
1/26/00 Copyright © 2000, Kevin Wayne P1.1

Lecture P1: Introduction to C

#include <stdio.h>

int main(void) {

printf(“This is a C program\n”);

return 0;

}

1/26/00 Copyright © 2000, Kevin Wayne P1.2

Learning C

No prior programming experience assumed.

■ Although it will make things easier.

Programming is learned with practice.

■ Don’t expect to learn solely from these lectures.

■ Do exercises.

■ Experiment with code on your own.

Do reading.

■ K&R for people with programming experience.

■ Deitel & Deitel for beginners.

– first 170 pages first two weeks
– next 100 pages third week

1/26/00 Copyright © 2000, Kevin Wayne P1.3

C Background

Born along with Unix in the early 1970’s.

■ One of most popular languages today.

Features.

■ Exposes much of machine detail.

– remember abstractions?

– C exposes low-level abstractions

■ Concise language.

Consequences.

■ Positive: you can do whatever you want.

– flexible and powerful

■ Negative: you can do whatever you want.

– shoot yourself in the foot

1/26/00 Copyright © 2000, Kevin Wayne P1.4

Aspects of Learning to Program

C Syntax

■ Learning English.

Algorithms

■ Learning to tell a coherent story (not necessarily in English).

Libraries

■ Learning to reuse plots written by others.

These are different skills and learning processes.

1/26/00 Copyright © 2000, Kevin Wayne P1.5

An Example

Print a table of values of function f(x) = 2 - x3 . A first attempt:

#include <stdio.h>

int main(void) {
float x, y;

printf(“x f(x)\n”);
x = 0.0;
y = 2.0 - x*x*x;
printf(“%4.1f %6.3f\n”, x, y);
x = 0.1;
y = 2.0 - x*x*x;
printf(“%4.1f %6.3f\n”, x, y);

. . .
x = 1.9;
y = 2.0 - x*x*x;
printf(“%4.1f %6.3f\n”, x, y);
return 0;

}

table1.c

computer starts executing
code at main

input/output library
functions

declare real-valued
variables x and y

assign variable x the
value 0.0

printf used to print
characters to screen
compute 2 - x3 and
assign that value to y
reassign variable x with
the value of 0.1compute 2 - x3 and
assign that value to y

print the values of x and y
to the screen

end of code

print new values of x and
y to the screen36 lines of similar code is
omitted

1/26/00 Copyright © 2000, Kevin Wayne P1.6

Printf Library Function

Contact between your C program and outside world.

■ Puts characters on “standard output.”

■ By default, stdout is the “terminal” that you’re typing at.

Internally, all numbers and characters represented in BINARY (0’s, 1’s).

■ printf converts from binary to more useful form (int, float).

Formatted output.

■ How do you want the numbers to look?

– integers, how many digits?

– real numbers, how many digits after decimal place?

■ Very flexible, see K&R pp. 13, 154.

1/26/00 Copyright © 2000, Kevin Wayne P1.7

Anatomy of Printf

float x, y;
x = 0.927;
y = 2.2;
printf(“%4.1f %6.3f\n”, x, y);

.2 ...2 0 090 .

1 3

4 6

%f to print float

\n is newline
character

space in printf
statement

1/26/00 Copyright © 2000, Kevin Wayne P1.9

Running a Program in Unix

When you type commands, you are controlling an
abstract machine called the “Unix shell.”

■ Compile: convert the program from human’s
language (C) to machine’s language (stay tuned).

– 1st try: syntax errors in C program

– eventually, a file named a.out

■ Execute: start the machine (at first instruction
corresponding to first statement of main).

– 1st try: semantic errors in C program

– eventually, desired “printf” output

% gcc table.c
% a.out

x f(x)
0.0 2.000
0.1 1.999
0.2 1.992
0.3 1.973
0.4 1.936
0.5 1.875
0.6 1.784
0.7 1.657
0.8 1.488
0.9 1.271
1.0 1.000
1.1 0.669
1.2 0.272
1.3 -0.197
1.4 -0.744
1.5 -1.375
1.6 -2.096
1.7 -2.913
1.8 -3.832
1.9 -4.859

Unix

1/26/00 Copyright © 2000, Kevin Wayne P1.10

Anatomy of a While Loop

Previous program repeats the same code over and over.

■ Repetitive code boring to write and hard to debug.

■ Use while loop to repeat code.

condition statements
true

false

while (condition) {
statements;

}

while loop

1/26/00 Copyright © 2000, Kevin Wayne P1.11

Anatomy of a While Loop

Previous program repeats the same code over and over.

■ Repetitive code boring to write and hard to debug.

■ Use while loop to repeat code.

x < 2.0

x ← 0

y ← 2 - x3

print x, y
x ← x + 0.1

true

false

x = 0.0;
while (x < 2.0) {

y = 2 - x*x*x;
printf(“%f %f”, x, y);
x = x + 0.1;

}

C code

1/26/00 Copyright © 2000, Kevin Wayne P1.12

While Loop Example

Print a table of values of function f(x) = 2 - x3. A second attempt.

#include <stdio.h>

int main(void) {
float x, y;

printf(“ x f(x)\n”);
x = 0.0;
while (x < 2.0) {

y = 2.0 - x*x*x;
printf(“%4.1f %6.3f\n”, x, y);
x = x + 0.1;

}
return 0;

}

table2.c

uses while loop

1/26/00 Copyright © 2000, Kevin Wayne P1.13

Anatomy of a For Loop

The for loop is another common repetition structure.

for (expr1; expr2; expr3) {
statements;
}

expression 1

expression 3

statementsexpression 2
true

false

1/26/00 Copyright © 2000, Kevin Wayne P1.14

For Loop Example

Print a table of values of function f(x) = 2 - x3. A third attempt.

#include <stdio.h>

int main(void) {
float x, y;

printf(“ x f(x)\n”);
for (x = 0.0; x < 2.0; x = x + 0.1) {

y = f(x);
printf(“%4.1f %6.3f\n”, x, y);

}
return 0;

}

table3.c

uses for loop

1/26/00 Copyright © 2000, Kevin Wayne P1.15

Anatomy of a Function

Convenient to break up programs into smaller modules or functions.

■ Layers of abstraction.

■ Makes code easier to understand.

■ Makes code easier to debug.

■ Makes code easier to change later on.

f(x) = 2 - x3

Input

1.2 0.272

Output

float f (float x) {
return 2 - x*x*x;
}

function in C

1/26/00 Copyright © 2000, Kevin Wayne P1.16

Anatomy of a Function

C function similar to mathematical function.

Prototype or interface is first line of C function.
■ specifies input argument(s) and their types

– can be integers, real numbers, strings, vectors, user-defined
■ specifies return value

Body or implementation.
■ The rest, enclosed by { }

float sum (float x, float y) {
float z;
z = x + y;
return z;

}

sum function

output type

input 2
type

output value

scratch space

input 2
name

function name

statements
stop execution

of function

1/26/00 Copyright © 2000, Kevin Wayne P1.17

Function Example

Print a table of values of function f(x) = 2 - x3. A fourth attempt.

#include <stdio.h>

float f (float x) {
return 2.0 - x*x*x;

}

int main(void) {
float x;

printf(“ x f(x)\n”);
for (x = 0.0; x < 2.0; x += 0.1) {

printf(“%4.1f %6.3f\n”, x, f(x));
}
return 0;

}

table4.c

no need for { } if only
one statement

x += 0.1 is shorthand
in C for x = x+ 0.1

1/26/00 Copyright © 2000, Kevin Wayne P1.18

What is a C Program?

C PROGRAM: a sequence of FUNCTIONS that manipulate data.

■ main function is first one executed.

A FUNCTION consists of a sequence of DECLARATIONS followed by a
sequence of STATEMENTS.

■ Can be built-in like printf.

■ Or user-defined like f or sum.

A DECLARATION names variables and defines type.

■ float float x;

■ integer int i;

A STATEMENT manipulate data or controls execution.

■ assignment: x = 0.0;

■ control: while (x < 2.0) {...}

■ function call: printf(...);

1/26/00 Copyright © 2000, Kevin Wayne P1.19

Anatomy of a C Program

#include <stdio.h>

float f (float x) {
return 2.0 - x*x*x;

}

int main() {
float x;

x = 0.0;
while (x < 2.0) {

printf(“%4.1f %6.3f\n”, x, f(x));
x = x + 0.1;

}

return 0;
}

table3.c

function

declaration

assignment
statement function call

statement

flow control
statement

1/26/00 Copyright © 2000, Kevin Wayne P1.20

Random Integers

Print 10 “random” integers.

■ Library function rand() in stdlib.h returns integer between 0 and
RAND_MAX - 1 (usually 32767).

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int i;
for (i = 0; i < 10; i++)

printf(“%d\n”, rand());
return 0;

}

int.c % gcc int.c
% a.out
16838
5758
10113
17515
31051
5627
23010
7419
16212
4086

Unix

1/26/00 Copyright © 2000, Kevin Wayne P1.21

Random Integers

Print 10 “random” integers between 0 and 599.

■ No precise match in library.

■ Try to leverage what’s there to accomplish what you want.

#include <stdio.h>
#include <stdlib.h>
#define N 600

int randomInteger(int n) {
return rand() % n;

}

int main(void) {
int i;
for (i = 0; i < 10; i++)

printf(“%d\n”, randomInteger(N));
return 0;

}

int.c

% gcc int.c
% a.out
168
575
101
175
310
562
230
341
16
386

Unix

p % q gives remainder
of p divided by q

1/26/00 Copyright © 2000, Kevin Wayne P1.22

Random Real Numbers

Print 10 “random” real numbers between 0.0 and 1.0.

■ No precise match in library.

■ Try to leverage what’s there to accomplish what you want.

% gcc real.c
% a.out
0.513871
0.175726
0.308634
0.534532
0.947630
0.171728
0.702231
0.226417
0.494766
0.124699

Unix

#include <stdio.h>
#include <stdlib.h>

int main(void) {
int i;
for (i = 0; i < 10; i++)

printf(“%f\n”, 1.0 * rand() / RAND_MAX);
return 0;

}

real.c

Integer division: 16838 / 32767 = 0.
C has conversions for mixed types:
1.0 * 15838 / 32767 = 0.513871.

1/26/00 Copyright © 2000, Kevin Wayne P1.23

Random M x N Pattern

* * * * ** *** * ** **
* * * * * **** * *** **
* * * * * * * * *

* * * * * * *** ** * **
* * * * **** ** * *

* * * * * * ** *** *** *
* * * * *** * ** *

* * * * * **** *** * **
* * * * * *** * ***

** ** * *** * * ***
** ** * * ** * *

* ** ** ** * **** * *
** ** * ***** * * ** **
** ** ** * **** *
** ** ** *** * ***

* ** ** *** * **
** ** * * * * * *
** ** ** * * * **

1/26/00 Copyright © 2000, Kevin Wayne P1.24

Random M x N Pattern

Top-down design.

■ Break a big problem into smaller subproblems.

■ Break down subproblems into sub-subproblems.

■ Repeat until all details filled in.

if coin flip is heads print “*”

else print “ ”

loop M times

print a random row

loop N times

print a random element

1/26/00 Copyright © 2000, Kevin Wayne P1.25

#include <stdio.h>
#define M 9
#define N 9

int randomInteger(int n) {...}

int main(void) {
int i, j;

for (i = 0; i < M; j++) {

for (j = 0; j < N; j++) {

if (randomInteger(2) == 1) printf(“*”);
else printf(“ ”);

}

printf(“\n”);
}

return 0;
}

randpattern.c

Random M x N Pattern

Print a random element.

Print a random row.
Print a random M x N pattern.

1/26/00 Copyright © 2000, Kevin Wayne P1.26

Libraries

How is library function printf() created?

■ User doesn’t need to know details (see COS 217).

■ User doesn’t want to know details (abstraction).

How is library function rand() created?

■ Linear feedback shift register? Cosmic rays?

■ Depends on compiler and operating system.

■ Caveat: “random” numbers are not really random.

– can never have all properties of random bits
– computers do exactly what we tell them to do!

■ Note: on many systems, our randomInteger is very bad.

Moral: check assumptions about library function.

1/26/00 Copyright © 2000, Kevin Wayne P1.27

Gambler’s Ruin

Simulate gambler placing $1 even bets.

■ Will gambler always go broke.

■ If so, how long will it take if gambler starts with $c?

$6

$0

Time Å

C
as

h
Å

1/26/00 Copyright © 2000, Kevin Wayne P1.28

Gambler’s Ruin

int main(void) {
int i, cash, seed;
scanf("%d %d", &cash, &seed);
srand(seed);

while (cash > 0) {
if (randomInteger(2) == 1)

cash++;
else

cash--;
for (i = 0; i < cash; i++)

printf(" ");
printf("*\n");

}
return 0;

}

gambler.c

while I still have
money left, repeat

print a * at the
right place

scanf takes input
from terminal

make a bet

srand sets random seed

1/26/00 Copyright © 2000, Kevin Wayne P1.29

Gambler’s Ruin

Simulate gambler placing $1 even bets.
Q. How long does the game last if we start with $c ?

% gcc gambler.c

% a.out % a.out
4 1231 4 1234

* *
* *
* *
* *
* *
* *
* *

*
*
*
*
*
*

Unix

Hmmm.

1/26/00 Copyright © 2000, Kevin Wayne P1.30

for all initial cash values between 2 and 9
run numerical experiments

Top-Down Design of Numerical Experiment

Goal: run an experiment to determine how long does it take to go broke.

■ Find out how this changes for different values of c.

repeat 5 times

how long before ruin?

do gambler’s ruin and return value

1/26/00 Copyright © 2000, Kevin Wayne P1.31

Gambler’s Ruin Experiment

#include <stdlib.h>
#include <stdlib.h>

int doit (int cash) {
int cnt;
for (cnt = 0; cash > 0; cnt++)

if (randomInteger(2)) cash++;
else cash--;

return cnt;
}

int main(void) {
int cash, t;
for (j = 2; j < 10; j++) {

printf(“%2d ”, j);
for (t = 0; t < 5; t++)

printf(“%7d”, doit(cash);
printf(“\n”);

}
return 0;

}

gexperiment.c

single experiment
(code as before)

repeat 5 times

repeat for all initial
cash values 2 to 9

1/26/00 Copyright © 2000, Kevin Wayne P1.32

Gambler’s Ruin Experiment

How long will it take to go broke?

! Guaranteed to go broke, but expected wait is infinite!

Layers of abstraction.

■ Random bit Å gambler’s ruin sequence Å experiment.

% gcc gexperiment.c
% a.out

2 2 6 304 2 2
3 33 17 15 53 29
4 22 1024 7820 22 54
5 243 25 41 7 249
6 494 14 124 152 14
7 299 33 531 49 93
8 218 10650 36 42048 248
9 174090315 83579 299 759 69

Unix

initial cash

bets

1/26/00 Copyright © 2000, Kevin Wayne P1.33

Programming Advice

Understand your program.

■ What would the machine do?

Read, understand, and borrow from similar code.

Develop programs incrementally.

■ Test each piece separately before continuing.

■ Plan multiple lab sessions.

1/26/00 Copyright © 2000, Kevin Wayne P1.35

Debugging

Find the FIRST bug and fix it.

Syntax error - illegal C program.

■ Compiler error messages are good - tell you what you need to change.

Semantic error - wrong C program.

■ Use “printf” method.

Always a logical explanation.

Enjoy the satisfaction of a fully
functional program!

1/26/00 Copyright © 2000, Kevin Wayne P1.36

Programming Style

Concise programs are the norm in C.

Your goal: write READABLE and EFFICIENT programs.

■ Use consistent indenting.

– automatic indenting in emacs

■ Choose descriptive variable names.

■ Use comments as needed.

“Pick a style that suits you, then
use it consistently.”

-Kernighan and Ritchie

1/26/00 Copyright © 2000, Kevin Wayne P1.38

Summary

Lots of material.

C is a structured programming language.

■ Function, while loop, for loop.

■ Can design large robust programs with these simple tools.

Programming maturity comes with practice.

■ Everything seems simpler in lecture and textbooks.

■ Always more difficult when you do it yourself!

■ Learn main ideas from lecture, learn to program by writing code.

