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What is Reading Comprehension?

“the ability to read and 
understand 
unstructured text and 
then answer 
questions about it”

Source: https://ai.googleblog.com/2019/01/natural-questions-new-corpus-and.html

https://ai.googleblog.com/2019/01/natural-questions-new-corpus-and.html


What do RC Problems Look Like?

● Input: context (passage of text) and query
● Output: answer

○ Abstractive: free-form answer
○ Extractive: substring of the content



RC Necessitates Language Understanding

● Coreference resolution: 
understanding that “she” = Alyssa

● Inferring that “special” = catfish so 
this must be what Alyssa ate

● Identify which entities in the text 
are people and among these which 
are Alyssa’s friends

(Richardson et. al. 2013, Chen 2018)



Outline

● RC Pre-2015 
● Paper 1: Teaching Machines to 

Read and Comprehend 
(Hermann et al, 2015)

● Paper 2: Bi-directional 
Attention Flow for Machine 
Comprehension (Seo et al, 
2017) 

● Current State of the Art 
● Further Challenging Datasets 



Timeline



Before 2015



Before 2015: Datasets

● Challenge: generating several question-answer pairs for text corpora
● MCTest: a first attempt

○ 660 fictional stories
○ 4 multiple choice questions per story
○ Total: < 3000 questions
○ Enough for testing, not for training



Before 2015: Models

● Rule-based approaches (no training)
● Simple ML models built on top of hand-engineered linguistic features

○ Syntactic dependencies
○ Coreference resolution
○ Word embeddings



Teaching Machines to Read 
and Comprehend

Hermann et. al. (2015)



CNN and Daily Mail



Datasets: CNN/Daily Mail

● Key idea: find a naturally occurring distribution of (context, query, answer) 
triples rather than generating them!

(Cullinane, 2015)



● Cloze style questions
● Summary sentence → query/answer pair CNN : 93,000 

articles

Daily Mail; 
220,000 articles

1 million data 
points 

(Hermann et al, 2015)



But you can “cheat” on this

● “The hi-tech bra that helps you beat breast X”
● “Could Saccharin help beat X?”
● “Can fish oils help fight prostate X?”
● ^ All doable with an n-gram language model without 

absorbing any information from the context document



Solution: anonymise

Context: ent01 won't have his contract renewed as host of "ent02” after he 
apparently busted ent03's lip and verbally abused him, ent04 announced 
Wednesday.

ent01, who hosted one of the most-watched television shows in the world, was 
suspended on March 10 after what ent04 previously described as a "fracas" with 
ent03 on March 4.

Query: ent05 confirms [X] sacked



This helps… a little

● “The hi-tech bra that helps you beat breast X” ❌

● “Could Saccharin help beat X?” ✔
● “Can fish oils help fight prostate X?” ❌



Previous Non-Neural Models: Symbolic Matching

● Frame-Semantic Models: Statistical models that derives predicate-argument 
structures

 Entity-predicate triples:

 (e1, V, e2) 

e.g. 

(Alice, loves, Bob)

Source: https://devopedia.org/semantic-role-labelling (Lascarides 2019, slide 10)

https://devopedia.org/semantic-role-labelling


Previous Non-Neural Models: Symbolic Matching

● Frame-Semantic Models: Statistical models that derives predicate-argument 
structures

 

(Hermann et al, 2015)



Previous Non-Neural Models: Symbolic Matching

● Word Distance Benchmark:
○ Align the placeholder with every possible entity in the document and then sum up the distance 

of every word in the question to their nearest aligned word in the document
○ “Aligned word” = same word or coreferent



Neural Network Models

High level overview:

● NN (coming up): compute embedding g(d, q) for a given document-query pair 
(d, q)

○ Deep LSTM Reader
○ Attentive Reader
○ Impatient Reader

● Trainable matrix W of vectors for each word 
● Softmax over output word types to get probabilities:

(Hermann et al, 2015)



Deep LSTM reader

● Longer than usual input to LSTM (700-800 tokens):
○ Document word by word
○ Delimiter
○ Query word by word
○ Or query then document

(Hermann et al, 2015)



Attentive Reader

Step 1: encode the query by passing it through forward and backward LSTMs and 
concatenating the outputs

(Hermann et al, 2015)



Attentive Reader 

Step 2: same drill with the document, but this time obtaining an embedding for 
every token

(Hermann et al, 2015)



Attentive Reader

Step 3: use attention with the query embedding and document token embeddings 
as input to determine which tokens in the document to attend to

(Hermann et al, 2015)



Attentive Reader 

Step 4: one layer to combine the final document and query embeddings

(Hermann et al, 2015)



Uniform Reader (baseline)

● Same as attentive reader but without the attention part; instead it averages 
uniformly over the document token embeddings

(Hermann et al, 2015)



Impatient Reader

Same as attentive reader but rereads from the document as each token is read, so 
attention is repeatedly applied:

(Hermann et al, 2015)



Experiments - predictions?

● Traditional vs. neural models?
○ Should the entity anonymisation complicate this?

● LSTM vs. attention-based approaches?
● Attentive vs. impatient vs. uniform reader?
● Word distance vs. frame-semantic?



CNN/Daily Mail: Results

(Hermann et al, 2015)



Attention heatmaps for attention reader

(Hermann et al, 2015)



Main Takeaways 

● Revolutionary dataset in its time 
● Small heuristic allowed authors to capitalize on naturally 

existing dataset
● Attention helps significantly
● However, poor baseline models do better than expected 

(Word distance benchmark)



Bi-directional Attention Flow 
For Machine 
Comprehension

Seo et. al. (2017)



Discussion

Q: CNN/Daily Mail was the first large-scale reading comprehension 
dataset available in this field. What is good about this dataset and what is 
its main limitation?



Motivation: Datasets

● High quality human-written databases not very large (on the order 10^3 in size)
● Cloze-form questions better, but not very natural

○ Semi-synthetic (As in Cloze) 
○ Not explicit question answering

● Heuristically created → noisy



SQuAD: Timeline



SQuAD: Basics 

● Questions posed by 
crowdworkers on a set of 
Wikipedia articles

● 100,000 
query-context-answer 
triples

● Extractive question 
answering: all answers a 
span of text

100,000 
data points

3 gold answers are collected for each answer 

Source: 
https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html


Source: https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

SQuAD: Example

https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html


SQuAD: Example

Source: https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html

https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/Computational_complexity_theory.html


Why is SQuAD better?

● Human-written, human curated → less 
noisy than CNN/DM

● Not Cloze-form

● Step towards better language 
understanding



BiDAF: Motivations

● Incorporating attention better into Question Answering 
● What are the problems with prior models?

○ Unidirectional attention
○ Summarising context into fixed-size vectors 

● How does current paper seek to address these?
○ Bidirectional attention: query-to-context and context-to-query
○ Includes character-level, word-level, and contextual embeddings
○ Attended vectors are passed along together with original embeddings



BiDAF: Timeline



(Seo et al, 2017)



Basic Components of the Model

● Character Embedding Layer 
● Word Embedding Layer 
● Contextual Embedding Layer
● Attention Flow Layer
● Modeling Layer 
● Output Layer



Basic Components of the Model

● Character Embedding Layer → Embeds each word using character-level 
CNNs.

● Word Embedding Layer 
● Contextual Embedding Layer
● Attention Flow Layer
● Modeling Layer 
● Output Layer



Basic Components of the Model

● Character Embedding Layer 
● Word Embedding Layer → GloVe
● Contextual Embedding Layer
● Attention Flow Layer 
● Modeling Layer 
● Output Layer



Basic Components of the Model

● Character Embedding Layer 
● Word Embedding Layer 
● Contextual Embedding Layer →  Character and word embeddings passed 

through bi-LSTM to obtain contextual embeddings for query and context.
● Attention Flow Layer 
● Modeling Layer 
● Output Layer 



Basic Components of the Model

● Character Embedding Layer 
● Word Embedding Layer 
● Contextual Embedding Layer 
● Attention Flow Layer → Produces a set of query-aware feature vectors for each 

word in the context (C2Q) and a context-aware vector for the query (Q2C).
● Modeling Layer
● Output Layer



Basic Components of the Model

● Character Embedding Layer 
● Word Embedding Layer 
● Contextual Embedding Layer 
● Attention Flow Layer 
● Modeling Layer → Contextual embeddings and attended vectors passed 

through two-layer bi-LSTM for even more refined representation.
● Output Layer



Basic Components of the Model

● Character Embedding Layer
● Word Embedding Layer
● Contextual Embedding Layer 
● Attention Flow Layer
● Modeling Layer 
● Output Layer → Linear layer then softmax to obtain a start probability 

distribution and an end probability distribution over the indices.



A Closer Look: Attention

● Compute a similarity matrix S from context embeddings H and query 
embeddings U

Source: https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07

https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07


A Closer Look: Attention

● Q2C: query → which tokens in the context to attend to

● C2Q: each context token → which tokens in the query it should attend to

(Hermann et al 2015, Seo et al, 2017)



A Closer Look: Output 

G
;M

1 p1: end 
probability 

Linear + softmax
M1

Concatenation

G
;M

2 p2: end 
probability 

Linear + softmax
M2

Concatenation

bi-LSTM 

bi-LSTM 



Performance Metrics

● Training: log likelihood of correct start/end indices
● Testing: choose start-end index pair (i, j) with i < j maximising p1(i) * p2( j)

○ Remove all articles (a, an, the)
○ Exact Match (EM): choosing exactly the same start and end index as some gold answer
○ F1: treat predicted and gold answers as bags of tokens, then take harmonic mean of precision 

and recall

(Seo et al, 2017, https://en.wikipedia.org/wiki/F1_score)

https://en.wikipedia.org/wiki/F1_score


Results on SQuAD: vs. other methods (test set)

Ensemble: train 12 models, choose start and end indices with the highest sum of 
confidence scores

(Seo et al, 2017)



Results on SQuAD: vs. ablations (dev set)

Character-level embedding: effective in handling

out-of-vocab or rare words

Word-level embedding: better at capturing the

overall semantics of words

(Seo et al, 2017)



Results: SQuAD vs. ablations 

C2Q ablation: attended query vector for 
each context word is a uniform average 
over the word vectors

Q2C ablation: remove any terms 
incorporating attended context vectors 
for each query word

(Seo et al, 2017)



Results on SQuAD: vs. ablations (dev set)

Dynamic attention: Update 
attention throughout the modelling 
layer

Intuition: Separating out the 
attention layer gives a richer set of 
features to feed into the modelling 
layer

(Seo et al, 2017)



Results on CNN/Daily Mail

● Only predict start index
● Mask out non-entity words in 

classification layer
● For loss function: sum 

probability over all instances of 
the correct entity

(Seo et al, 2017)



BiDAF: Takeaways

● Embeddings on multiple levels of granularity 
● SQuAD: Facilitated much more natural Q&A 
● Bi-directional attention was new: C2Q + Q2C
● Query aware context representation without early 

summarization
● SOTA performance at the time



Current SOTA: Pre-Trained 
Models



BERT: Timeline



SQuAD: Leaderboard

Source: https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


BERT for Reading Comprehension - Recap

Pretraining Finetuning

(Devlin et. al. 2018, Chen 2019)



Discussion



Discussion

● Self-attention in BERT: C2Q and Q2C attention but also C2C and Q2Q
● BERT is pre-trained
● Multistage dynamic attention



Challenging Datasets



Discussion

Q:Can you think of any limitations of SQuAD (which was constructed one 
year after the CNN/DM work and consisting of 100,000+ questions 
annotated by crowd-workers)?



Limitations of SQuAD

● Only span-based answers (no yes/no, counting, implicit why)
● Questions were constructed looking at passages
● Not genuine information needs
● Generally greater lexical and syntactic matching between 

question and answer span
● Barely any multi-fact/sentence inference beyond coreference

(Chen, 2019)



DROP: Discrete Reasoning Over Paragraphs

“Force a structured analysis of the

content of the paragraph that is

detailed enough to permit reasoning.”

(Richardson et al, 2013, Dua et al, 2019)



DROP ctd.

(Dua et al, 2019) 



CoQA

Source: http://ai.stanford.edu/blog/beyond-local-pattern-matching/

http://ai.stanford.edu/blog/beyond-local-pattern-matching/


HotpotQA

Source: http://ai.stanford.edu/blog/beyond-local-pattern-matching/

http://ai.stanford.edu/blog/beyond-local-pattern-matching/


HotpotQA: What state was Yahoo founded in?

Source: http://ai.stanford.edu/blog/beyond-local-pattern-matching/

http://ai.stanford.edu/blog/beyond-local-pattern-matching/


Overall Takeaways

● RC is an important task that draws on several other components of language 
understanding

● Datasets are critical for reading comprehension
○ Hard to create large datasets
○ Hard to create datasets on which high performance requires “true” language understanding

● We can do well on the easier datasets but not the tougher ones yet
● The more attention, the better

○ LSTM < Attentive Reader < BiDAF < BERT

● Pre-training helps A LOT!
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Thank you!



Impatient reader

Same as attentive reader but rereads from the document as each token is read, so 
attention is repeatedly applied:



A Closer Look: Embedding Layers

● Step 1: Tokenization



A Closer Look: Embedding Layers

● Step 2: Word Embeddings (GloVe)



A Closer Look: Embedding Layers

● Step 3:  Character embeddings (CNN)
○ Input: T words from context, J words from query
○ Output: vector of fixed size of each word

Randomly initialized d x L matrix →  convolutional 
filter → Hadamard product → summary scalar



A Closer Look: Embedding Layers

● Step 3:  Character embeddings (CNN)
○ Input: T words from context, J words from query
○ Output: vector of fixed size of each word

anti | dis | establish | ment | arian | ism

Analogous to feature extraction in vision!



A Closer Look: Embedding Layers

● Step 4: Highway Network
○ Input: concatenation of character and word embeddings in R^d
○ Output: partial modification of this, all embeddings still in R^d

● Regular feedforward NN: 
● Highway NN:
● Generalisation of a ResNet block

○ For ResNet, effectively T(x, W_T) = 1/2 



A Closer Look: Embedding Layers

● Step 5: Contextual Embeddings
● Input: output from the highway network
● Feed through forward and backward LSTMs and concatenate
● Output: 



A Closer Look: Attention Layers

● Similarity matrix encoding similarities between context and query embedding 
vectors 

● Generalisation of inner products

Source: https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07

https://towardsdatascience.com/the-definitive-guide-to-bidaf-part-3-attention-92352bbdcb07


A Closer Look: Attention Layers

● Context-to-Query Attention

● Output: attended vector for each word in context

● a_tj: “how important is query word j to context word t”



A Closer Look: Attention Layers

● Query-to-Context Attention

● Output: attended vector for the overall query

● b_t: “how important is document word t to the query”



A Closer Look: Attention Layers

● Megamerge

● Inputs:

○ Context word embeddings (before attention):

○ Attended C2Q embeddings (weighted sums of query word embeddings): 

○ Attended Q2C embedding (weighted sum of context word embeddings):

● Output:

○ Concatenation and element-wise multiplication


