
1/26/00 Copyright © 2000, Kevin Wayne P4.1

Love, Marriage, and Lying

Lecture P4

1/26/00 Copyright © 2000, Kevin Wayne P4.2

Overview

Use arrays to solve interesting problem.

Understand mathematics of marriage proposals.

■ Who benefits more, the men or women?

■ Who should misrepresent their feelings?

Enjoy yourself today!

Standard disclaimer.

1/26/00 Copyright © 2000, Kevin Wayne P4.3

Stable Marriage Problem

Problem: Given N men and N women, find a “suitable” matching between
men and women.

■ Participant have ordered preference list of members of opposite sex.

■ Each man lists women in order of preference from best to worst.

Zeus Bertha AmyDiane Erika Clare

Yancey Amy ClareDiane Bertha Erika

Xavier Bertha ClareErika Diane Amy

Wayne Diane AmyBertha Clare Erika

Victor Bertha DianeAmy Erika Clare

Man 0th 1st 2nd 3rd 4th

Men’s Preference List

worstbest

1/26/00 Copyright © 2000, Kevin Wayne P4.4

Stable Marriage Problem

Problem: Given N men and N women, find a “suitable” matching between
men and women.

■ Participant have ordered preference list of members of opposite sex.

■ Each man lists women in order of preference from best to worst.

■ Each woman lists men in order of preference.

Erika Yancey ZeusWayne Xavier Victor

Diane Victor YanceyZeus Xavier Wayne

Clare Wayne YanceyXavier Zeus Victor

Bertha Xavier YanceyWayne Victor Zeus

Amy Zeus WayneVictor Yancey Xavier

Woman 0th 1st 2nd 3rd 4th

Women’s Preference List

worstbest

1/26/00 Copyright © 2000, Kevin Wayne P4.6

Stable Marriage Problem

Problem: Given N men and N women, find a “suitable” matching between
men and women.

■ Everyone is matched monogamously (perfect matching).

– each man gets exactly one woman
– each woman gets exactly one man

■ Stable: no incentive for some pair of participants (or coalition) to
undermine assignment by joint action.

– an unmatched pair (m,w) is UNSTABLE if man m would prefer
woman w to his wife, and w would prefer m to her husband

– unstable pair could each improve by dumping spouses and eloping

STABLE MARRIAGE = perfect matching with no unstable pairs.
(Gale and Shapley, 1962)

1/26/00 Copyright © 2000, Kevin Wayne P4.7

Example

A

Woman 0th

Men’s Preference List

Yancey

Zeus

Xavier

B

A

B

1st

A

B

C

2nd

C

C

Y

Woman 0th

Women’s Preference List

Bertha

Clare

Amy

X

X

X

1st

Y

Y

Z

2nd

Z

Z

Lavender assignment is a perfect matching.
Is it stable?

! No, Bertha and Xavier form an unstable pair.
They would prefer each other to current partners.

B

X

1/26/00 Copyright © 2000, Kevin Wayne P4.8

Example

A

Woman 0th

Men’s Preference List

Yancey

Zeus

Xavier

B

A

B

1st

A

B

C

2nd

C

C

Y

Woman 0th

Women’s Preference List

Bertha

Clare

Amy

X

X

X

1st

Y

Y

Z

2nd

Z

Z

Green assignment is a stable matching.

1/26/00 Copyright © 2000, Kevin Wayne P4.9

Example

A

Woman 0th

Men’s Preference List

Yancey

Zeus

Xavier

B

A

B

1st

A

B

C

2nd

C

C

Y

Woman 0th

Women’s Preference List

Bertha

Clare

Amy

X

X

X

1st

Y

Y

Z

2nd

Z

Z

Orange assignment is also a stable matching.

1/26/00 Copyright © 2000, Kevin Wayne P4.10

B

0th

Preference List

Bob

Chris

Adam C

A

B

D

D

Doofus A B C

D

C

A

1st 2nd

Stable Roommate Problem

Not obvious that stable marriage exists.

Consider related “stable roommate problem.”

■ 2N people.

■ Each person ranks others from 0 to 2N-2.

■ Assign roommate pairs so that no unstable pairs.

C

A

B

D

No perfect matching is stable.

For all 3 possible perfect
marriage, can always find
unstable pair.

E.g., A-C forms unstable
pair in lavender marriage.

C

A

1/26/00 Copyright © 2000, Kevin Wayne P4.11

Existence

Surprising Fact:

■ Unlike for stable roommate problem, one (or more) stable marriages
exist for any input to problem.

How do we find one?

■ Are there others?

■ Which one is best for Zeus?

■ Is there one that is best for all the men collectively? All the women?

1/26/00 Copyright © 2000, Kevin Wayne P4.12

Propose-And-Reject Algorithm

Repeat until no unmatched men

• An unmatched man m proposed to his
favorite woman w to whom he has not
already proposed.

• If w is unmatched, she accepts proposal
from m (but can later dump him).

• Otherwise, if w prefers her current fiancé to
m, she reject m outright.

• Otherwise, if she prefers m to her current
fiancé, she dumps her fiancé and accepts
the proposal from m.

Formal (and intuitive) method that guarantees to find a stable marriage.

Demo

1/26/00 Copyright © 2000, Kevin Wayne P4.13

Why Does Algorithm Work?

Observation 1. Men propose to their favorite women first.

Observation 2. Once a woman is matched, she never becomes
unmatched. She only “trades up.”

Fact 1. All men and women get matched.

■ Suppose upon termination Zeus is not matched.

■ Then some woman, say Amy, is not matched upon termination.

■ By Observation 2, Amy was never proposed to.

■ But, Zeus proposes to everyone, since he ends up unmatched.
(contradiction)

1/26/00 Copyright © 2000, Kevin Wayne P4.14

Why Does Algorithm Work?

Observation 1. Men propose to their favorite women first.

Observation 2. Once a woman is matched, she never becomes
unmatched. She only “trades up.”

Fact 2. No unstable pairs.
■ Suppose Zeus-Amy is an unstable pair, i.e., each prefers each other to

spouse. (Zeus-Bertha, Yancy-Amy)

■ Case 1. Zeus never proposed to Amy.
⇒ Zeus must prefer Bertha to Amy (Observation 1)
⇒ Zeus-Amy is stable. (contradiction)

■ Case 2. Zeus proposed to Amy.
⇒ Amy rejected Zeus (right away or later)
⇒ Amy prefers Yancy to Zeus (women only trade up)
⇒ Zeus-Amy is stable (contradiction)

1/26/00 Copyright © 2000, Kevin Wayne P4.15

Pseudocode

int marriages = 0;

while (marriages < N)
find unmatched man m

while (m unmatched)
let w be man m’s favorite women to
whom he has not yet proposed

if (w unmatched)
m and w get engaged
marriages++;
break;

if (w prefers m to current fiancé f)
f now unmatched
m and w get engaged
break;

else w rejects m

1/26/00 Copyright © 2000, Kevin Wayne P4.16

How to Represent Men and Women

Represent men and women as integers between 0 and N-1.

■ 0 through N-1 since C array indices start at 0.

■ Could use struct if we want to carry around more information, e.g.,
name, age, astrological sign.

1/26/00 Copyright © 2000, Kevin Wayne P4.17

How to Represent Marriages

Use array to keep track of marriages.

int wife[N];

int husb[N];

for (m = 0; m < N; m++)

wife[m] = -1;

for (w = 0; w < N; w++)

husb[w] = -1;





−
=

unmatched man if1

 womanto matched man if
][wife

m
wmw

m





−
=

unmatched w womanif1

 womanto matched man if
][husb

wmm
w

1/26/00 Copyright © 2000, Kevin Wayne P4.18

Filling in Some of the Code

while (marriages < N)

for (m = 0; wife[m] != -1; m++)
;

while (wife[m] == -1)
let w be man m’s favorite women to
whom he has not yet proposed

if (husb[w] == -1)
husb[m] = w;
wife[m] = w;
marriages++;
break;

if (w prefers m to current fiancé f)
f = husb[w];
wife[f] = -1;
husb[m] = w;
wife[w] = m;
break;

if (w unmatched)
m and w get engaged

while (m unmatched)

f = current fiancé of w
f now unmatched
m and w get engaged

find unmatched man

1/26/00 Copyright © 2000, Kevin Wayne P4.19

 Men’s Preference List
Man 0th 1st 2nd 3rd 4th

0 1 0 3 4 2
1 3 1 0 2 4
2 1 4 2 3 0
3 0 3 2 1 4
4 1 3 0 4 2

Representing the Preference Lists

Use 2D-array to represent preference lists.

■ 2D-array is array of arrays.

■ mp[m][i] = w if man m’s ith favorite woman is w.

■ wp[w][i] = m if woman w’s ith favorite man is m.

int mp[N][N];

int wp[N][N];

mp[1][0] = 3
man 1 likes woman 3 the best

1/26/00 Copyright © 2000, Kevin Wayne P4.20

Initializing the Preference Lists

Could read from stdin.

We’ll assign random lists for each man and woman.

■ Use randomPermutation function from last time.

■ Need N random permutations for men, and N for women.

int mp[N][N];

int wp[N][N];

for (m = 0; m < N; m++)
randomPermutation(mp[m]);

for (w = 0; w < N; w++)
randomPermutation(wp[w]);

mp[m] is man m’s preference
list array.

1/26/00 Copyright © 2000, Kevin Wayne P4.21

Dumping

Does woman w=2 prefer man m1=3 to man m2=0?

! Yes, m1 appears on woman w’s
preference list before m2.

for (i = 0; i < N; i++) {

if (wp[w][i] == m1) YES

if (wp[w][i] == m2) NO

}

search preference list sequentially
until m1 or m2 found

TOO SLOW if N is large, since
need to repeat many times.

 Women’s Preference List
Woman 0th 1st 2nd 3rd 4th

0 4 0 1 3 2
1 2 1 3 0 4
2 1 2 3 4 0
3 0 4 3 2 1
4 3 1 4 2 0

1/26/00 Copyright © 2000, Kevin Wayne P4.22

Keeping Track of Men’s Proposals

Unmatched man proposes to most favorable woman to whom he hasn’t
already proposed.

How do we keep track of which woman a man has proposed to?

■ Men propose in decreasing order of preference.

■ Suffices to keep track of number of proposals in array.

propose[m] = i if man m has proposed to i woman already.

initialize array
int props[N];

for (i = 0; i < N; i++)
props[i] = 0;

for (;;) {
w = mp[m][props[m]];
props[m]++;
. . .

}

props[m] is next woman on
preference list

make next proposal to
woman mp[m][props[m]]

find next woman to
propose to

1/26/00 Copyright © 2000, Kevin Wayne P4.23

Try Out The Code

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#define N 500

int main(void) {
int mp[N][N]; /* mp[m][i] = w if man m’s ith favorite woman is w */
int wp[N][N]; /* wp[w][i] = m if woman w’s ith favorite man is m */
int wife[N]; /* wife[m] = w if m married to w */
int husb[N]; /* husb[w] = m if m married to w */
int props[N]; /* props[m] = i if man m has proposed to i women */

int marriages = 0; /* number of couples matched so far */
int m, w;

/* initialize men */
for (m = 0; m < N; m++) {
props[m] = 0;
wife[m] = -1;
randomPermutation(mp[m], N);

}

/* initialize women */
for (w = 0; w < N; w++) {
husb[w] = -1;
randomPermutation(wp[w], N);

}

marriage.c

1/26/00 Copyright © 2000, Kevin Wayne P4.24

Try Out The Code

while (marriages < N) {
/* find first unmatched man */
for (m = 0; m < N; m++)
if (wife[m] == -1) break;

printf("man %d proposing:\n", m);
/* propose to next women on list until successful */
for (;;) {
w = mp[m][props[m]];
printf(" to woman %d", w);
props[m]++;

/* woman w unmatched */
if (husb[w] == -1) {

printf(" accepted\t(woman %d previously unmatched)\n", w);
husb[w] = m; wife[m] = w;
marriages++;
break;

}

/* woman w prefers m to current mate */
if (wr[w][m] < wr[w][husb[w]]) {

printf(" accepted\t(woman %d dumps man %d)\n", w, husb[w]);
wife[husb[w]] = -1;
husb[w] = m; wife[m] = w;
break;

}
/* otherwise m rejected by w */
printf(" rejected\t(woman %d prefers %d)\n", w, husb[w]);

}
}

marriage.c

1/26/00 Copyright © 2000, Kevin Wayne P4.25

Try Out The Code

Observation: code is
REALLY slow for large N.

printf("Stable matching\n");
for (m = 0; m < N; m++)
printf("%5d %5d\n", m, wife[m]);

return 0;
}

marriage.c

% gcc marriage.c
% a.out

man 0 proposing:
to woman 4 accepted (woman 4 previously unmatched)

man 1 proposing:
to woman 0 accepted (woman 0 previously unmatched)

man 2 proposing:
to woman 2 accepted (woman 2 previously unmatched)

man 3 proposing:
to woman 2 rejected (woman 2 prefers 2)
to woman 3 accepted (woman 3 previously unmatched)

man 4 proposing:
to woman 2 accepted (woman 2 dumps man 2)

man 2 proposing:
to woman 3 accepted (woman 3 dumps man 3)

man 3 proposing:
to woman 0 rejected (woman 0 prefers 1)
to woman 4 rejected (woman 4 prefers 0)
to woman 1 accepted (woman 1 previously unmatched)

Stable matching
0 4
1 0
2 3
3 1
4 2

Unix

1/26/00 Copyright © 2000, Kevin Wayne P4.26

An Auxiliary Data Structure

Create a 2D array that stores men’s ranking of women.

■ mr[m][w] = i if man m’s ranking of woman w is i.

■ wr[w][m] = i if woman w’s ranking of man m is i.

 Men’s Preference List
Man 0th 1st 2nd 3rd 4th

0 1 0 3 4 2
1 3 1 0 2 4
2 1 4 2 3 0
3 0 3 2 1 4
4 1 3 0 4 2

mp[1][0] = 3
man 1 likes woman 3 best

 Men’s Rankings
Man 0 1 2 3 4

0 1st 0th 4th 2nd 3rd

1 2nd 1st 3rd 0th 4th

2 4th 0th 2nd 3rd 1st

3 0th 3rd 2nd 1st 4th

4 2nd 0th 4th 1st 3rd

mr[1][3] = 0
man 1 likes woman 3 best

1/26/00 Copyright © 2000, Kevin Wayne P4.27

An Auxiliary Data Structure

Create a 2D array that stores men’s ranking of women.
■ mr[m][w] = i if man m’s ranking of woman w is i.
■ wr[w][m] = i if woman w’s ranking of man m is i.

Does man m = 3 prefer woman w1 = 2 to woman w2 = 4?

 Men’s Rankings
Man 0 1 2 3 4

0 1st 0th 4th 2nd 3rd

1 2nd 1st 3rd 0th 4th

2 4th 0th 2nd 3rd 1st

3 0th 3rd 2nd 1st 4th

4 2nd 0th 4th 1st 3rd

mr[m][w1] = 2
mr[m][w2] = 4

if (mr[m][w1] < mr[m][w2])

YES

else NO

1/26/00 Copyright © 2000, Kevin Wayne P4.28

Check if Marriage is Stable

Check if husb[N] and wife[N] correspond to a stable marriage.

■ Good warmup and useful for debugging.

■ Check every man-woman pair to see if they’re unstable.

■ Use ranking arrays.

int isStable(int husb[], int wife[],

int mr[N][N], int wr[N][N]) {

int m, w;

for (m = 0; m < N; m++)

for (w = 0; w < N; w++)

if (mr[m][w] < mr[m][wife[m]]) &&

(wr[w][m] < wr[w][husb[w]])

return 0;

return 1;

}

isStable

m prefers w to
current wife

w prefers m to current husband

1/26/00 Copyright © 2000, Kevin Wayne P4.29

Check if Marriage is Stable

Check if husb[N] and wife[N] correspond to a stable marriage.

■ Good warmup and useful for debugging.

■ Check every man-woman pair to see if they’re unstable.

■ Use ranking arrays.

Time/space tradeoff for using auxiliary ranking arrays.

■ Disadvantage: requires twice as much memory (storage).

■ Advantage: dramatic speedup in running time
(using 400 MHz Pentium II with N = 10,000).

! 1 second using ranking arrays.
! 2 hours by searching preference list sequentially!

1/26/00 Copyright © 2000, Kevin Wayne P4.30

Men vs. Women

Given input, there may be several stable marriages. Which one does
algorithm find?

Fact 3. Propose-and-reject algorithm is MAN-OPTIMAL!

■ Simultaneously best for each and every man.

■ There is no stable marriage in which any single man individually does
better.

Fact 4. Propose-and-reject algorithm is WOMAN-PESSIMAL.

■ Simultaneously worst for each and every woman.

■ There is no stable marriage in which any single woman individually does
worse.

Fact 5. The man-optimal stable matching is weakly Pareto optimal.

■ In every other matching (stable or unstable), at least one man does
strictly worse.

1/26/00 Copyright © 2000, Kevin Wayne P4.31

Extensions

Yeah, but In real-world every woman is not willing to marry every man, and
vice versa?

■ Some participants declare others as “unacceptable”
(prefer to be alone than with given partner).

■ Algorithm extends to handle partial preference lists.

Also, there may be an unequal number of men and women.

■ E.g., 150 men, 100 women.

■ Algorithm extends.

What about limited polygamy?

■ E.g., Bill wants 3 women.

■ Algorithm extends.

1/26/00 Copyright © 2000, Kevin Wayne P4.32

Application

Matching medical school residents to hospitals. (NRMP)

■ Hospitals ~ Men (limited polygamy allowed).

■ Residents ~ Women.

■ Original use just after WWII (predates computer usage).

■ Ides of March, 13,000+ residents.

Rural hospital dilemma.

■ Certain hospitals (mainly in rural areas) were unpopular and declared
unacceptable by many residents.

■ Rural hospitals were under-subscribed in NRMP matching.

■ How can we find stable matching that benefits “rural hospitals”?

Rural Hospital Theorem:
! rural hospitals get exactly same residents in every stable

matching!

1/26/00 Copyright © 2000, Kevin Wayne P4.33

Deceit: Machiavelli Meets Gale-Shapley

Is there any incentive for a participant to misrepresent his/her preferences?

■ Assume you know men’s propose-and-reject algorithm will be run.

■ Assume that you know the preference lists of all other participants.

Fact 6.
! No, for any man.

1/26/00 Copyright © 2000, Kevin Wayne P4.36

Deceit: Machiavelli Meets Gale-Shapley

Is there any incentive for a participant to misrepresent his/her preferences?

Fact 7.
! Yes, for some women!

Women’s Preference s
0th 1st 2nd

Amy Y X Z
Bertha X Y Z
Clare X Y Z

0th 1st 2nd

Amy Y Z X
Bertha X Y Z
Clare X Y Z

Men’s Preferences
0th 1st 2nd

Xavier A B C
Yancy B A C
Zeus A B C

Amy lies.

1/26/00 Copyright © 2000, Kevin Wayne P4.38

Lessons Learned

Powerful ideas learned in COS 126.

■ Combine to obtain neat and useful algorithms.

! Men: propose early and often.

! Women: ask out the guys.

! CS can be socially enriching and fun!

! Engineers get the best partners!!!

