Introduction

COS IW 03: Hands-on Reinforcement Learning

Karthik Narasimhan

Introductions

Instructor: TA:

Karthik Narasimhan Xi Chen

Time/Location:

e Tuesdays 3:00pm-4:20pm in CS 301
e Office hours:

Karthik Narasimhan: Mondays 4pm-5pm, Computer Science 422
Xi Chen: Fridays 1:30 - 3:30pm, CS 003

Logistics

Not typical lecture-style. This is independent work after all!
Attendance is mandatory

Please use Piazza for all questions and to share useful
information with each other!

Office hours will be updated on class website

‘Intro to Neural Networks’ tutorial by Xi (date: TBD)

The semester in phases

\

_ \\\q/ /.
S
P1: Brainstorm, literature

review, finalize ideas
(Feb 18)

0

P3: Midpoint (preliminary)
results
(Mar 10)

\ 4

P2: Initial setup (data
collection, tool survey, etc)
(Feb 25)

P4: Endgame (finalize results,

write report, presentations)
(end of April)

Important IVV milestones

Spring 2020 Single Semeseter Projects Schedule

Feb. 6, 2020
Feb. 17, 2020

5:00pmM

Feb. 23, 2020
March 8, 2020
March 30, 2020 -

April 3, 2020

Attend the "Getting Started” Information Meeting 4:30p.m. in CS 105

SEAS Funding Deadline -

"‘Due in person by spm.

""Open to ANY COS IW student

(Both AB and BSE can apply. Both single-term and two-term/ thesis can apply)

Submit a Written Project Proposal, by 11:59p.m.

Submit the Checkpoint Form, by 11:59p.m.

Sign Up to Give an Oral Presentation

**First-time BSE IW students, only

Note for seminar students: All seminar students will give an

Your instructor will share information about logistics.

March 31, 2020
April 14, 2020

April 19, 2020

April 20-24, 2020

May 1, 2020

— Apply to this!

Attend "How to Give an IW Talk" 4:30p.m. iIn CS 105

Attend "How to Write an IW Paper” 4:30p.m. in CS 105

Submit Slides for an Oral Presentation, by 11:59p.m.

""All seminar students and first-time BSE IW students, only

Give an IW Oral Presentation

**First-time BSE IW students, only

Note for seminar students: All seminar students will give an oral presentation.
Your instructor will share information about logistics.

Submit a Written Final Report, by 11:59p.m.

Reinforcement Learning

e Agent : has abllity to affect change

action e Action : causes change
ar

e Environment : is affected by action

e Reward : feedback w.r.t a goal

e Time

Sequential Decision Making

Why is RL challenging?

Delayed feedback

O00O0

action 1 action n

= How to perform credit assignment for individual actions

Large number of possible action sequences

= Need for effective exploration

Markov Decision Process

State § = Observed Environment

Action a = Command to execute

State 1 Action State 2

Location: Field , Location: Field
open mailbox Reward

Wind level: 3 Wind level: 3 +1

Time: 12pm Time: 12pm
Mailbox: closed Mailbox: open

Policy | |
Markov assumption: s 8 g Action value function

limited history Q(s,a)

State § = Qbserved Environment

Action @ = Command to execute

State 1

Location: Field
Wind level: 3
Time: 12pm

Mailbox: closed

Action

open mailbox

Policy
mT: 8 —a

State 2
Location: Field
o . Reward
Wind level: 3 +1

Time: 12pm

Mailbox: open

Action value function

Q(s,a)

Types of RL algorithms

Policy gradients: directly learn a policy
to maximize reward

Value-based: estimate value function or
Q-function of the optimal policy (no
explicit policy)

Actor-critic: estimate value function or
Q-function of current policy and use it to
improve the policy

Model-based RL: estimate transition
and reward models of the environment,
then use it for planning, improving
policy, etc.

Comparison: sample efficiency

off-policy on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

Why would we use a less efficient algorithm?

Wall clock time is not the same as efficiency!

(slide credits: Sergey Levine)

Comparison: assumptions

* Common assumption #1: full observability

* Generally assumed by value function fitting
methods

* Can be mitigated by adding recurrence

* Common assumption #2: episodic learning
* Often assumed by pure policy gradient methods
* Assumed by some model-based RL methods

* Common assumption #3: continuity or
smoothness

* Assumed by some continuous value function
learning methods

e Often assumed by some model-based RL
methods

(slide credits: Sergey Levine)

Example: value iteration

Initialize V" arbitrarily, e.g..V(s) =0, for all s € &

Repeat
A — ()
For each s ¢
v — V(s)
Vi(s) « max,) . P2, [R“, + 4V (s t}]
A — max(A, |[v — V{(s)|)

until A << @ (a small positive number)

S:

J

Qutput a deterministic policy. 7, such that

m(s) = argmax,), P |R, + V(s

Grid Row

Gridworld: Value Function

lteration: 01
Median value: -1.0

10 S

| 1 | | | | | | | |

10 12 14 16 18

8
Grid Col

OpenAl Gym

import gym

env = gym.make("CartPole-v1")

observation = env.reset()

for _ in range(1000):
env.render()
action = env.action_space.sample() # your agent here (this takes random actions)
observation, reward, done, info = env.step(action)

Gym is a toolkit for developing A

and comparing reinforcement observation = env.reset()
: : env.close()

learning algorithms. It supports

teaching agents everything from
walking to playing games like
Pong or Pinball.

View documentation »
View on GitHub »

Great API for designing and using environments

Mnih et al., 2015

oCe
O /0
oy ’
O.O.O

AlphaGo

Google DeepMind

Recent successes

¢ LEE SEDOL
+0+00:07:00

-~

C‘I

©

penAl

5v5

»
»
-«

OpenAl, 2018

Some project ideas

e Develop an environment for a new game and train RL agents on it
e Use OpenAl gym for environment framework

e |Investigate a wide range of RL agents (e.g. from OpenAl
baselines)

Starter WA

_k\‘w
— <l ;

Creed Garres [don]

& TinnrT:

Some project ideas

e Use reinforcement learning to tackle a
decision making problem in real-world
domains

e Traffic control (https://flow-
project.github.io/)

e Chemical reaction synthesis
e Financial prediction (tricky!)
 Robotics

e Solve differential equations

O

gy
:

1" way

A

B

2006 2007 Apr

Jul Oct 2008 Apr

\ CM (i)
SM (i) [Ar] [Ru=CHR]
y \

- H,C=CH,
o8

72-99%/@)
E-4,4"-di(phenyl)stilbene (15) |

84-93% 7

Jul Oct 2009 Apr

S'sq (Il)

| o y
+ 2 X~[Ar]

[Ar]

(Ar] \

SM (ii)
[Pd]

+ 2 (OH),B-[Ar]

Jul Oct 2010 Apr

Jul Oct 2011 Apr

Ju

140
120

100

80

60

40

https://flow-project.github.io/
https://flow-project.github.io/
https://flow-project.github.io/

Some project ideas

e Jext adventure games

Microsoft TextWorld is an open-source, extensible engine that both generates and simulates text
games. You can use it to train reinforcement learning (RL) agents to learn skills such as language

Partially observed Markov decision process understanding and grounding, combined with sequential decision making.

State s = Observed Environment You are navigating through a house. You've just entered a serious
study. There is a gross looking mantle in the room. It has nothing

Action a = Command to execute)
on 1t. You see a closed rusty toolbox. Now why would someone leave
. that there?

State 1 Action State 2
... : o Looks like there is a locked door. Find the key to unlock the
- You are standing in an open mailbox Reward door. You should try going east.
~ open field west of a white - | Openingthe mailbox |
 house. There is a small ~ reveals a leaflet.

mailbox here.

Policy

m™m.s—a

Narasimhan et al., 2015 Microsoft Textworld

Some project ideas

e | earning without rewards?
Curiosity-driven Exploration by

Self-supervised Prediction

Deepak Pathak Pulkit Agrawal Alexei A. Efros Trevor Darrell
University of California, Berkeley
ICML 2017
[Download Paper] [Github Code]

MARIO
005000

| [

.v. 1 £ ‘
d I l
. ’ . . L l-l—
|

B
". : r-n---f—.—c‘.—c-t—'-“'(‘-r"'l—'_ ’- '- f-
3% FI . Distance 320 10%) .f"—.f‘l—.f‘rf‘
f l—':JI_’— — ' —] T i T

e o e -9
y / &l

o i ol ml r

(a) learn to explore on Level-1 (b) explore faster on Level-2

Some project ideas

e Develop and study new RL algorithms! Challenges to tackle include:
e Sample efficiency: How fast can you learn?

e Ability to generalize: Can a policy trained on one Atari game generalize to
another?

e Multi-task learning: Can you train a single agent to be good at several tasks?

e Robustness: Is your algorithm robust to noise in environmental signals (state
observations, rewards, etc.)? Analyze what breaks and why. Even better, try to fix it!

 Fairness/Bias: Can RL algorithms be biased/unfair in the same way as supervised
methods like image classification”? How can we characterize this?

If you have other ideas, come talk to us!

Collaboration

e Working in teams is great! (2-3 people at max)

e Make sure each member has a clearly defined sub-part
and responsibility

e Please do share ideas and resources with each other!

Project updates

e \We will create a shared Google drive folder where you can
each upload slides every week

e Running presentation, append new slides to the same deck

e Key points to include:

1. What you accomplished the previous week

2. Any hurdles you are currently encountering

3. Concrete plan for next week

Brainstorming

For next meeting

e Please fill out Google form with initial ideas before the next
meeting (will be announced on Piazza later tonight)

