Introduction

COS IW 03: Hands-on Reinforcement Learning

Karthik Narasimhan

Introductions

Instructor:

Karthik Narasimhan

Time/Location:

- Tuesdays 3:00pm-4:20pm in CS 301
- Office hours: Xi Chen: Fridays 1:30 - 3:30pm, CS 003

TA:

Xi Chen

Karthik Narasimhan: Mondays 4pm-5pm, Computer Science 422

- Attendance is mandatory
- information with each other!
- Office hours will be updated on class website
- 'Intro to Neural Networks' tutorial by Xi (date: TBD)

Logistics

• Not typical lecture-style. This is independent work after all!

Please use Piazza for all questions and to share useful

The semester in phases

P1: Brainstorm, literature review, finalize ideas (Feb 18)

P3: Midpoint (preliminary) results (Mar 10)

P2: Initial setup (data collection, tool survey, etc) (Feb 25)

P4: Endgame (finalize results, write report, presentations) (end of April)

Spring 2020 Single Semeseter Projects Schedule

Feb. 6, 2020	Attend the "Getting Started" Information Meeting 4:30p.m. ir
Feb. 17, 2020	SEAS Funding Deadline
5:00pm	*Due in person by 5pm.
	**Open to ANY COS IW student
	(Both AB and BSE can apply. Both single-term and two-te
Feb. 23, 2020	Submit a Written Project Proposal, by 11:59p.m.
March 8, 2020	Submit the Checkpoint Form, by 11:59p.m.
March 30, 2020 -	Sign Up to Give an Oral Presentation
April 3, 2020	**First-time BSE IW students, only
	Note for seminar students: All seminar students will give a
	Your instructor will share information about logistics.

Important IW milestones

n CS 105

Apply to this!

erm/ thesis can apply)

1	March 31, 2020	Attend "How to Give an IW Talk" 4:30p.m. in CS 105
	April 14, 2020	Attend "How to Write an IW Paper" 4:30p.m. in CS 105
	April 19, 2020	Submit Slides for an Oral Presentation, by 11:59p.m.
		**All seminar students and first-time BSE IW students, only
	April 20-24, 2020	Give an IW Oral Presentation
		**First-time BSE IW students, only
		Note for seminar students: All seminar students will give an oral presentatio
		Your instructor will share information about logistics.
	May 1, 2020	Submit a Written Final Report, by 11:59p.m.

Sequential Decision Making

Reinforcement Learning

• Agent : has ability to affect change

action a_t

- Action : causes change
- Environment : is affected by action
- Reward : feedback w.r.t a goal
- lime

Delayed feedback •

action 1

 \Rightarrow How to perform credit assignment for individual actions

 Large number of possible action sequences \Rightarrow Need for effective exploration

Why is RL challenging?

Markov Decision Process

Markov assumption: limited history

 $\pi: s \to a$

Location: Field

Wind level: 3

Time: 12pm

Mailbox: open

Reward +1

Policy

Action value function

Q(s,a)

Types of RL algorithms

+1

Policy $\pi: s \to a$

Action value function

Q(s,a)

- **Policy gradients:** directly learn a policy to maximize reward
- Value-based: estimate value function or Q-function of the optimal policy (no explicit policy)
- Actor-critic: estimate value function or Q-function of current policy and use it to improve the policy
- Model-based RL: estimate transition and reward models of the environment, then use it for planning, improving policy, etc.

Comparison: sample efficiency

More efficient (fewer samples)

> model-based model-based shallow RL deep RL

Why would we use a *less* efficient algorithm? Wall clock time is not the same as efficiency!

(slide credits: Sergey Levine)

Comparison: assumptions

- Common assumption #1: full observability
 - Generally assumed by value function fitting methods
 - Can be mitigated by adding recurrence
- Common assumption #2: episodic learning
 - Often assumed by pure policy gradient methods
 - Assumed by some model-based RL methods
- Common assumption #3: continuity or smoothness
 - Assumed by some continuous value function learning methods
 - Often assumed by some model-based RL methods

(slide credits: Sergey Levine)

Example: value iteration

Initialize V arbitrarily, e.g., V(s) = 0, for all $s \in S^+$ Repeat $\Delta \leftarrow 0$ For each $s \in \mathcal{S}$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s') \right]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number) Output a deterministic policy, π , such that $\pi(s) = \arg\max_{a} \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V(s') \right]$

OpenAl Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation > View on GitHub >

import gym for _ in range(1000): env.render()

if done: env.close()

```
env = gym.make("CartPole-v1")
observation = env.reset()
 action = env.action_space.sample() # your agent here (this takes random actions)
 observation, reward, done, info = env.step(action)
```

observation = env.reset()

Great API for designing and using environments

Recent successes

OpenAI, 2018

- Develop an environment for a new game and train RL agents on it
 - Use OpenAl gym for environment framework
 - Investigate a wide range of RL agents (e.g. from OpenAl baselines)

- Use reinforcement learning to tackle a decision making problem in real-world domains
 - Traffic control (<u>https://flow-project.github.io/</u>)
 - Chemical reaction synthesis
 - Financial prediction (tricky!)
 - Robotics

. . .

• Solve differential equations

• Text adventure games

Partially observed Markov decision process

- Observed Environment State s =
- Action *a* = Command to execute

State 1

Action

State 2

You are standing in an open field west of a white house. There is a small mailbox here.

Policy

 $\pi: s \to a$

Opening the mailbox reveals a leaflet.

+1

Narasimhan et al., 2015

Microsoft TextWorld is an open-source, extensible engine that both generates and simulates text games. You can use it to train reinforcement learning (RL) agents to learn skills such as language understanding and grounding, combined with sequential decision making.

You are navigating through a house. You've just entered a serious study. There is a gross looking mantle in the room. It has nothing on it. You see a closed rusty toolbox. Now why would someone leave that there?

Looks like there is a locked door. Find the key to unlock the door. You should try going east.

Microsoft Textworld

Learning without rewards?

Curiosity-driven Exploration by

Self-supervised Prediction

Deepak Pathak

University of California, Berkeley

Alexei A. Efros Trevor Darrell Pulkit Agrawal

ICML 2017

[Download Paper] [Github Code]

(b) explore faster on Level-2

- Develop and study new RL algorithms! Challenges to tackle include:
 - **Sample efficiency:** How fast can you learn?
 - Ability to generalize: Can a policy trained on one Atari game generalize to another?
 - Multi-task learning: Can you train a single agent to be good at several tasks?
 - **Robustness:** Is your algorithm robust to noise in environmental signals (state observations, rewards, etc.)? Analyze what breaks and why. Even better, try to fix it!
 - Fairness/Bias: Can RL algorithms be biased/unfair in the same way as supervised methods like image classification? How can we characterize this?

If you have other ideas, come talk to us!

Collaboration

- Working in teams is great! (2-3 people at max)
- Make sure each member has a clearly defined sub-part and responsibility
- Please do share ideas and resources with each other!

Project updates

- We will create a shared Google drive folder where you can each upload slides every week
- Running presentation, append new slides to the same deck
- Key points to include:
 - 1. What you accomplished the previous week
 - 2. Any hurdles you are currently encountering
 - 3. Concrete plan for next week

Brainstorming

For next meeting

meeting (will be announced on Piazza later tonight)

Please fill out Google form with initial ideas before the next