Lecture I1; Introduction

Adam Finkelstein
Kevin Wayne

1/26/00 Copyright © 2000, Kevin Wayne

Overview

What is COS 126?
Broad introductory survey course.

- no prerequisites (although previous programming helpful in
beginning)

Basic principles of computer science.
- hardware and software systems
- programming in C and other languages
- algorithms and data structures
- theory of computation
- applications to solving scientific problems

What isn't COS 1267
. A programming course.

1/26/00 Copyright © 2000, Kevin Wayne

The Usual Suspects

Lectures: (Adam Finkelstein, Kevin Wayne)
. Tuesday, Thursday 9:00 - 9:50, McCosh 46.

Precepts: (Andrew Appel, Adam Finkelstein, Jason Perry,
Kevin Wayne, Lisa Worthington)

Friday - tips on assignments, clarify lecture material.
Monday - review exercises, clarify lecture material.

All pre-registered students are assigned to a precept at the time requested.

Note: there are 2 precepts at 11am, and 3 at 1:30pm.
. Check the Web page to see which one you are in and where it meets.
. We will only allow switching to under-subscribed precepts.
. See Kevin (Room 207) if you are not in a precept.

1/26/00 Copyright © 2000, Kevin Wayne

Required Readings

Course packet.
Pequod copy. .
aog oy Algorithms
Kernighan and Ritchie. 1IN
Bible for C programmers.

Deitel and Deitel.
. “Required” C text for beginners.
Sedgewick.
. Algorithms and data structures.
. Also required in COS 226.

1/26/00 Copyright © 2000, Kevin Wayne

Lecture Outline

Programming Fundamentals (6 lectures).
Machine architecture (5 lectures).
Advanced programming (2 lectures).
Theory of computation (6 lectures).

Java (2 lectures).

Perspective (1 lecture).
R1. Course summary.

1/26/00 Copyright © 2000, Kevin Wayne 1114

Programming Assignments

Programming assignments (designed to illustrate scientific applications):
0. Hello world

Hello World!

Getting started in C and Unix.
Due Thursday, February 3 at 11:59pm.

Sign up for CS101 lab reservation in class today.
(this assignment only).

1/26/00 Copyright © 2000, Kevin Wayne

1115

Grading

Assignments (33%).
. 9 programming assignments.
Exercises (solutions provided).

Midterms (33%).
2 midterms (33% total).
Many questions drawn from exercises.

B Assignments B Midterms B Final

Final (34%).
35

Course grades. 30
No set curve. %
Last year’'s breakdown. 20

15
10

1/26/00 Copyright © 2000, Kevin Wayne 11.25

Survival Guide

Keep up with the course material.
. Attend lectures and precepts.
Do readings when assigned.
Do exercises and understand solutions.
Start on programming assignments early.
. Think before you write code; compose first, then write code.

Visit course home page regularly for announcements and supplemental
information:

cour sei nfo. Princeton. EDU courses/ COS126_S2000
www. Princet on. EDU/ ~cs126

Contact Kevin (Room 207) if you aren’t on course list.
Contact CIT if you don’t remember your Unix password.

1/26/00 Copyright © 2000, Kevin Wayne

11.26

Survival Guide

Keep in touch.
. Email: your preceptor, lecturers.
. Office hours: your preceptors, other preceptors, instructors.
. Discussion group on course web page.

Ask for help when you need it!
. Preceptors, instructors, lab TA's.

1/26/00 Copyright © 2000, Kevin Wayne

.27

What Is Computer Science?

What is computer science?
1. The science of manipulation “information.”
2. Designing and building systems that do (1).

Why we learn CS.
. Appreciate underlying principles.
. Understand fundamental limitations.

An example: linear feedback shift register machine.
. How to make a simple machine.
. What we can do with it.
. Science behind it.

1/26/00 Copyright © 2000, Kevin Wayne 11.29

Encryption Machine

Goal: design a machine to encrypt and decrypt data.

'SIE[N|D[M[O[N[E]Y]

encrypt

(W[?|M[R[E|A[F[B|Z]

decrypt

' SIE[N|D[M[O[N[E]Y]

1/26/00 Copyright © 2000, Kevin Wayne

11.30

Simple Encryption Scheme

Conversion
char _dec _ binary

Convert text input to N digit binary number.
Generate N random bits.

Take bitwise XOR of two strings.

Convert binary back into text.

PR

[STE[N[D[M]O][NJ]E]Y] mesae

’10010’00101|01100100100‘01101|01110‘01100100101|11001| binary

‘00100 ‘ 11001 ‘ 00001 ‘ 10101 | 01000 ‘ 01111 ‘ 01010 | 00111 | 00101 ‘ random bits

‘10110‘11100‘01101‘10001|00101‘00001‘00110|00010|11100‘ XOR

(W[? [M[R[E[AJFE[B] 2] send

1/26/00 Copyright © 2000, Kevin Wayne 11.35

Decryption Scheme

Convert encrypted message to binary.
Use same N random bits.

Take bitwise XOR of two strings.
Convert binary back into text.

PR

’W’?’M|R|E|A|F|B|?’message

‘10110’11100’01101’10001‘00101‘00001‘00110‘00010’11100‘ binary

‘ 00100 | 11001 | 00001 | 10101 ‘ 01000 ‘ 01111 ‘ 01010 | 00111 | 00101 ‘ random bits

| 10010 | 00101 | 01100 | 00100 | 01101 ‘ 01110 ‘ 01100 | 00101 | 11001 | XOR

(STE[N[D|[M[O[N|E][Y] sen

1/26/00 Copyright © 2000, Kevin Wayne

11.40

Why Does It Work?

Notation:
a original message
b random bits
A XOR operation
a“b encrypted message
(a”b)™b decrypted message

Crucial property: (@~ b)"b=a.

Decrypted message = original message.

Why is crucial property true?

1/26/00

br"b=0

a”0=a

(xry)hz=x"(y"2)
(@*b)*b=a(b”b)=a0=a

Copyright © 2000, Kevin Wayne 1141

Random Numbers

Are these 2000 numbers random?

0100110010000001100010001011101010111100100111100111010010000110111111110010110100110110
1100101001111110101001011000110001110110111000001101000100001010100010011100110111100111
1100000011110111011010000110101110110110000101111011100101100001001111111101101001011110
1010000111001000101100100011010100010111110111110000101101010100001010000000010101010101
1111010111100000101101110110000011100010001111111011110000110100110010100011101011101001
1100000100101010100011011000100100100011000101010011000110111101111010010010111111011000
0111110011000011101000100101000101011111110101101001001111101100101101101111100101001011
1001000001110101010110110001101011001111101000111100100011110110011110010101101010000011
0110011000001100000000011001100110101001101011111100100101101111110100001111010101001010
0000100111011100111101001101001110100000011100110011110110111100011100001000011001110111
1011010110101100011100101010010000010101110111110100111100011000011001010101100100111000
1010110111001001001010111001110010111000000101100110010010000100110111010100111101011100
0010100100010100011001001100000010010001000000100000000001000100010011000100110101011100
0110110101011000001010011001110011111100010110100010100111011000101100000001011101110101
1011010111101000001111101110100101001001101100100001011100110001111110011010010101100010
1000010000010001100110111000101111001101101000111000110010111010001101000000011011101110
0011111000100101100111010110010111110011100001100001000111011111110001111000000011111111
1110000111100010000111011001101000010010011001000000110001000101110101011110010011110011
1010010000110111111110010110100110110110010100111111010100101100011000111011011100000110
1000100001010100010011100110111100111110000001111011101101000011010111011011000010111101
1100101100001001111111101101001011110101000011100100010110010001101010001011111011111000
0101101010100001010000000010101010101111101011110000010110111011000001110001000111111101
1110000110100110010100011101011101001110000010010101010001101100. . .

If not, what is the pattern?

1/26/00 Copyright © 2000, Kevin Wayne

11.43

Linear Feedback Shift Register

How might the “random number machine” be built?
. We'll investigate a simple machine called a

“linear feedback shift register”.

Some terminology

1/26/00

Bit: a student who is either male or female (0 or 1).

Cell (storage element): a seat that holds one student.

Register: whole row of students.

Shift register: when clock strikes, stand up and take seat to left.

Copyright © 2000, Kevin Wayne 1144

Linear Feedback Shift Register

Linear feedback shift register.
Machine consists of 11 bits.
Bit values change at discrete time points.

Bit values at time T+1 completely determined by bit values at time T.

- new bits 1 - 10 are old bits 0 - 9
- new bit 0 is XOR of previous bits 3 and 10
- output bit 0

‘a10|a9|a8|a7|a6|a5|a4|a3|a2|al|a0‘

‘a9|a8|a7|a6|a5|a4|a3|a2|a1|ao|a3"am‘

LFBSR Demo E

1/26/00 Copyright © 2000, Kevin Wayne

Time T

Time T+1

11.45

The Science Behind It

Are the bits really random?
e

How did the computer scientist die in the shower?
rd

How long will it take the bit pattern to repeat itself.
e

Will the machine work equally well if we XOR bits 4 and 10?
e

How many cells do | need to guarantee a certain level of security?
rd

1/26/00 Copyright © 2000, Kevin Wayne

11.46

Properties of Shift Register “Machine”

Clocked.

Control: start, stop, load.

Data: initial values of bits (fill).

Built from simple components.
. “Clock” (regular electrical pulse).
. Shift register cell remembers value until clock “ticks.”
. Some wires “input”, some “output.”

Scales to handle huge problems.
. 10 cells yields 1 thousand “random” bits.
. 20 cells yields 1 million “random” bits.
. 30 cells yields 1 billion “random” bits.
BUT, need to understand abstract machine!
- higher math needed to know XOR taps

1/26/00 Copyright © 2000, Kevin Wayne

11.47

Properties of Computers

Same basic principles as LFBSR:
. Clocked.
. Control: start, stop, load.
Data: initial values of bits.
Built from simple components.
. Scales to handle huge problems.

Abstraction aids in understanding.

1/26/00 Copyright © 2000, Kevin Wayne

11.48

Simulating The Abstract Machine

C program to produce “random” bits.

sum.c

#i ncl ude <stdi o. h>
#define N 100

int main(void) {
int i, new, fill = 01502;
for (i =0; i <N i++) {
new = ((fill >> 10) & 1) ~ ((fill >> 3) & 1);
fill = (fill << 1) + new,
printf(“%d\n”, new);
}

return O;

}
You'll understand this program by next week!

>> shift right & *“and” (1 if both bits 1, O otherwise)

<< shift left N “exclusive or” (1 if both bits are different)

1/26/00 Copyright © 2000, Kevin Wayne

11.49

Simulating The Abstract Machine

C program to produce “random” bits.

Any “general purpose” machine can be used to simulate any abstract
machine. Implications are:

. Test out new programs.
Use old programs.
Understand fundamental limitations of computers.

1/26/00 Copyright © 2000, Kevin Wayne

11.50

Layers of Abstraction

Layers of abstraction (recurring theme).
Precisely defined for simple machine.
Use it to build more complex one.
Develop complex systems by building increasingly more complicated
machines.
Improve systems by substituting new (better) implementations of
abstract machines at any level.

LFBSR layers of abstraction. /
. Simple piece of hardware.

- Generate ‘random” bits. —_ |

Use “random” bits for encryption.

Use encryption for Internet commerce. \

1/26/00 Copyright © 2000, Kevin Wayne

11.54

Layers of Abstraction

“Computer” layers of abstraction.
. Complex piece of hardware.
- CPU, keyboard, printer, storage devices

Machine language programming.
-0'sand1’s

. Software systems.
- editor (emacs): create, modify files
— compiler (Icc): transform program to machine instruction
- operating system (Unix): invoke programs

. Windowing system (X).
— illusion of multiple computer systems

1/26/00 Copyright © 2000, Kevin Wayne

1155

