

Overview

Overview

How does recursion work?

How does a function call work?

- A function lives in a local environment:

- values of local variables
- which statement the computer is currently executing
- Any function call (call function g from f) requires system to:
- save the local environment of f
- set the value of parameters in g
- jump to the first instruction of g , and execute that function
- return from g, passing return value to f
- restore the local environment of f
- resume execution in f just after the function call (return address)

A Simple Example

Goal: function to compute $0+1+2+\ldots+n$.

- Simple ITERATIVE solution.

```
            iterative sum 1
int sum(int n) {
    int i, s = 0;
    for (i = 0; i <= n; i++)
        s += i;
    return s
}
```


A Simple Example

Goal: function to compute $0+1+2+\ldots+n$

- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.

in sum does not change the value in the calling function.

\}

Note that changing the variable n

A Simple Example

Goal: function to compute $0+1+2+\ldots+n$.

- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.

This is just a stupid example to illustrate recursion.

- Don't even need iteration, let alone recursion.
- $0+1+2+\ldots+n=n(n+1) / 2$

better sum

int sum(int n) $\{$
return n * ($\mathrm{n}+1$) / 2;
\}

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.

- The program will not "bottom-out" of recursion without a base case.
- Analog of infinite loops with for and while loops.

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.

REDUCTION STEP makes input converge to base case.

- Unknown whether program terminates for all positive integers n.
- Stay tuned for Halting Problem in Lecture T4.

mystery(n)

int mystery (int n) \{

Exponentiation

Goal: function to compute X^{n}, for positive integers x, n.

- Simple ITERATIVE solution.
\}

Number Conversion

To convert an integer N to binary:

- Stop if $\mathrm{N}=0$
- Write " 1 " if N is odd; " 0 " if n is even.
- Move pencil one position to left.
- Convert N / 2 to binary. (integer division)

$$
\text { Check: } \begin{aligned}
43 & =\mathbf{1} \times 2^{5}+\mathbf{0} \times 1^{4}+\mathbf{1} \times 2^{3}+\mathbf{0} \times 2^{2}+\mathbf{1} \times 2^{1}+\mathbf{1} \times 2^{0} \\
& =32+8+2+1
\end{aligned}
$$

Easiest way to convert to binary by hand

- Corresponds directly with a recursive program.

Recursive Number Conversion

Computer naturally prints from left to right.

- So we need to convert N / 2.
- Then write "0" or " 1 ".

Recursive Number Conversion

Computer naturally prints from left to right.

- So we need to convert N / 2.
. Then write " 0 " or " 1 ".

Proof of correctness:

$$
N=2 \text { * (N / 2) + (N \% 2) }
$$

Exponentiation

Goal: function to compute X^{n}, for positive integers x, n.

- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.

recursive power function
int power (int x, int n) \{ if ($\mathrm{n}==0$) return 1; return x * power (x, $n-1$);
\}

Exponentiation

Goal: function to compute X^{n}, for positive integers x, n.

- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.
- Both require n multiplications, but can do with $n / 2+1$ if n is even.

$$
x^{n}= \begin{cases}1 & \text { if } n=0 \\ x^{n / 2} \cdot x^{n / 2} & \text { if } n \text { is even }\end{cases}
$$

Exponentiation

Goal: function to compute X^{n}, for positive integers x, n.

- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.
- Both require n multiplications, but can do with $n / 2+1$ if n is even.
- Only $2 \log _{2} \mathbf{n}$ multiplications needed with divide-and-conquer!
$x^{n}= \begin{cases}1 & \text { if } n=0 \\ x^{n / 2} \cdot x^{n / 2} & \text { if } n \text { is even } \\ x \cdot x^{(n-1) / 2} \cdot x^{(n-1) / 2} & \text { if } n \text { is odd }\end{cases}$
n decreases by factor of two after at most 2 multiplications
improved recursive power function
int power (int \mathbf{x}, int n) int t; if ($\mathrm{n}=0$) return 1 ; $\mathrm{t}=\mathrm{power}(\mathrm{x}, \mathrm{n} / 2)$; if ($\mathrm{n} \% 2=0$) return t * t; else return x * t * t
\}

Root Finding

Given a function, find a root, i.e., a value x such that $f(x)=0$.

- $f(x)=x^{2}-x-1$
- $\phi=\frac{1+\sqrt{5}}{2}=1.61803 \ldots$ is a root.

Assume f is continuous and you know I, r, such that $f(I)<0.0$ and $f(r)>0.0$.

Root Finding

Reduction step:

- Maintain interval $[l, r]$ such that $f(I)<0, f(r)>0$.
- Compute midpoint $m=(1+r) / 2$.
- If $f(m)<0$ then run algorithm recursively on interval is $[m, r]$.
- If $f(m)>0$ then run algorithm recursively on interval is $[I, m]$.

Progress achieved at each step.

- Size of interval is cut in half.

Base case (when to stop):

- Ideally when $f(m)==0.0$, but this may never happen!
- root may be irrational
- machine precision issues
- Stop when r - 1 is sufficiently small. - guarantees m is sufficiently close to root

January 27, 2000
Copyight © 2000, Kevin Wayne

Root Finding

Given a function, find a root, i.e., a value x such that $f(x)=0$.

- Fundamental problem in mathematics, engineering.
- to find minimum of a (differentiable) function, need to identify where derivative is zero.
}

```
```

```
#define EPSILON 0.000001
```

```
#define EPSILON 0.000001
double f (double x) {
double f (double x) {
    return x*x - x - 1;
    return x*x - x - 1;
}
}
double bisect (double left, double right) {
double bisect (double left, double right) {
    double mid = (left + right) / 2;
    double mid = (left + right) / 2;
    if (right - left < EPSILON || f(mid) == 0.0)
    if (right - left < EPSILON || f(mid) == 0.0)
        return mid;
        return mid;
    if (f(mid) < 0.0)
    if (f(mid) < 0.0)
        return bisect(mid, right);
        return bisect(mid, right);
    return bisect(left, mid);
```

 return bisect(left, mid);
    ```

\section*{Root Finding}

Given a function, find a root, i.e., a value \(x\) such that \(f(x)=0\).

\section*{Traveling Salesperson Problem}

Given \(N\) points, find a shortest tour connection them.
- Brute force approach is to try all N ! possible permutations.
- If cities named \(a, b, c\), then 6 possible permutations are:
abc, acb, bac, bca, cab, cba.
- Not easy to do without recursion.

Key idea: permutations of abcde look like:
- End with a preceded by one of 4 ! permutations of bcde.
- End with b preceded by one of 4 ! permutations of acde.
- End with c preceded by one of 4 ! permutations of abde.
- End with d preceded by one of 4 ! permutations of abce.
- End with e preceded by one of 4 ! permutations of abcd.

Reduces enumerating permutations of N elements to enumerating permutations of N -1 elements.

January 27, 2000
Copyrigh © 2000, Kevin Wayne P6. 24

\section*{Traveling Salesperson Problem}

Recursive solution for finding best TSP tour.
- Takes N! steps.
. No computer can run this for large value of N .
- For \(\mathrm{N}=100,100\) ! > \(10^{150}\).

Is there an efficient way to do this computation?


\section*{Traveling Salesperson Problem}

Recursive solution for trying all permutations:
- Use array a to store current permutation in a[1], ..., a[N]
. N denotes number of cities whose position has not been determined.


January 27,2000

\section*{Possible Pitfalls With Recursion}

Is recursion fast?
- Yes. We produced remarkably efficient program for exponentiation.
- No. Can easily write remarkably inefficient programs.


\section*{Possible Pitfalls With Recursion}
\(F(8)\) is recomputed 2 times.
\(F(7)\) is recomputed 3 times.
\(F(6)\) is recomputed 5 times.
\(F(5)\) is recomputed 8 times.

\(F(1)\) is recomputed 12,555 times.
Requires \(\mathrm{F}(\mathrm{n})\) recursive calls to compute \(\mathrm{F}(\mathrm{n})\).
bad Fibonacci function
int \(F(\) int \(n)\{\)
if ( \(\mathrm{n}=0\) || \(\mathrm{n}==1\) ) return n ;
else return \(F(n-1)+F(n-2)\);
\}

\section*{Possible Pitfalls With Recursion}

Recursion can take a long time if it needs to repeatedly recompute intermediate results.
- DYNAMIC PROGRAMMING solution: save away intermediate results in a table.

Fibonacci function using dynamic programming
```

int F(int n) {
if (knownF[n] != 0) return knownF[n];
else if (n == 0 || n == 1) return n;
else knownF[n] = F(n-1) + F(n-2);
return knownF[n];
}

```
knownF is an array that stores ith
Fibonacci number in \(i^{\text {th }}\) element. We assume knownF is initialized to 0 .

Uses only 2 n recursive calls to compute \(F(n)\).

January 27.2000

\section*{Towers of Hanoi}

Move all the discs from the leftmost peg to the rightmost one.
- Only one disc may be moved at a time.
- A disc can be placed either on an empty peg or on top of a larger disc.
- Legend: world will end when monks accomplish this task with 40 golden discs on 3 diamond pegs.


Start


End

Towers of Hanoi demo


Towers of Hanoi: Recursive Solution


Move N-1 discs 1 peg to right.


Move largest disc 1 peg to left.


Move N-1 discs 1 peg to right.

Towers of Hanoi: Recursive Solution


Towers of Hanoi: Recursive Solution


Towers of Hanoi: Recursive Solution
```

Unix
% gcc hanoi.c
% a.out
Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 3 one peg to right.
Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 4 one peg to left.
Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 3 one peg to right.
Move disc 1 one peg to right.
Move disc 2 one peg to left.

```

\section*{Towers of Hanoi}

Is world going to end (according to legend)?
- Monks have to solve problem with \(\mathrm{N}=40\) discs.
. Computer algorithm should help.
- not really - takes \(2^{N}-1\) steps
- assuming rate of 1 disc per second, will take 348 centuries

Better understanding of recursive algorithm supplies non-recursive solution!
- Alternate between two moves:
```

\&

```
- See Sedgewick 5.2.

\section*{Summary}

How does recursion work?
. Just like any other function call.

How does a function call work?
. Save away local environment using a stack.

Trace the executing of a recursive program
- Use pictures

Write simple recursive programs.
- Base case.
- Reduction step.```

