CS 126 Lecture A3:

Boolean Logic

*We have learned the abstraderface presented by a
machine: the instruction set architecture

* What we will learn: themplementation behind the

interface:

Where We Are At

- Start with switching devices (such as transistors)
- Build logic gates with transistors

- Build combinational circuit (memory-less) devices using ¢
- Next lecture: build sequential circuit (memory) devices

- The one after: glue these devices into a computer

CS126

11-2

Randy Wang

ates

Outline

¢ Introduction

* Logic gates

*Boolean algebra

* Implementing gates with switching devices
* Common combinational devices

* Conclusions

CS126 11-1 Randy Wang

Digital Systems

¢ ... however, the application of digital logic extends way
beyond just computers.

* Today, digital systems are replacing all kinds of analog
systems in life (data processing, control systems,
communications, measurement, ...)

*What is a digital system?
- Digital: quantities or signals only assume discrete values
- Analog: quantities or signals can vary continuously

* Why digital systems?
- Greater accuracy and reliability

CS126 11-3 Randy Wang

)

Digital Logic Circuits

X1

Xo

»

Inputs
(X X

Xm—»

Circuit

z

N
N

sindinQ

* The heart of a digital system is usually a digital logic

circuit

Outline

* Introduetion

* | oqgic gates

*Boolean algebra

* Implementing gates with switching devices
* Common combinational devices

* Conclusions

CS126

11-4

Randy Wang

CS126 11-5 Randy Wang

An AND-Gate

D,
D

0

1

* A smallest useful circuit is a logic gate
* We will connect these small gates into larger circuits

An OR-Gate and a NOT-Gate

CS126

11-6

Randy Wang

CS126 11-7 Randy Wang

Building Circuits Using Gates

rewind button(remote)
rewind button (VCR)

start of tape reached—|>0—

rewind tape

* Can implemenény circuit usingonly AND, OR, and NOT|
gates

* But things get complicated when we have lots of inputs
outputs...

CS126 11-8 Randy Wang

Outline

~Introduction

* Logic-gates

*Boolean algebra

* Implementing gates with switching devices
* Common combinational devices

¢ Conclusions

CS126 11-10 Randy Wang

and

Problems

Fr—— - — - —— — — — — — — — — 1

,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,

* Many different ways of implementing a circuit (the two
above circuits turn out to be the same!)

* How do we find the best implementation? Need better
formalism

* Also need more compact representation

* This leads to the study of boolean algebra

CS126 11-9 Randy Wang

Boolean Algebra

* History

- Developed in 1847 by Boole to solve mathematic logic
problems

- Shannon first applied it to digital logic circuits in 1939

* Basics
- Boolean variables variables whose values can be O or 1

- Boolean functions functions whose inputs and outputs are
boolean variables

* Relationship with logic circuits
- Boolean variables correspond to signals
- Boolean functions correspond to circuits

CS126 11-11 Randy Wang

Defining a Boolean Function with
a Truth Table

X 0 0 1 1
y 0 1 0 1
AND(x,y) 0 0 0 1

* A systematic way of specifying a function value &@r
possible combination of input values

* A function that takes 2 inputs has2columns
* A function that takes n inputs ha¥@lumns
* This particular example is the AND-function

CS126 11-12 Randy Wang

Defining a General Boolean Function Using
Three Basic Boolean Functions

1 1 e

OR(x,y)=x+ty NOT(x)=x

AND(X,y)=xy=x*y

* The three basic functions have short-hand notations

* Can compose the three basic boolean functions to form
arbitrary boolean functions [such@&,y)=xy+z’]

CS126 11-14 Randy Wang

OR and NOT Truth Tables

X 0 0 1 1
y 0 1 0 1
OR(X,Y) 0 1 1 1
X 0 1
NOT(x) 1 0

CS126 11-13 Randy Wang

Two Ways of Defining a Boolean Function

X 0 0 1 1
y 0 1 0 1
XOR(X,y)=x"y 0 1 1 0

XOR(X,y) = x*y =Xy + xy’ |

*We have learned that any function can be defined in these
two ways: truth table and composition of basic functions
*Why do we need all these different representations?
- Some are easier than others to begin with to design a circuit
- Usually start with truth table (or variants of it)
- Derive a boolean expression from it (perhaps including
simplification)
- Straightforward transformation from boolean expression to circuit

CS126 11-15 Randy Wang

More Examples of Boolean Functions

Sinteep didferent dupotions

Gluing the truth tables of

So How to Translate a Truth Table to a
Boolean Expression (Sum-of-Products)?

s form AND Yerms for each i in the function

z: 0 1 INL)O AD k
m: 00 0(1)o011 T,

m = x'yz + X'z + xyz' + Ayz

gBp1l| = all functions of two variables
Lol e T into one table

ooaao commkant 0

ooo1 AED () [dscods 11 = 31

oo1ao [ds=ads 10 = 3]

oot x

g1aa0 [dssads 01 = 1]

o1@a1 I
F0 110] Xom (xyl)

01111l o [=x=y)

1000 KOE [("maok or®| [dessds 00 = 0]

1008 1 = |"pob war=) -

M 5 1) For n variables, therg
e are antotal of

L1 o0 RHOT = (®')

11081 22

111D mamm (*nee and=i |fUNCtions!

1111 comEkank I

CS126 11-16 Randy Wang

CS126 11-17 Randy Wang

Another Example

Example: odd parity
xk: O
y: O

i o e

p: 0110100

function

P = ayz 4+ xyz' 4+ wy'zr + xyz
ool 1o Ny te)

Parity Function Construction Demo

CS126 11-18

Randy Wang

CS126 11-19 Randy Wang

Transform a Boolean Expression into a
Boolean Circuit

Use sum-of-products form of function
Example: majority
m = x'yz + xy'z + xyz' + xyz

i ‘9.9.1-)

CS126 11-20 Randy Wang

Mini-Summary:
How Do We Make a Combinational Circuit

* Represent input signals with input boolean variables,
represent output signals with output boolean variables

e Construct truth table based on what we want the circu
do

* Derive (simplified) boolean expression from the truth t

* Transform boolean expression into a circuit by replacing

basic boolean functions with primitive gates

tto

able

CS126 11-22 Randy Wang

Simplification Using Boolean Algebra

—————————————————————

,,,,,,,,,,,,,,,,,,,,,

r—-——— - - —"—"—"—"—"—"———————°

,,,,,,,,,,,,,,,,,,,,,

e Large body of boolean algebra laws can be employed
simplify circuits

* The previous example:
Xy + xy’ = x(y+y') = x*1 = x

* Much more, but you don’t have to know any of this...

CS126 11-21 Randy Wang

Outline

* Introduction
* Logic-gates
- Boolean algebra

* Implementing gates with switching devices

e Common combinational devices
e Conclusions

CS126 11-23 Randy Wang

Switching Devices

Main input (M)
* C ol o0 1]1

<
o
=
o
=

Controlled input (C)

Output (O)

* Any two-state device can be a switching device, exam
are relays, diodes, transistors, and magnetic cores

* A transistor example

* Any boolean function can be implemented by wiring
together transistors

ples

CS126 11-24 Randy Wang

Make an OR-gate Using Transistors
1

(Xy’)=x+y

(DeMorgan’s Law)

CS126 11-26 Randy Wang

Make a NOT-gate Using a Transistor

CS126 11-25 Randy Wang

Make an AND-gate Using Transistors

(X")=xy

CS126 11-27 Randy Wang

Outline

* Introduction

* Logicgates

- Boolean algebra

. I . " tehing-devices

e Common combinational devices

e Conclusions

CS126 11-28 Randy Wang

Deriving Decoder Boolean Expressions

X 0 0 0 0 1 1 1 1
y o]lo |1]1 o o |1 |1
z 0 1 0 1 0 1 0 1
do 1 0 0 0 0 0 0 0
doleylzi
X 0 0 0 0 1 1 1 1
y 0 0 1 1 0 0 1 1
z 0 1 0 1 0 1 0 1
dy 0 1 0 0 0 0 0 0
d,=xy'z

* Can bypass truth table when you're comfortable with t

his

CS126 11-30 Randy Wang

Decoder Interface

example:
ifx,y,z=1,0,1
ds=1

d?=0 elsewhere

X— 3.3

Yy —>
Z—>

decoder

—dy=Xy'Z’
—d,=Xy'z
—d,=XyZ’
—d3=X"yz
—d,=Xxy'7’
—d5=Xxy'z
—»dg=xyZ’
—d,=Xyz

DECODER
Tt)
H inputs’
M "Teutputs

pTurns en precisely ene

7" becleon

Ij—.nl Cnent

E-1 %17

address i=s enceded in inputs’
e

CS126 11

-29

Randy Wang

Decoder Implementation

r"i%; ”’M’

. Hy"z 101

— I]-_ua"z" 110

Dwu': 111

CS126 11-

Randy Wang

Decoder Demo

3-8t Decader @ w2

R T - T

Multiplexer Interface

| g—»
| 1—»
| 5 ——>
| 3— 8-1 I
| 4j— MUX
| g—»
| g—
| 77—
il

CS126 11-32 Randy Wang

* |g-17 are the “data inputs”, x,y,z form the “control” input
and are interpreted together as one binary number

* One data input is selected by the control and becomes

output
* For example, if x,y,z are 1,0,1, then M=l

[72)

Multiplexer Boolean Expression

X 0 0 0 0 1 .

y 0 0 0 0 1 L

z 0 0 1 1 1 .

I,/ o]0 |0 O 0 1
I,]o0o [0 |0 |1 0 0

lo| O/ 2 |0 |0 |. O

M 0 1 0 1 ... |0 1
M=xy'2" 1g+Xyz |q+.+Xyz Iy

* A lot easier in this case to directly derive the boolean
expression instead of starting with a truth table

CS126 11-33 Randy Wang

Multiplexer Implementation

X YA |0 |1 |7

iR

CS126 11-34 Randy Wang

*M=xYy'7zZl ot XYzl 1+ Xyz'l 2t Xyzl 3
+Xy'Zl 4 +xyzl g5+XxyzZIl g +Xxyzl 4

CS126 11-35 Randy Wang

An Adder Bit-Slice Interface

1

XYy Z

An Adder Bit-Slice Implementation

* Add three 1-bit numbers x, y, z
*sis the 1-bit sum
e c is the 1-bit carry

Carry: majority circuit

sum: odd parity circuit —)

CS126 11-36 Randy Wang

* See slides 11-16, 11-17, and 11-18 for details of the o
parity circuit and majority circuit

dd

An N-bit Adder Made with Bit-Slices

@_’E‘I‘:‘m fwo N-bit numbers x and y
a bit-by-bit function of the inputs

because of ', ru‘,ﬂ;—
u1§’>§5?"]§'1$;\5
+)or;:u:|.uuua1
011000000 »

ADBDER: one copy for cach bit, strung togethar
i G TR LRI
I

NEAL ™
- AL

Sy 5 - 9

CS126 11-37 Randy Wang

CS126 11-38 Randy Wang

Outline

* Introduction

* Logic-gates

- Boolean algebra

. I . " tehi levices
- Commeon-combinational-devices

* Conclusions

CS126 11-39 Randy Wang

Abstractions and Encapusulation

All the lessons that we learned for ADT ransistors

apply here to hardware as well! f"
' D D
W
f majority | [parity
m oy
1-bit
f " *adde
v
NN/ 777 /1 4
n-bit adder
L

CS126 11-40 Randy Wang

What We Have Learned

* How to build basic gates using transistors

* How to build a combinational circuit

- Truth table

- Sum-of-product boolean expression

- Transform a boolean expression into a circuit of basic gat
* The functionality of some common devices and how th

are made

- Decoder

- Multiplexer

- Bit-slice adder

* You're not responsible for
- Boolean algebra laws, or circuit simplification

CS126 11-42 Randy Wang

ey

Building a Computer Bottom Up

e Circuit design: specifying the interconnection of
components such as resistors, diodes, and transistors to
form logic building blocks

* Logic design determining how to interconnect logic
building blocks such as logic gates and flip-flops to form
subsystems

* System desigr(or computer architecture): specifying the
number, type, and interconnection of subsystems such as
memory units, ALUs, and 1/O devices

CS126 11-41 Randy Wang

