
January 27, 2000 Copyright © 2000, Kevin Wayne P6.1

Lecture P6:  Recursion

January 27, 2000 Copyright © 2000, Kevin Wayne P6.4

Overview

What is recursion?

■ When one function calls ITSELF directly or indirectly.

Why learn recursion?

■ Powerful programming tool to solve a problem by breaking it up into one 
(or more) smaller problems of similar structure. 

! divide-and-conquer

■ Many computations are naturally self-referential.

– a Unix directory contains files and other directories
– linked lists

January 27, 2000 Copyright © 2000, Kevin Wayne P6.5

Overview

How does recursion work? 

! Just like any other function call.

How does a function call work?

■ A function lives in a local environment:

– values of local variables
– which statement the computer is currently executing

■ Any function call (call function g from f) requires system to:

– save the local environment of f
– set the value of parameters in g

– jump to the first instruction of g, and execute that function
– return from g, passing return value to f
– restore the local environment of f

– resume execution in f just after the function call (return address)

January 27, 2000 Copyright © 2000, Kevin Wayne P6.6

Implementing Functions

How does the compiler implement functions? 

! With a STACK.

Return from functions in last-in first-out (LIFO) order.

■ FUNCTION CALL:  push local environment onto stack.

■ RETURN:  pop from stack and restore local environment.



January 27, 2000 Copyright © 2000, Kevin Wayne P6.7

A Simple Example

Goal:  function to compute 0 + 1 + 2 + . . . + n.

■ Simple ITERATIVE solution.

int sum(int n) {
int i, s = 0;
for (i = 0; i <= n; i++)

s += i;
return s;

}

iterative sum 1

int sum(int n) {
int s = n;
while (n--)

s += n;
return s;

}

iterative sum 2

Note that changing the variable n
in sum does not change the value 
in the calling function.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.8

A Simple Example

Goal:  function to compute 0 + 1 + 2 + . . . + n.

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.





−+
=

=
otherwise)1sum(

0  if0
)sum(

nn
n

n
base case

reduction step

converges to 
base case

int sum(int n) {
if (n == 0) return 0;
return n + sum(n-1);

}

recursive sum

base case

reduction step

January 27, 2000 Copyright © 2000, Kevin Wayne P6.9

A Simple Example

Goal:  function to compute 0 + 1 + 2 + . . . + n.

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.

This is just a stupid example to illustrate recursion.

■ Don’t even need iteration, let alone recursion.

■ 0 + 1 + 2 + . . . + n = n(n+1) / 2

int sum(int n) {
return n * (n+1) / 2;

}

better sum

January 27, 2000 Copyright © 2000, Kevin Wayne P6.10

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial. 

■ The program will not “bottom-out” of recursion without a base case.

■ Analog of infinite loops with for and while loops.

int mystery(int n) {
if (n % 2 == 0)

return mystery(n/2);
else

return mystery(3*n + 1);
}

mystery(n)

no base case



January 27, 2000 Copyright © 2000, Kevin Wayne P6.11

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial. 

REDUCTION STEP makes input converge to base case.

■ Unknown whether program terminates for all positive integers n.

■ Stay tuned for Halting Problem in Lecture T4.

int mystery(int n) {
if (n == 0)

return 1;
else if (n % 2 == 0)

return mystery(n/2);
else

return mystery(3*n + 1);
}

mystery(n)

base case

reduction step

anti-reduction step

January 27, 2000 Copyright © 2000, Kevin Wayne P6.12

Exponentiation

Goal:  function to compute xn, for positive integers x, n. 

■ Simple ITERATIVE solution.

int power(int x, int n) {
int prod = 1;
while (n--)

prod *= x;
return prod;

}

iterative power function

Check if (n == 0), 
then decrement n.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.13

Number Conversion

To convert an integer N to binary:

■ Stop if N = 0.

■ Write “1” if N is odd; “0” if n is even.

■ Move pencil one position to left.

■ Convert N / 2 to binary.  (integer division)

Easiest way to convert to binary by hand.

■ Corresponds directly with a recursive program.

43            1
21           11
10          011
5         1011
2        01011
1       101011
0    

Check:  43  =  1 × 25 + 0 × 14 +  1 × 23  +  0 × 22 +  1 × 21  +  1 × 20

=  32 + 8 + 2 + 1

January 27, 2000 Copyright © 2000, Kevin Wayne P6.14

Recursive Number Conversion

Computer naturally prints from left to right.

■ So we need to convert N / 2.

■ Then write “0” or “1”.

Proof of correctness:

N = 2 * (N / 2) + (N % 2)

void convert(int N) {
if (N == 0) return;
convert(N / 2);
printf(“%1d”, N % 2);

}

convert

1 if N is odd; 0 if N is even

convert(43)
convert(21)

convert(10)
convert(5)

convert(2)
convert(1)

convert(0)
printf(“1”)

printf(“0”)
printf(“1”)

printf(“0”)
printf(“1”)

printf(“1”)

function calls

Indentation level pairs 
statements belonging to 
same “invocation”

% gcc convert.c
% a.out
101011

Unix



January 27, 2000 Copyright © 2000, Kevin Wayne P6.15

Recursive Number Conversion

Computer naturally prints from left to right.

■ So we need to convert N / 2.

■ Then write “0” or “1”.

Proof of correctness:

N = 2 * (N / 2) + (N % 2)

Convert to any base b ≤ 10.
! Change “2” to “b” everywhere in code.

■ Exercise:  extend to handle hexadecimal (base 16).

void convert(int N) {
if (N == 0) return;
convert(N / 2);
printf(“%1d”, N % 2);

}

convert

1 if N is odd; 0 if N is even

January 27, 2000 Copyright © 2000, Kevin Wayne P6.16

Exponentiation

Goal:  function to compute xn, for positive integers x, n. 

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.

int power(int x, int n) {
if (n == 0) return 1;
return x * power(x, n-1);

}

recursive power function

base case

reduction step





⋅
=

= − otherwise

0  if1
1n

n
xx

n
x

base case

reduction step

converges to 
base case

January 27, 2000 Copyright © 2000, Kevin Wayne P6.17

Exponentiation

Goal:  function to compute xn, for positive integers x, n. 

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.

■ Both require n multiplications, but can do with n/2 + 1 if n is even.





⋅
=

=
even is    if

0  if1
2/2/ nxx

n
x nn

n

232346 171717 ×=

23 multiplications using 
previous algorithm

1 multiplication

already computed

January 27, 2000 Copyright © 2000, Kevin Wayne P6.18

Exponentiation

Goal:  function to compute xn, for positive integers x, n. 

■ Simple ITERATIVE solution.

■ Can also express using SELF-REFERENCE.

■ Both require n multiplications, but can do with n/2 + 1 if n is even.

■ Only  2 log2 n  multiplications needed with divide-and-conquer!

int power(int x, int n) {
int t;
if (n == 0) return 1;
t = power(x, n/2);
if (n % 2 == 0) return t * t;
else return x * t * t;

}

improved recursive power function







⋅⋅
⋅

=
=

−− odd is    if

even is    if

0  if1

2/)1(2/)1(

2/2/

nxxx
nxx
n

x
nn

nnn

n decreases by factor 
of two after at most 2 
multiplications



January 27, 2000 Copyright © 2000, Kevin Wayne P6.20

Root Finding

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Given a function, find a root, i.e., a value x such that f(x) = 0.

■ f(x) = x2 - x - 1

■ is a root.

Assume f is continuous and you know l, r, such that f(l) < 0.0 and f(r) > 0.0.

1.61803...=+=
2

51φ

January 27, 2000 Copyright © 2000, Kevin Wayne P6.21

Root Finding

Reduction step:

■ Maintain interval [l, r] such that f(l) < 0, f(r) > 0.

■ Compute midpoint m = (l + r) / 2.

■ If f(m) < 0 then run algorithm recursively on interval is [m, r].

■ If f(m) > 0 then run algorithm recursively on interval is [l, m].

Progress achieved at each step.

■ Size of interval is cut in half.

Base case (when to stop):

■ Ideally when f(m) == 0.0, but this may never happen!

– root may be irrational
– machine precision issues

■ Stop when r - l is sufficiently small.

– guarantees m is sufficiently close to root

January 27, 2000 Copyright © 2000, Kevin Wayne P6.22

Root Finding

Given a function, find a root, i.e., a value x such that f(x) = 0.

#define EPSILON 0.000001

double f (double x) {
return x*x - x - 1;

}

double bisect (double left, double right) {
double mid = (left + right) / 2;
if (right - left < EPSILON || f(mid) == 0.0)

return mid;
if (f(mid) < 0.0)

return bisect(mid, right);
return bisect(left, mid);

}  

recursive bisection function

January 27, 2000 Copyright © 2000, Kevin Wayne P6.23

Root Finding

Given a function, find a root, i.e., a value x such that f(x) = 0.

■ Fundamental problem in mathematics, engineering.

– to find minimum of a (differentiable) function, need to identify where 
derivative is zero.

■ Other methods.

– Newton’s method.

– Steepest descent.



January 27, 2000 Copyright © 2000, Kevin Wayne P6.24

Traveling Salesperson Problem

Given N points, find a shortest tour connection them. 

■ Brute force approach is to try all N! possible permutations.

■ If cities named a, b, c, then 6 possible permutations are:
abc, acb, bac, bca, cab, cba.

■ Not easy to do without recursion.

Key idea: permutations of abcde look like:

■ End with a preceded by one of 4! permutations of bcde.

■ End with b preceded by one of 4! permutations of acde.

■ End with c preceded by one of 4! permutations of abde.

■ End with d preceded by one of 4! permutations of abce.

■ End with e preceded by one of 4! permutations of abcd.

Reduces enumerating permutations of N elements to enumerating 
permutations of N-1 elements.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.25

Traveling Salesperson Problem

Recursive solution for trying all permutations:

■ Use array a to store current permutation in a[1], …, a[N]

■ N denotes number of cities whose position has not been determined.

void visit(int N) {
int i;
if (N == 1) {

checklength();
return;

} 
for (i = 1; i <= N; i++) { 

swap(i, N);
visit(N-1);
swap(N, i);

}
}

Enumerating all Permutations

base case

Restore order.

Decide position of 
remaining N-1 cities.

Swap cities i and N.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.27

Traveling Salesperson Problem

Recursive solution for finding best TSP tour.

■ Takes N! steps. 

■ No computer can run this for large value of N.

■ For N = 100, 100!  >  10150. 

Is there an efficient way to do this computation?
! Yes, if don’t really need optimal tour - see Assignment 6.

! Unlikely - see Lecture T6.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.28

Possible Pitfalls With Recursion

Is recursion fast?

■ Yes.  We produced remarkably efficient program for exponentiation.

■ No.  Can easily write remarkably inefficient programs.

int F(int n) {
if (n == 0 || n == 1) return n;
else return F(n-1) + F(n-2);

}

bad Fibonacci function







+
=
=

=

−− otherwise

1   if1

0  if0

21 nn

n
FF

n
n

F
Fibonacci numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34,  . . .

It takes a really 
long time to 

compute F(20).



January 27, 2000 Copyright © 2000, Kevin Wayne P6.29

Possible Pitfalls With Recursion

int F(int n) {
if (n == 0 || n == 1) return n;
else return F(n-1) + F(n-2);

}

bad Fibonacci function

F(10)

F(9) F(8)

F(8)

F(7) F(6)

F(7)

F(6) F(5)

F(6)

F(5) F(4)

F(7)

F(6) F(5)

Requires F(n) recursive calls to compute F(n).

F(8) is recomputed 2 times.

F(7) is recomputed 3 times.

F(6) is recomputed 5 times.

F(5) is recomputed 8 times.

...

F(1) is recomputed 12,555 times.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.30

Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute 
intermediate results.

■ DYNAMIC PROGRAMMING solution:  save away intermediate results in
a table. 

int F(int n) {
if (knownF[n] != 0) return knownF[n];
else if (n == 0 || n == 1) return n;
else knownF[n] = F(n-1) + F(n-2);
return knownF[n];

}

Fibonacci function using dynamic programming

Uses only 2n recursive 
calls to compute F(n).

knownF is an array that stores ith

Fibonacci number in ith element. We 
assume knownF is initialized to 0.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.31

Recursion vs. Iteration

Fact 1.  Any recursive function can be written with iteration.

■ Compiler implements recursion with stack.

■ Can avoid recursion by explicitly maintaining a stack. 

Fact 2.  Any iterative function can be written with recursion.

■ LISP programming language has only recursion.

Should I use iteration or recursion?

■ Consider ease of implementation.

■ Consider time/space efficiency.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.32

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

■ Only one disc may be moved at a time.

■ A disc can be placed either on an empty peg or on top of a larger disc.

■ Legend:  world will end when monks accomplish this task with 40 golden 
discs on 3 diamond pegs.

. 

Towers of Hanoi demo

Start End



January 27, 2000 Copyright © 2000, Kevin Wayne P6.33

Towers of Hanoi:  Recursive Solution

Move N-1 discs 1 peg to right. Move largest disc 1 peg to left.

Move N-1 discs 1 peg to right.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.34

Towers of Hanoi:  Recursive Solution

void HanoiRight(int N) {
if (N == 0) return;
HanoiLeft(N-1);
ShiftRight(N);
HanoiLeft(N-1);

}

HanoiRight(N)

void HanoiLeft(int N) {
if (N == 0) return;
HanoiRight(N-1);
ShiftLeft(N);
HanoiRight(N-1);

}

HanoiLeft(N)

Move disc N one 
peg to left.

Move top N-1 discs 
one peg to right.

mutually recursive functions

January 27, 2000 Copyright © 2000, Kevin Wayne P6.35

Towers of Hanoi:  Recursive Solution

void ShiftLeft(int N) {
printf(“Shift disc %d one ”

“peg to left.\n”, N);
}

void ShiftRight(int N) {
printf(“Shift disc %d one ”

“peg to right.\n”, N);
}

ShiftLeft(N) and ShiftRight(N)

Print directions 
to screen.

int main(void) {
HanoiLeft(4);
return 0;

}

main

Solve 4 disc problem.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.36

Towers of Hanoi:  Recursive Solution

% gcc hanoi.c
% a.out

Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 3 one peg to right.
Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 4 one peg to left.
Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 3 one peg to right.
Move disc 1 one peg to right.
Move disc 2 one peg to left.

Unix



January 27, 2000 Copyright © 2000, Kevin Wayne P6.37

Towers of Hanoi

Is world going to end (according to legend)?

■ Monks have to solve problem with N = 40 discs.

■ Computer algorithm should help.

– not really - takes 2N - 1 steps
– assuming rate of 1 disc per second, will take 348 centuries

Better understanding of recursive algorithm supplies non-recursive solution!

■ Alternate between two moves:

! move smallest disc 1 peg to right (left) if N is even (odd)

! make only legal move not involving smallest disc

■ See Sedgewick  5.2.

January 27, 2000 Copyright © 2000, Kevin Wayne P6.38

Summary

How does recursion work?

■ Just like any other function call.

How does a function call work?

■ Save away local environment using a stack.

Trace the executing of a recursive program.

■ Use pictures.

Write simple recursive programs. 

■ Base case.

■ Reduction step.


