Lecture P1: Introductionto C

#i ncl ude <stdi o. h>

int main(void) {
printf(“This is a C program\n”);
return O;

1/26/00 Copyright © 2000, Kevin Wayne

Learning C

No prior programming experience assumed.
. Although it will make things easier.

Programming is learned with practice.
Don’t expect to learn solely from these lectures.
Do exercises.
Experiment with code on your own.

Do reading.
K&R for people with programming experience.
Deitel & Deitel for beginners.
— first 170 pages first two weeks
- next 100 pages third week

1/26/00 Copyright © 2000, Kevin Wayne

C Background

Born along with Unix in the early 1970’s.
. One of most popular languages today.

Features.
Exposes much of machine detail.
- remember abstractions?
- C exposes low-level abstractions
. Concise language.

Consequences.
Positive: you can do whatever you want.
- flexible and powerful
Negative: you can do whatever you want.
- shoot yourself in the foot

1/26/00 Copyright © 2000, Kevin Wayne

Aspects of Learning to Program

C Syntax
Learning English.

Algorithms

Learning to tell a coherent story (not necessarily in English).

Libraries
Learning to reuse plots written by others.

These are different skills and learning processes.

1/26/00 Copyright © 2000, Kevin Wayne

An Example

Print a table of values of function f(x) = 2 - x3 . A first attempt:

input/output library
functions

declare real-valued i izl (el &)
float x, vy;

printf used to print

#i ncl ude <stdi o. h>

charactarce tn coraaon — pl’intf(“x f(X)\n");
a0 x=0.0;
. y =2.0- x*X*X;
print the values of x and y A , .
printf(“%4.1f %6.3f\n", X, y);
to the screen X=0.1:
. ¢ I y =2.0- x*X*X;
] o] printf(*%4.1f %6.3\n", X, y);
36 lines of similar code is o
omitted x=10:
y =2.0- xX*X*X;

end of code

printf(“%4.1f %6.3f\n", X, y);
return O;
}

1/26/00 Copyright © 2000, Kevin Wayne

Printf Library Function

Contact between your C program and outside world.
Puts characters on “standard output.”
By default, stdout is the “terminal” that you're typing at.

Internally, all numbers and characters represented in BINARY (0’s, 1's).
pri nt f converts from binary to more useful form (i nt, f| oat).

Formatted output.
How do you want the numbers to look?
- integers, how many digits?
- real numbers, how many digits after decimal place?
. Very flexible, see K&R pp. 13, 154.

1/26/00 Copyright © 2000, Kevin Wayne

Anatomy of Printf

%f to print float

float X, Y; / \n is newline
= 0.927; character
)[;rlntf("%4.1f %6.3f\n", X, Y);
4 6
' A N Ve - I
L lof. 9] [2].]2]0]0] |
— —
1 3

space in printf
statement

1/26/00 Copyright © 2000, Kevin Wayne

Running a Program in Unix

% gcc table.c
When you type commands, you are controlling an % a. out
abstract machine called the “Unix shell.” t(x)
X X

Compile: convert the program from human’s g (1) i 888
language (C) to machine’s language (stay tuned). 0.2 1.992
- lsttry: syntax errors in C program 0.3 1.973
- eventually, a file named a.out 0.4 1.936
! : 0.5 1.875
0.6 1.784
Execute: start the machine (at first instruction g-; 1 22;
corresponding to first statement of mai n). 09 1271
- 1st try: semantic errors in C program 1.0 1.000
- eventually, desired “printf” output 1.1 0.669
1.2 0.272
1.3 -0.197
1.4 -0.744
1.5 -1.375
1.6 -2.096
1.7 -2.913
1.8 -3.832
1.9 -4.859

1/26/00 Copyright © 2000, Kevin Wayne

Anatomy of a While Loop

Previous program repeats the same code over and over.
Repetitive code boring to write and hard to debug.
Use while loop to repeat code.

? while (condition) {
< st at enent s;

) }

whi |l e | oop

ue Jlstatenents

false

1/26/00 Copyright © 2000, Kevin Wayne

P1.10

Anatomy of a While Loop

Previous program repeats the same code over and over.
Repetitive code boring to write and hard to debug.
Use while loop to repeat code.

X «0

x = 0.0;
< while (x < 2.0) {
y = 2 - X*X*X;
printf(“%f %f", X, y);
y <« 2 - x3 X=x+0.1;
print x, y }
X « x +0.1

C code

1/26/00 Copyright © 2000, Kevin Wayne P1.11

While Loop Example

Print a table of values of function f(x) = 2 - x3. A second attempt.

#i ncl ude <stdi o. h>

int main(void) {
float x, vy;

printf(“ x f(x)\n");
X =0.0;

uses while loop :::> while (x < 2.0) {

y =2.0- x*X*x;
printf(“%4.1f %6.3f\n", X, y);
x=x+0.1;

}

return O;

1/26/00 Copyright © 2000, Kevin Wayne

P1.12

Anatomy of a For Loop

The for loop is another common repetition structure.

for (exprl; expr2; expr3) {
st at enent s;

| expression 1 |

&
<

\ 4

expression 2

}
| statenents |

expression 3

1/26/00 Copyright © 2000, Kevin Wayne P1.13

For Loop Example

Print a table of values of function f(x) = 2 - x3. A third attempt.

#i ncl ude <stdi o. h>

int main(void) {
float x, vy;

printf(“ x f(x)\n");

|
uses for loop —n> for (x=0.0;x <2.0; x =x + 0.1) {

y = f(x);
printf(“%4.1f %6.3f\n”, X, y);
}

return O;

}

1/26/00 Copyright © 2000, Kevin Wayne

P1.14

Anatomy of a Function

Convenient to break up programs into smaller modules or functions.
Layers of abstraction.
Makes code easier to understand.
Makes code easier to debug.
Makes code easier to change later on.

Lo | f(x) =2 - x3 | mmmp o272

Input Output

float f (float x) {
return 2 - X*X*Xx;

}

function in C

1/26/00 Copyright © 2000, Kevin Wayne P1.15

Anatomy of a Function

C function similar to mathematical function.

Prototype or interface is first line of C function.
. specifies input argument(s) and their types
- can be integers, real numbers, strings, vectors, user-defined
. specifies return value

Body or implementation.
. The rest, enclosed by {}

output type function name

float sum (float x, float y) {

scratch space —» f| oat z;
statements —»> 2z = X +Y; ‘
stop execution - return z; input 2 input 2
of function } type name

I
output value

1/26/00 Copyright © 2000, Kevin Wayne

P1.16

Function Example

Print a table of values of function f(x) = 2 - x3. A fourth attempt.
#i ncl ude <stdio. h>

float f (float x) {
return 2.0 - X*X*X;
}

int main(void) { x += 0.1 is shorthand
float x; in C for x =x+ 0.1

printf(“ x f(x)\n"); {}

for (x =0.0; x < 2.0; x += 0.1) {

no need for { } if only |—:"> pHNtf(“%4. 1f %66.3An", X, f(x));
}

one statement I_

return O;

}

1/26/00 Copyright © 2000, Kevin Wayne P1.17

What is a C Program?

C PROGRAM: a sequence of FUNCTIONS that manipulate data.
. mai n function is first one executed.

A FUNCTION consists of a sequence of DECLARATIONS followed by a
sequence of STATEMENTS.

. Can be built-in like pri nt f .
. Oruser-defined like f or sum

A DECLARATION names variables and defines type.
. float float x;
. integer int i;

A STATEMENT manipulate data or controls execution.

. assignment: x = 0.0;
. control: while (x <2.0) {...}
. function call: printf(...);

1/26/00 Copyright © 2000, Kevin Wayne

P1.18

Anatomy of a C Program

#i ncl ude <stdi o. h>

) float f (float x) {
function

}

int min() {

Ly float x;
declaration — | /

x = 0.0;
flow control_—"]

» while (x < 2.0) {
statement

x=x+0.1;

}

return O;

}

return 2.0 - x*x*

X,

assignment
statement

printf(“%4.1f %6.3f\n”, X, f(x));

fungtion call

/ statement

1/26/00 Copyright © 2000, Kevin Wayne

P1.19

Random Integers

Print 10 “random” integers.
Library function rand() in stdl i b. h returns integer between 0 and

RAND_MAX - 1 (usually 32767).

% gee int.c
#i ncl ude <stdi o. h> % a. out
#i ncl ude <stdlib. h> 16838

5758
int main(void) { 10113
int i; 17515
for (i =0; i < 10; i++) 31051

printf(“%d\n”, rand()); 5627
return O; 23010

} 7419
16212

4086

1/26/00 Copyright © 2000, Kevin Wayne

P1.20

Random Integers

Print 10 “random” integers between 0 and 599.

No precise match in library.

. Try to leverage what's there to accomplish what you want.

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#defi ne N 600

% gcc int.c
% a. out
168

E70

int random nteger(int n) { : ;
return rand() % n; p % g gives remainder
} of p divided by q

int main(void) {
int i;
for (i = 0; i < 10; i++)
printf(“%d\n”, randomInteger(N));
return O;

}

1/26/00 Copyright © 2000, Kevin Wayne

310
562
230
341
16

386

P1.21

Random Real Numbers

Print 10 “random” real numbers between 0.0 and 1.0.
No precise match in library.
. Try to leverage what's there to accomplish what you want.

#i ncl ude <stdio. h> % gcc real .c
#i ncl ude <stdlib. h> % a. out
) . . 0.513871
'”}nfa:?(vo'd) { 0.175726
for (i =0; i < 10; i++) 0. 308634
PHNtF(“9%AN’, 1.0 * rand() / RAND_MAX); 0. 534532
ST G 0. 947630
} 1/\r 0.171728
| | 0.702231
0. 226417
Integer division: 16838 / 32767 = 0. 0. 494766
C has conversions for mixed types: 0. 124699
1.0 * 15838/ 32767 = 0.513871.

P1.22

Random M x N Pattern

* % * % *k *kk*%k * k% * %
* % *x *x % kkkk ok * Kk Kk * %
* * * % * * * * %

* * * * % * k%% * % * k%

* k ok % *kkkk k% * *

* * * * % * * % **k*x *k*k *
* * * % * % % * * % *
* * *x % % *kkk K*k*k * * %
* * * % * * % % * * % %
* % * % * * % % * * * k%

* % * % * * ** % *
* * % * % * % * *k*k*k * *
* % * % * *k k k% * * k% * %
* % * % **x *x *kk*%x *
* * * % * % **k % % * % %
* * % * % * kK * * %
* % * % * * % * * *
* % * % * % * % * * %

1/26/00

Copyright © 2000, Kevin Wayne

P1.23

Random M x N Pattern

Top-down design.
Break a big problem into smaller subproblems.
Break down subproblems into sub-subproblems.
Repeat until all details filled in.

loop M times

R

~~_

loop N times

rint a random element

a4

Dt

if coin flip is heads print “*”

else print “”

1/26/00 Copyright © 2000, Kevin Wayne

P1.24

1/26/00

Random M x N Pattern

randpattern.c

#i ncl ude <stdi o. h>
#define M9
#define N 9

int random nteger(int n) {...}

int main(void) {

int i, j;
for (i =0; i <M j++) { \
for (j =0,] <N j++) {
[if (rand‘omlpvtyeger(Z) == 1) printf(“*");]
} else printf(* "); {}
printf(“\n”); — % %
Q - ;
} return O; Print a random M x N pattern.

Copyright © 2000, Kevin Wayne

P1.25

Libraries

How is library function pri nt f () created?
User doesn’t need to know details (see COS 217).
User doesn’t want to know details (abstraction).

How is library function r and() created?
Linear feedback shift register? Cosmic rays?
Depends on compiler and operating system.
. Caveat: “random” numbers are not really random.
- can never have all properties of random bits
- computers do exactly what we tell them to do!
Note: on many systems, our r andom nt eger is very bad.

Moral: check assumptions about library function.

1/26/00 Copyright © 2000, Kevin Wayne

P1.26

Cash 2>

Gambler’'s Ruin

Simulate gambler placing $1 even bets.
. Will gambler always go broke.
If so, how long will it take if gambler starts with $c?

$6

/

Time 2>

1/26/00 Copyright © 2000, Kevin Wayne P1.27

Gambler’'s Ruin

int main(void) {

scanf takes input |, int i, cash, seed;

from terminal l—-Jl>scanf("%i %", &cash, &seed);

srand(seed); srand sets random seed

while I still have L .
money left, repeat |—'J1>Wh' I'e (cash > 0) {

if (random nteger(2) == 1)

cash++;

¥ &a <:::make a bet
cash--;
printa * at the I_'Jl> forpE: nt:f (() I)< cash; i ++)
right place] printf("*\n");
}
return O;
}

1/26/00 Copyright © 2000, Kevin Wayne

P1.28

Gambler’'s Ruin

Simulate gambler placing $1 even bets.
Q. How long does the game last if we start with $c ?

% gcc ganbler.c

% a. out % a. out
4 1231 4 1234
* *
* *
* *
* *
* *
* *
* *

* Hmmm.

1/26/00 Copyright © 2000, Kevin Wayne P1.29

Top-Down Design of Numerical Experiment

Goal: run an experiment to determine how long does it take to go broke.

Find out how this changes for different values of c.

for all initial cash values between 2 and 9
run numerical experiments

A 0

Dt

repeat 5 times
how long before ruin?

N

do gambler’s ruin and return value

1/26/00 Copyright © 2000, Kevin Wayne

P1.30

Gambler's Ruin Experiment

#i ncl ude <stdlib. h>
#i ncl ude <stdlib. h>

i/nt doit (int cash) {
int cnt;

| | for (cnt = 0; cash > 0; cnt++)
::> if (random nteger(2)) cash++;
el se cash--;

single experiment
(code as before) []

return cnt;

int main(void) {
int cash, t;

for (j] =2;] <10; j++) {
repeat for all initial L printf(“%2d . i):

cashvalues2t09 [for (t=0; t < 5: t++)

|| printf(“%7d”, doit(
repeat 5 times = printf(“\n”);

return O;

}

1/26/00 Copyright © 2000, Kevin Wayne

P1.31

Gambler's Ruin Experiment

% gcc gexperinent.c
% a. out # bets
2 2 6 304 2 2
initial cash | 3 33 17 15 53 29
4 22 1024 7820 22 54
5 243 25 41 7 249
6 494 14 124 152 14
7 299 33 531 49 93
8 218 10650 36 42048 248
9 174090315 83579 299 759 69

How long will it take to go broke?
e

Layers of abstraction.
Random bit > gambler’s ruin sequence > experiment.

1/26/00 Copyright © 2000, Kevin Wayne

P1.32

Programming Advice

Understand your program.
. What would the machine do?

Read, understand, and borrow from similar code.

Develop programs incrementally.
. Test each piece separately before continuing.
Plan multiple lab sessions.

1/26/00 Copyright © 2000, Kevin Wayne

P1.33

Debugging
Find the FIRST bug and fix it.

Syntax error - illegal C program.

Compiler error messages are good - tell you what you need to change.

Semantic error - wrong C program.
Use “printf” method.

Always a logical explanation.

Enjoy the satisfaction of a fully
functional program!

1/26/00 Copyright © 2000, Kevin Wayne

P1.35

Programming Style

Concise programs are the norm in C.

Your goal: write READABLE and EFFICIENT programs.

Use consistent indenting.

- automatic indenting in emacs
Choose descriptive variable names.
Use comments as needed.

“Pick a style that suits you, then
use it consistently.”

-Kernighan and Ritchie

1/26/00 Copyright © 2000, Kevin Wayne

P1.36

Summary

Lots of material.

C is a structured programming language.
Function, while loop, for loop.
Can design large robust programs with these simple tools.

Programming maturity comes with practice.
Everything seems simpler in lecture and textbooks.
. Always more difficult when you do it yourself!
Learn main ideas from lecture, learn to program by writing code.

1/26/00 Copyright © 2000, Kevin Wayne

P1.38

