CS 126 Lecture A3: Boolean Logic

Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

Where We Are At

- We have learned the abstract interface presented by a machine: the instruction set architecture
- What we will learn: the implementation behind the interface:
- Start with switching devices (such as transistors)
- Build logic gates with transistors
- Build combinational circuit (memory-less) devices using gates
- Next lecture: build sequential circuit (memory) devices
- The one after: glue these devices into a computer

Digital Systems

-... however, the application of digital logic extends way beyond just computers.

- Today, digital systems are replacing all kinds of analog systems in life (data processing, control systems, communications, measurement, ...)
- What is a digital system?
- Digital: quantities or signals only assume discrete values
- Analog: quantities or signals can vary continuously
- Why digital systems?
- Greater accuracy and reliability

- The heart of a digital system is usually a digital logic circuit

CS126
${ }^{11-4}$

- A smallest useful circuit is a logic gate
- We will connect these small gates into larger circuits

mand

Outline

- Introduetion
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

Outline	
- Intreduction	
- Logic gates	
- Boolean algebra	
- Implementing gates with switching devices	
- Common combinational devices	
- Conclusions	

An OR-Gate and a NOT-Gate

- Can implement any circuit using only AND, OR, and NOT gates
- But things get complicated when we have lots of inputs and outputs...

Outline

- Introduction

- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

- Many different ways of implementing a circuit (the two above circuits turn out to be the same!)
- How do we find the best implementation? Need better formalism
- Also need more compact representation
- This leads to the study of boolean algebra

CS126
Randy Wang

Boolean Algebra

- History
- Developed in 1847 by Boole to solve mathematic logic problems
- Shannon first applied it to digital logic circuits in 1939
- Basics
- Boolean variables: variables whose values can be 0 or 1
- Boolean functions: functions whose inputs and outputs are boolean variables
- Relationship with logic circuits
- Boolean variables correspond to signals
- Boolean functions correspond to circuits

| Defining a Boolean Function with |
| :---: | :---: | :---: | :---: | :---: |
| a Truth Table |
| \mathbf{x} 0 0 1
 \mathbf{y} 0 1 0
 AND (x, y) 0 0 0 | | 1 |
| :--- |

- A systematic way of specifying a function value for all possible combination of input values
- A function that takes 2 inputs has 2×2 columns
- A function that takes n inputs has 2^{n} columns
- This particular example is the AND-function

CS126
11-12 Randy Wang

Defining a General Boolean Function Using

 Three Basic Boolean Functions| $\operatorname{AND}(x, y)=x y=x^{*} y$ | $O R(x, y)=x+y$ |
| :--- | :--- |
| $N O T(x)=x^{\prime}$ | |

- The three basic functions have short-hand notations
- Can compose the three basic boolean functions to form arbitrary boolean functions [such as $\mathbf{g}(\mathbf{x}, \mathbf{y})=\mathbf{x y} \mathbf{+ \mathbf { z } ^ { \prime }}$]

OR and NOT Truth Tables

\mathbf{x}	0	0	1	1
\mathbf{y}	0	1	0	1
OR (x,y)	0	1	1	1
NOT (x) 1 0 \mathbf{x} 0				

CS126
Randy Wang

Two Ways of Defining a Boolean Function

\mathbf{x}	0	0	1	1
\mathbf{y}	0	1	0	1
XOR $(\mathbf{x}, \mathbf{y})=\mathbf{x}^{\wedge} \mathbf{y}$	0	1	1	0

$$
\operatorname{XOR}(x, y)=x^{\wedge} y=x^{\prime} y+x y^{\prime}
$$

- We have learned that any function can be defined in these two ways: truth table and composition of basic functions
- Why do we need all these different representations?
- Some are easier than others to begin with to design a circuit
- Usually start with truth table (or variants of it)
- Derive a boolean expression from it (perhaps including
simplification)
- Straightforward transformation from boolean expression to circuit

More Examples of Boolean Functions

CS126
Randy Wang

Another Example

Example: odd parity function

So How to Translate a Truth Table to a Boolean Expression (Sum-of-Products)?

- form AND terms for each 1 in the function
use v if it centesponds to $v \equiv$ i

Parity Function Construction Demo

Transform a Boolean Expression into a Boolean Circuit

Use sum-of-products form of function

Example: majority
$m=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$

CS126
11-20
Randy Wang

Mini-Summary:

How Do We Make a Combinational Circuit

- Represent input signals with input boolean variables, represent output signals with output boolean variables
- Construct truth table based on what we want the circuit to do
- Derive (simplified) boolean expression from the truth table
- Transform boolean expression into a circuit by replacing basic boolean functions with primitive gates

Simplification Using Boolean Algebra

- Large body of boolean algebra laws can be employed to simplify circuits
- The previous example: $x y+x y^{\prime}=x\left(y+y^{\prime}\right)=x * 1=x$
- Much more, but you don't have to know any of this...
CS126 $\quad 11-21 \quad$ Randy Wang

Outline	
- Intreduction	
- Logie gates	
- Boelean algebra	
- Implementing gates with switching devices	
- Common combinational devices	
- Conclusions	
cs126	

Switching Devices					
	C	0	0	1	1
	M	0	1	0	1
	0	0	1	0	0
	=				

- Any two-state device can be a switching device, examples are relays, diodes, transistors, and magnetic cores
- A transistor example
- Any boolean function can be implemented by wiring together transistors

CS126
Randy Wang

Make an OR-gate Using Transistors

Make a NOT-gate Using a Transistor


```
\(0=M C^{\prime}=1 *^{\prime}=\mathbf{x}^{\prime}\)
```

CS126
Randy Wang

Make an AND-gate Using Transistors

Outline

- Introduction
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

CS126
11-28
Randy Wang

Deriving Decoder Boolean Expressions

\mathbf{x}	0	0	0	0	1	1	1	1
\mathbf{y}	0	0	1	1	0	0	1	1
\mathbf{z}	0	1	0	1	0	1	0	1
$\mathrm{~d}_{0}$	1	0	0	0	0	0	0	0

$$
d_{0}=x^{\prime} y^{\prime} z^{\prime}
$$

\mathbf{x}	0	0	0	0	1	1	1	1
\mathbf{y}	0	0	1	1	0	0	1	1
\mathbf{z}	0	1	0	1	0	1	0	1
$\mathrm{~d}_{1}$	0	1	0	0	0	0	0	0

$$
d_{1}=x^{\prime} y^{\prime} z
$$

- Can bypass truth table when you're comfortable with this

Decoder Demo

$1+$

CS126

$$
\begin{array}{ll}
\hline 11-32 & \text { Randy Wang }
\end{array}
$$

Multiplexer Boolean Expression

\mathbf{x}	0	0	0	0	\cdots	1	1
\mathbf{y}	0	0	0	0	\cdots	1	1
\mathbf{z}	0	0	1	1	\cdots	1	1
\mathbf{I}_{7}	0	0	0	0	\cdots	0	1
\cdots							
\mathbf{I}_{1}	0	0	0	1	\cdots	0	0
\mathbf{I}_{0}	0	1	0	0	\cdots	0	0
\mathbf{M}	0	1	0	1	\cdots	0	1

$$
M=x^{\prime} y^{\prime} z^{\prime} I_{0}+x^{\prime} y^{\prime} z I_{1}+\ldots+x y z I_{7}
$$

- A lot easier in this case to directly derive the boolean expression instead of starting with a truth table

Multiplexer Interface

- $\mathrm{I}_{0}-\mathrm{I}_{7}$ are the "data inputs", $\mathrm{x}, \mathrm{y}, \mathrm{z}$ form the "control" inputs and are interpreted together as one binary number
- One data input is selected by the control and becomes output
- For example, if $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are $1,0,1$, then $\mathrm{M}=\mathrm{I}_{5}$

CS126 ${ }^{11-33}$
Randy Wang

Multiplexer Implementation

$$
\cdot M=x^{\prime} y^{\prime} z^{\prime} I_{0}+x^{\prime} y^{\prime} z I_{1}+x^{\prime} y z^{\prime} I_{2}+x^{\prime} y z I_{3}
$$

$$
+x y^{\prime} z^{\prime} I_{4}+x y^{\prime} z I_{5}+x y z^{\prime} I_{6}+x y z I_{7}
$$

- Add three 1-bit numbers $\mathrm{x}, \mathrm{y}, \mathrm{z}$
- s is the 1 -bit sum
- c is the 1 -bit carry

CS126 11-36

An N-bit Adder Made with Bit-Slices

An Adder Bit-Slice Implementation

- See slides 11-16, 11-17, and 11-18 for details of the odd parity circuit and majority circuit

CS126
11-37
Randy Wans

Outline

- Introduetion
- Logic gates
- Boolean algebra
- Implementing gates with switching devices
- Common combinational devices
- Conclusions

Building a Computer Bottom Up

- Circuit design: specifying the interconnection of components such as resistors, diodes, and transistors to form logic building blocks
- Logic design: determining how to interconnect logic building blocks such as logic gates and flip-flops to form subsystems
- System design (or computer architecture): specifying the number, type, and interconnection of subsystems such as memory units, ALUs, and I/O devices

What We Have Learned

- How to build basic gates using transistors
- How to build a combinational circuit
- Truth table
- Sum-of-product boolean expression
- Transform a boolean expression into a circuit of basic gates
- The functionality of some common devices and how they are made
- Decoder
- Multiplexer
- Bit-slice adder
- You're not responsible for
- Boolean algebra laws, or circuit simplification
$\begin{array}{lll}\text { CS126 } & \text { 11-42 } & \text { Randy Wang }\end{array}$

