
Reading Comprehension

Arjun Krishnan and Seyoon Ragavan

What is Reading Comprehension?

“the ability to read and
understand
unstructured text and
then answer
questions about it”

Source: https://ai.googleblog.com/2019/01/natural-questions-new-corpus-and.html

https://ai.googleblog.com/2019/01/natural-questions-new-corpus-and.html

What do RC Problems Look Like?

● Input: context (passage of text) and query
● Output: answer

○ Abstractive: free-form answer
○ Extractive: substring of the content

RC Necessitates Language Understanding

● Coreference resolution:
understanding that “she” = Alyssa

● Inferring that “special” = catfish so
this must be what Alyssa ate

● Identify which entities in the text
are people and among these which
are Alyssa’s friends

(Richardson et. al. 2013, Chen 2018)

Outline

● RC Pre-2015
● Paper 1: Teaching Machines to

Read and Comprehend
(Hermann et al, 2015)

● Paper 2: Bi-directional
Attention Flow for Machine
Comprehension (Seo et al,
2017)

● Current State of the Art
● Further Challenging Datasets

Timeline

Before 2015

Before 2015: Datasets

● Challenge: generating several question-answer pairs for text corpora
● MCTest: a first attempt

○ 660 fictional stories
○ 4 multiple choice questions per story
○ Total: < 3000 questions
○ Enough for testing, not for training

Before 2015: Models

● Rule-based approaches (no training)
● Simple ML models built on top of hand-engineered linguistic features

○ Syntactic dependencies
○ Coreference resolution
○ Word embeddings

Teaching Machines to Read
and Comprehend

Hermann et. al. (2015)

CNN and Daily Mail

Datasets: CNN/Daily Mail

● Key idea: find a naturally occurring distribution of (context, query, answer)
triples rather than generating them!

(Cullinane, 2015)

● Cloze style questions
● Summary sentence → query/answer pair CNN : 93,000

articles

Daily Mail;
220,000 articles

1 million data
points

(Hermann et al, 2015)

But you can “cheat” on this

● “The hi-tech bra that helps you beat breast X”
● “Could Saccharin help beat X?”
● “Can fish oils help fight prostate X?”
● ^ All doable with an n-gram language model without

absorbing any information from the context document

Solution: anonymise

Context: ent01 won't have his contract renewed as host of "ent02” after he
apparently busted ent03's lip and verbally abused him, ent04 announced
Wednesday.

ent01, who hosted one of the most-watched television shows in the world, was
suspended on March 10 after what ent04 previously described as a "fracas" with
ent03 on March 4.

Query: ent05 confirms [X] sacked

This helps… a little

● “The hi-tech bra that helps you beat breast X” ❌

● “Could Saccharin help beat X?” ✔
● “Can fish oils help fight prostate X?” ❌

Previous Non-Neural Models: Symbolic Matching

● Frame-Semantic Models: Statistical models that derives predicate-argument
structures

 Entity-predicate triples:

 (e1, V, e2)

e.g.

(Alice, loves, Bob)

Source: https://devopedia.org/semantic-role-labelling (Lascarides 2019, slide 10)

https://devopedia.org/semantic-role-labelling

Previous Non-Neural Models: Symbolic Matching

● Frame-Semantic Models: Statistical models that derives predicate-argument
structures

(Hermann et al, 2015)

Previous Non-Neural Models: Symbolic Matching

● Word Distance Benchmark:
○ Align the placeholder with every possible entity in the document and then sum up the distance

of every word in the question to their nearest aligned word in the document
○ “Aligned word” = same word or coreferent

Neural Network Models

High level overview:

● NN (coming up): compute embedding g(d, q) for a given document-query pair
(d, q)

○ Deep LSTM Reader
○ Attentive Reader
○ Impatient Reader

● Trainable matrix W of vectors for each word
● Softmax over output word types to get probabilities:

(Hermann et al, 2015)

Deep LSTM reader

● Longer than usual input to LSTM (700-800 tokens):
○ Document word by word
○ Delimiter
○ Query word by word
○ Or query then document

(Hermann et al, 2015)

Attentive Reader

Step 1: encode the query by passing it through forward and backward LSTMs and
concatenating the outputs

(Hermann et al, 2015)

Attentive Reader

Step 2: same drill with the document, but this time obtaining an embedding for
every token

(Hermann et al, 2015)

Attentive Reader

Step 3: use attention with the query embedding and document token embeddings
as input to determine which tokens in the document to attend to

(Hermann et al, 2015)

Attentive Reader

Step 4: one layer to combine the final document and query embeddings

(Hermann et al, 2015)

Uniform Reader (baseline)

● Same as attentive reader but without the attention part; instead it averages
uniformly over the document token embeddings

(Hermann et al, 2015)

Impatient Reader

Same as attentive reader but rereads from the document as each token is read, so
attention is repeatedly applied:

(Hermann et al, 2015)

Experiments - predictions?

● Traditional vs. neural models?
○ Should the entity anonymisation complicate this?

● LSTM vs. attention-based approaches?
● Attentive vs. impatient vs. uniform reader?
● Word distance vs. frame-semantic?

CNN/Daily Mail: Results

(Hermann et al, 2015)

Attention heatmaps for attention reader

(Hermann et al, 2015)

Main Takeaways

● Revolutionary dataset in its time
● Small heuristic allowed authors to capitalize on naturally

existing dataset
● Attention helps significantly
● However, poor baseline models do better than expected

(Word distance benchmark)

Bi-directional Attention Flow
For Machine
Comprehension

Seo et. al. (2017)

Discussion

Q: CNN/Daily Mail was the first large-scale reading comprehension
dataset available in this field. What is good about this dataset and what is
its main limitation?

Motivation: Datasets

● High quality human-written databases not very large (on the order 10^3 in size)
● Cloze-form questions better, but not very natural

○ Semi-synthetic (As in Cloze)
○ Not explicit question answering

● Heuristically created → noisy

SQuAD: Timeline

SQuAD: Basics

● Questions posed by
crowdworkers on a set of
Wikipedia articles

● 100,000
query-context-answer
triples

● Extractive question
answering: all answers a
span of text

100,000
data points

3 gold answers are collected for each answer

Source:
https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

Source: https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

SQuAD: Example

https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

SQuAD: Example

Source: https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

Why is SQuAD better?

● Human-written, human curated → less
noisy than CNN/DM

● Not Cloze-form

● Step towards better language
understanding

BiDAF: Motivations

● Incorporating attention better into Question Answering
● What are the problems with prior models?

○ Unidirectional attention
○ Summarising context into fixed-size vectors

● How does current paper seek to address these?
○ Bidirectional attention: query-to-context and context-to-query
○ Includes character-level, word-level, and contextual embeddings
○ Attended vectors are passed along together with original embeddings

BiDAF: Timeline

(Seo et al, 2017)

Basic Components of the Model

● Character Embedding Layer
● Word Embedding Layer
● Contextual Embedding Layer
● Attention Flow Layer
● Modeling Layer
● Output Layer

Basic Components of the Model

● Character Embedding Layer → Embeds each word using character-level
CNNs.

● Word Embedding Layer
● Contextual Embedding Layer
● Attention Flow Layer
● Modeling Layer
● Output Layer

Basic Components of the Model

● Character Embedding Layer
● Word Embedding Layer → GloVe
● Contextual Embedding Layer
● Attention Flow Layer
● Modeling Layer
● Output Layer

Basic Components of the Model

● Character Embedding Layer
● Word Embedding Layer
● Contextual Embedding Layer → Character and word embeddings passed

through bi-LSTM to obtain contextual embeddings for query and context.
● Attention Flow Layer
● Modeling Layer
● Output Layer

Basic Components of the Model

● Character Embedding Layer
● Word Embedding Layer
● Contextual Embedding Layer
● Attention Flow Layer → Produces a set of query-aware feature vectors for each

word in the context (C2Q) and a context-aware vector for the query (Q2C).
● Modeling Layer
● Output Layer

Basic Components of the Model

● Character Embedding Layer
● Word Embedding Layer
● Contextual Embedding Layer
● Attention Flow Layer
● Modeling Layer → Contextual embeddings and attended vectors passed

through two-layer bi-LSTM for even more refined representation.
● Output Layer

Basic Components of the Model

● Character Embedding Layer
● Word Embedding Layer
● Contextual Embedding Layer
● Attention Flow Layer
● Modeling Layer
● Output Layer → Linear layer then softmax to obtain a start probability

distribution and an end probability distribution over the indices.

A Closer Look: Attention

● Compute a similarity matrix S from context embeddings H and query
embeddings U

Source: https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07

https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07

A Closer Look: Attention

● Q2C: query → which tokens in the context to attend to

● C2Q: each context token → which tokens in the query it should attend to

(Hermann et al 2015, Seo et al, 2017)

A Closer Look: Output

G
;M

1 p1: end
probability

Linear + softmax
M1

Concatenation

G
;M

2 p2: end
probability

Linear + softmax
M2

Concatenation

bi-LSTM

bi-LSTM

Performance Metrics

● Training: log likelihood of correct start/end indices
● Testing: choose start-end index pair (i, j) with i < j maximising p1(i) * p2(j)

○ Remove all articles (a, an, the)
○ Exact Match (EM): choosing exactly the same start and end index as some gold answer
○ F1: treat predicted and gold answers as bags of tokens, then take harmonic mean of precision

and recall

(Seo et al, 2017, https://en.wikipedia.org/wiki/F1_score)

https://en.wikipedia.org/wiki/F1_score

Results on SQuAD: vs. other methods (test set)

Ensemble: train 12 models, choose start and end indices with the highest sum of
confidence scores

(Seo et al, 2017)

Results on SQuAD: vs. ablations (dev set)

Character-level embedding: effective in handling

out-of-vocab or rare words

Word-level embedding: better at capturing the

overall semantics of words

(Seo et al, 2017)

Results: SQuAD vs. ablations

C2Q ablation: attended query vector for
each context word is a uniform average
over the word vectors

Q2C ablation: remove any terms
incorporating attended context vectors
for each query word

(Seo et al, 2017)

Results on SQuAD: vs. ablations (dev set)

Dynamic attention: Update
attention throughout the modelling
layer

Intuition: Separating out the
attention layer gives a richer set of
features to feed into the modelling
layer

(Seo et al, 2017)

Results on CNN/Daily Mail

● Only predict start index
● Mask out non-entity words in

classification layer
● For loss function: sum

probability over all instances of
the correct entity

(Seo et al, 2017)

BiDAF: Takeaways

● Embeddings on multiple levels of granularity
● SQuAD: Facilitated much more natural Q&A
● Bi-directional attention was new: C2Q + Q2C
● Query aware context representation without early

summarization
● SOTA performance at the time

Current SOTA: Pre-Trained
Models

BERT: Timeline

SQuAD: Leaderboard

Source: https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/

BERT for Reading Comprehension - Recap

Pretraining Finetuning

(Devlin et. al. 2018, Chen 2019)

Discussion

Discussion

● Self-attention in BERT: C2Q and Q2C attention but also C2C and Q2Q
● BERT is pre-trained
● Multistage dynamic attention

Challenging Datasets

Discussion

Q:Can you think of any limitations of SQuAD (which was constructed one
year after the CNN/DM work and consisting of 100,000+ questions
annotated by crowd-workers)?

Limitations of SQuAD

● Only span-based answers (no yes/no, counting, implicit why)
● Questions were constructed looking at passages
● Not genuine information needs
● Generally greater lexical and syntactic matching between

question and answer span
● Barely any multi-fact/sentence inference beyond coreference

(Chen, 2019)

DROP: Discrete Reasoning Over Paragraphs

“Force a structured analysis of the

content of the paragraph that is

detailed enough to permit reasoning.”

(Richardson et al, 2013, Dua et al, 2019)

DROP ctd.

(Dua et al, 2019)

CoQA

Source: http://ai.stanford.edu/blog/beyond-local-pattern-matching/

http://ai.stanford.edu/blog/beyond-local-pattern-matching/

HotpotQA

Source: http://ai.stanford.edu/blog/beyond-local-pattern-matching/

http://ai.stanford.edu/blog/beyond-local-pattern-matching/

HotpotQA: What state was Yahoo founded in?

Source: http://ai.stanford.edu/blog/beyond-local-pattern-matching/

http://ai.stanford.edu/blog/beyond-local-pattern-matching/

Overall Takeaways

● RC is an important task that draws on several other components of language
understanding

● Datasets are critical for reading comprehension
○ Hard to create large datasets
○ Hard to create datasets on which high performance requires “true” language understanding

● We can do well on the easier datasets but not the tougher ones yet
● The more attention, the better

○ LSTM < Attentive Reader < BiDAF < BERT

● Pre-training helps A LOT!

References

MCTest paper: https://www.aclweb.org/anthology/D13-1020.pdf

CNN/Daily Mail paper: https://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf

BiDAF paper: https://arxiv.org/pdf/1611.01603.pdf

BERT paper: https://arxiv.org/pdf/1810.04805.pdf

DROP paper:
https://www.semanticscholar.org/paper/DROP%3A-A-Reading-Comprehension-Benchmark-Requiring-Dua-Wang/dda6fb309f62e2557
a071522354d8c2c897a2805

https://www.aclweb.org/anthology/D13-1020.pdf
https://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf
https://arxiv.org/pdf/1611.01603.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://www.semanticscholar.org/paper/DROP%3A-A-Reading-Comprehension-Benchmark-Requiring-Dua-Wang/dda6fb309f62e2557a071522354d8c2c897a2805
https://www.semanticscholar.org/paper/DROP%3A-A-Reading-Comprehension-Benchmark-Requiring-Dua-Wang/dda6fb309f62e2557a071522354d8c2c897a2805

Thank you!

Impatient reader

Same as attentive reader but rereads from the document as each token is read, so
attention is repeatedly applied:

A Closer Look: Embedding Layers

● Step 1: Tokenization

A Closer Look: Embedding Layers

● Step 2: Word Embeddings (GloVe)

A Closer Look: Embedding Layers

● Step 3: Character embeddings (CNN)
○ Input: T words from context, J words from query
○ Output: vector of fixed size of each word

Randomly initialized d x L matrix → convolutional
filter → Hadamard product → summary scalar

A Closer Look: Embedding Layers

● Step 3: Character embeddings (CNN)
○ Input: T words from context, J words from query
○ Output: vector of fixed size of each word

anti | dis | establish | ment | arian | ism

Analogous to feature extraction in vision!

A Closer Look: Embedding Layers

● Step 4: Highway Network
○ Input: concatenation of character and word embeddings in R^d
○ Output: partial modification of this, all embeddings still in R^d

● Regular feedforward NN:
● Highway NN:
● Generalisation of a ResNet block

○ For ResNet, effectively T(x, W_T) = 1/2

A Closer Look: Embedding Layers

● Step 5: Contextual Embeddings
● Input: output from the highway network
● Feed through forward and backward LSTMs and concatenate
● Output:

A Closer Look: Attention Layers

● Similarity matrix encoding similarities between context and query embedding
vectors

● Generalisation of inner products

Source: https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07

https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07

A Closer Look: Attention Layers

● Context-to-Query Attention

● Output: attended vector for each word in context

● a_tj: “how important is query word j to context word t”

A Closer Look: Attention Layers

● Query-to-Context Attention

● Output: attended vector for the overall query

● b_t: “how important is document word t to the query”

A Closer Look: Attention Layers

● Megamerge

● Inputs:

○ Context word embeddings (before attention):

○ Attended C2Q embeddings (weighted sums of query word embeddings):

○ Attended Q2C embedding (weighted sum of context word embeddings):

● Output:

○ Concatenation and element-wise multiplication

