ♥ 9 ♥ 9 ♠ NULL

Abot

2 ♦ J ♥ Q♦ 7 ♣ NULL

Atop

Btop Bbot

Ttop = Atop;
Tbot = Btop;

Ttop, Tbot delimit pile to be
awarded to winner (prize).

1/27/00 Copyright © 2000, Kevin Wayne P8.44

Playing

K ♣ J ♠ 5 ♥ 9 ♥ 9 ♠ NULL

Abot

2 ♦ J ♥ Q♦ 7 ♣ NULL

Atop

Btop Bbot

Tbot

Ttop

Atop = Atop->next;
Btop = Btop->next;

Reset top of each player’s piles.

1/27/00 Copyright © 2000, Kevin Wayne P8.45

Playing

K ♣ J ♠ 5 ♥ 9 ♥ 9 ♠ NULL

Abot

2 ♦ J ♥ Q♦ 7 ♣ NULL

Atop

Btop Bbot

Tbot

Ttop

Ttop->next = Tbot;
Tbot->next = NULL;

Link prize pile together.

1/27/00 Copyright © 2000, Kevin Wayne P8.46

Playing

K ♣ J ♠ 5 ♥ 9 ♥ 9 ♠ NULL

Abot

2 ♦ J ♥ Q♦ 7 ♣ NULL

Atop

Btop Bbot

Tbot

Ttop

NULL

Cleaning up the picture

1/27/00 Copyright © 2000, Kevin Wayne P8.47

Playing

J ♠ 5 ♥ 9 ♥ 9 ♠ NULL

AbotAtop

J ♥ Q♦ 7 ♣ NULL

Btop Bbot

K ♣ 2♦ NULL

Ttop Tbot

Abot->next = Ttop;
Abot = Tbot;

Award prize to A.

1/27/00 Copyright © 2000, Kevin Wayne P8.48

Playing

J ♠ 5 ♥ 9 ♥ 9 ♠

Atop

J ♥ Q♦ 7 ♣ NULL

Btop Bbot

K ♣ 2♦ NULL

Abot

1/27/00 Copyright © 2000, Kevin Wayne P8.49

Peace Code

void play (void) {
int Aval, Bval;
link Ttop, Tbot;
while ((Atop != NULL) && (Btop != NULL)) {
Aval = rank(Atop->card);
Bval = rank(Btop->card);
Ttop = Atop; Tbot = Btop;
Atop = Atop->next; Btop = Btop->next;
Ttop->next = Tbot; Tbot->next = NULL;

if (Aval > Bval) {
if (Atop == NULL) Atop = Ttop;
else Abot->next = Ttop;
Abot = Tbot;

}

else {
if (Btop == NULL) Btop = Ttop;
else Bbot->next = Ttop;
Bbot = Tbot;

}
}

}

war.c

Until a player
loses

A wins

B wins

1/27/00 Copyright © 2000, Kevin Wayne P8.50

Game Never Ends

“Peace” (war with no wars).

■ Starting point for implementation.

■ Assume player B wins if a tie.

What should happen?

■ Intuitively, B has an advantage, so should usually win.

What actually happens?
! Game “never” ends for many (almost all) deals. Why?

5 ♣ 3 ♣

2♣ 4 ♣ NULL

NULL

1/27/00 Copyright © 2000, Kevin Wayne P8.55

One Bit of Uncertainty

What actually happens?

■ Game “never” ends for many (almost all) deals.

Proper use of randomization is vital in simulation applications.

■ Randomly exchange two cards in battle when picked up.

if (randomInteger(2) == 1) {
Ttop = Atop; Tbot = Btop;

}
else {
Ttop = Btop; Tbot = Atop;

}

exchange cards randomly

B wins in 446 steps.
A wins in 404 steps.
B wins in 330 steps.
B wins in 1088 steps.
B wins in 566 steps.
B wins in 430 steps.
A wins in 208 steps.
B wins in 214 steps.
B wins in 630 steps.
B wins in 170 steps.

Ten Typical Games

1/27/00 Copyright © 2000, Kevin Wayne P8.56

Add Code for War

Add code to handle ties.

■ Insert in play(void) before if (Aval > Bval)

while (Aval == Bval) {
for (i = 0; i < WARSIZE; i++) {
if (Atop == NULL) return;
Tbot->next = Atop; Tbot = Atop;
Atop = Atop->next;

}
Aval = rank(Tbot->card);

for (i = 0; i < WARSIZE; i++) {
if (Btop == NULL) return;
Tbot->next = Btop; Tbot = Btop;
Btop = Btop->next;

}
Bval = rank(Tbot->card);

}
Tbot->next = NULL;

play war

“while” not “if” to
handle multiple wars

B’s “war card”

add 4 cards to
temporary pile

1/27/00 Copyright © 2000, Kevin Wayne P8.57

Answer

Q. “So how long does it take?”

A. “About 10 times through deck (254 battles).”

Q. “How do you know?”

A. “I played a million games. . . .”

B wins in 60 steps.
A wins in 101 steps.
B wins in 268 steps.
A wins in 218 steps.
B wins in 253 steps.
A wins in 202 steps.
B wins in 229 steps.
A wins in 78 steps.
B wins in 84 steps.
A wins in 654 steps.

Ten Typical Games

1/27/00 Copyright © 2000, Kevin Wayne P8.58

Answer

Q. “That sounds like fun.”
A. “Let’s try having bigger battles. . . .”

Average # of Steps in War

0

200

400

600

800

0 1 2 3 4 5 6 7 8 9

War Size

S
te

p
s

1/27/00 Copyright © 2000, Kevin Wayne P8.59

Problems With Simulation

Doesn’t precisely mirror game.

■ People pick up cards differently.

■ “Sort-of” shuffle prize pile after war?

■ Separate hand and pile.

– could have war as pile runs out

■ Our shuffling produces perfectly random deck
(up to “randomness” of rand() library function).

Tradeoff

■ Convenience for implementation.

■ Fidelity to real game.

■ Such tradeoffs are typical in simulation.

■ Try to identify which details matter.

1/27/00 Copyright © 2000, Kevin Wayne P8.60

War Using Queue ADT

Use first class queue ADT. Why queue?

■ Always draw cards from top, return captured cards to bottom.

void play(Queue A, Queue B) {
Card Acard, Bcard;
Queue T = QUEUEinit();

while (!QUEUEempty(A) && !QUEUEempty(B)) {
Acard = QUEUEget(A); Bcard = QUEUEget(B);
QUEUEput(T, Acard); QUEUEput(T, Bcard);
if (rank(Acard) > rank(Bcard))

while (!QUEUEempty(T))
QUEUEput(A, QUEUEget(T));

else
while (!QUEUEempty(T))

QUEUEput(B, QUEUEget(T));
}

}

peace.c

1/27/00 Copyright © 2000, Kevin Wayne P8.61

War Using Queue ADT

Use first class queue ADT. Why queue?

! Always draw cards from top, return captured cards to bottom.

Advantages:

■ Simplifies code.

■ Avoids details of linked lists.

Disadvantage:

■ Adds detail of interface.

1/27/00 Copyright © 2000, Kevin Wayne P8.62

Summary

How to build a “large” program?

■ Use top-down design.

■ Break into small, manageable pieces.

– makes code easier to understand
– makes code debug

– makes code easier to change later on

■ Debug each piece as you write it.

■ Good algorithmic design starts with judicious choice of data structures.

How to work with linked lists?

■ Draw pictures to read and write pointer code.

