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Outline

d What is Semantic Parsing?

 (Dong et al, 2016): Language to Logical Form with Neural Attention

1 (Suhr et al, 2018): Learning to Map Context-Dependent Sentences to
Executable Formal Queries



Semantic Parsing

Sentence

¥
\ 4

Meaning Representation

-
d Why do we want to do semantic parsing?

Response

U Translate natural language utterances
(NLUs) to meaning representation (MR)

f : sentence — logical form

4-|4-



Language to Meaning
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border Texas? Arkansas

L ouisiana



Language to Meaning

Semantic
Parsing

Recover complete
meaning
representation

More informative

Example Task

Instructing a Robot

at the chair,

turn right @
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Language to Meaning

Semantic
Parsing

Recover complete
meaning
representation

More informative

Complete meaning is sufficient to
complete the task

 Convert to database query to get the answer
e Allow a robot to do planning



Semantic Parsing Example

GEOQuery Question:
which state has the most rivers running
This is a standard semantic parsing through it?
benchmark which contains 880 queries
to a database of U.S. geography. Logical form:
argmax $0
(state:t $0)
600 queries 280 queries (count $1 (and
(river:t $1)

(loc:t $1 $0)))

— ANSWEr:
Database Alaska

.
S

[Zelle and Mooney 1996; Tang and Mooney 2001]



Semantic Parsing Example

JOBS
Question:

This benchmark dataset contains 640 what microsoft jobs do not require a bscs?

queries to a database of job listings

Logical form:

Training Dataset | Test Dataset answer( company(J,’microsoft’), job(J),

500 queries 140 queries not((req deg(J, bscs’))))

[Zelle and Mooney 1996; Tang and Mooney 2001]



Semantic Parsing Example

ATIS | Requegt:
Show me flights from Pittsburgh to Seattle

This dataset has 5,410 queries to a
flight booking system. Logical form:

lambda $0 e
(and (flight $0)

Training Dataset | Development | Test Dataset (from $0 pittsburgh:ci)
Dataset (to $0 seattle:ci))

4480 instances 480 instances 450 instances

- /
N
‘ =) — Result:

Database 31 flights available

[Hemphill et al. 1990; Dahl et al. 1994]



Semantic Parsing Example

IFTTT (If this then that) Training Dataset | Development | Test Dataset
This us dataset extracting a large Dataset

number of recipes from if-this-then-that 77495 instances 5171 instances 4294 instances
website’.
IF
TRIGGER ACTION
Android_Phone_Call Google_Drive (A) CHANNELS
Any_phone_call_missed Add_row_to_spreadsheet (B) FUNCTIONS
Spreadsheet_name Formatted _row Drivefolder_path

(C) PARAMETERS | | |
missed {{OccurredAt}} {{FromNumber}} {{ContactName}} IFTTT Android

Archive your missed calls from Android to Google Drive

1. https://ifttt.com [Quirk et al., 2015]



Training and Evaluation

Training Data
(sentence, implementation) pairs

What is the largest city in Hawaii? > answer(A, largest(A, city(A), loc(A, B), const(B,
stateid(hawaii))))

: : P
L LU R e L e X answer(A,’capitaI(A), loc(A, B), const(B, stateid(california))))

Evaluation

» Exact-match accuracy of code
 Compare results of executing code on database



Traditional Semantic Parsing

1 Rely on high-quality lexicons, manually-built templates, and
features which are domain specific.

 Complex discrete learning algorithms

1 Difficult to engineer: few people can do it and it takes a lot of
time. (Examples annotated with semantics are expensive)



Neural Semantic Parsing

Any better idea for semantic parsing?

Can we treat the mapping from sentence to logical
form as a machine translation problem?



Semantic Parsing vs. MT

Both involve translating from one But in machine translation, the target
semantic representation into another. semantic representation is not machine-
readable! Rather, it is human-readable.

Both involve complex structures, often MT has larger dataset. Semantic parsing
related in complex ways. IS expensive to generate dataset =
much smaller dataset

Logical forms are more structured (so
explicitly modeling the compositional
structure could help)



Goals of Neural Semantic Parsing

1 Reduce reliance on domain knowledge

1 Use NNs to replace manually designed features

1 Build a general-purpose parser: easy to adapt across domains
and meaning representations



Language to Logical Form with Neural Attention
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Problem Formulation

O Goal:
Learn a model which maps natural language input g =g, ..., gq to
a logical form representation of its meaning a = a; ..., a;.

|al

0 Conditional probability: p(a|q) = Hp(at|a<ta q)
t=1

O Framework of Neural Semantic Parsing with Attention

Attention Layer

what microsoft jobs

do notrequirea —;
bscs? (}

Input Sequence Sequence/Tree  Logical
Utterance Encoder Decoder Form

answer(J,(compa

ny(J,'microsoft'),]

ob(J),not((req _de
g(J,'bscs")))))

l




Working Principle of Seg2Seq Neural Semantic Parsing
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Attention Mechanism for Neural Semantic Parsing

E L
Ct = Tt,khk

k=1

Ttk X 637p{htLa hy}

lq|

Zri’j =1

j=1

Attention
Scores

—»{ INLST
—»| NLST

hy, ..., hf(}| are the top layer hidden vectors of the encoder
h" = tanh(WhZ + Wyc,)

p(at‘a<ta Q) = softmax,, (Woh?tt)



Drawbacks of Seg2Seq Model

lgnore the hierarchical structure of logical forms

Use ()” to linearize logical form

lambda $0 e <n>

and <n> <n>

- T

> <n> 1600:ti from $0 dallas:ci

departure_time $0

\

lambda $0 e (and (> (departure_time $0) 1600:ti) (from $0 dallas:ci))




Structure-aware Decoding for Semantic Parsing

Motivation:
Utilize the rich syntactic structure of target meaning representations

Seq2Tree:
Generate from top-down using hierarchical sequence-to-sequence model

Task-Specific
Meaning Representations

&@ Show me flights from Pittsburgh to Seattle

'[b' lambda $0 e (and (flight $90)

 S— | . .
(from $0 san_Francisco:ci)
(to $0 seattle:ci)) Tree-structured Representation

Task specific logical form



Sequence to Tree Model (Seg2Tree)

Sequence-to-tree Decoding Process:

— Each level of a parse tree is a sequence of terminals and nonterminals
— Use a LSTM decoder to generate the sequence

— For each nonterminal node, expand it using the LSTM decoder

lambda $0 e <n> </s>

from $0 dallas:ci </s>

___________________________

Nonterminal departure S0 </s>
<n> :
Show me flight from Dallas departing after 16:00 i, Sta??;ggﬁig _time

- =% Parent feeding
Encoder unit

Decoder unit

- - = - -— - - -—— b



Flights from Dallas leaving after 4 in
the afternoon

(lambda $0 e <n>)

lambda $0 e <n> </s>
allallalylalylalylal )y
: A
and <n> <n> </s>
allglylal |
=HMEMENE

MEMENENMERNEEENENE
e e W i S i S
<n> Nonterminal dep:.;r:::e $0 </s>
— Start decoding -
-~ » Parent feeding »al Gl 1%
Encoder unit " Z zZ| |I=Z

Decoder unit

-—— - - - -



Flights from Dallas leaving after 4 in
the afternoon

(lambda $0 e
(and <n> <n>))

lambda $0 e <n> </s>
allallalylalylalylal )y

ol Gl &l |G
P12 ErE

MEMENENMERNEEENENE
e iy i S i S
<n> Nonterminal deptziirr:;re $0 </s>
— Start decoding -
-~ » Parent feeding »al Gl 1%
Encoder unit Z zZ| |=2

Decoder unit

-—— - - - -



Flights from Dallas leaving after 4 in

the afternoon lambda S0 e <n> </s>
%] N1 N1 BN 1] IR N7 BN
22 EPEPIE PR 2
IS Y Y Y Y :
d <n> <n> </s>
(lambda $0 e =ReR=RE
(and | PEMEPEE
(> <n> 1600:ti) . ;
<1’l>)) >  <n>1600:ti </s> || from $0 dallas:ci </s>
9 ] AN BN 7] N 7
: g"z—’g_'g MENENMENE
L-A__A __ A___A o A _A__A__/
artur
<n> Nonterminal eptirne 80 </s>
— Start decoding -
= =¥» Parent feeding Gl 4l 14
Encoder unit | < 2 |2

Decoder unit :

- —— - — —-—— -



Flights from Dallas leaving after 4 in

the afternoon lmbda S0 o <u> </
O " G
—>§+g—>§—>§—>g—>g+§
(lambda $0 e T and <n> <n> </s>
(and e
(> (departure_time $0) 1600:ti)
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I
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Flights from Dallas leaving after 4 in
the afternoon

(lambda $0 e
(and
(> (departure_time $0) 1600:ti)
(from $0 dallas:ci)))

lambda $0 e <n> </s>

%] N1%] B N N 9
—>§c+g—>g+g+g—>g+§

from

<n> Nonterminal

$0 dallas:ci </s>

ol »

(M

— Start decoding

= =% Parent feeding I 5 > 5 — 7
Encoder unit | < = =

Decoder unit :

—-———— - — —-—— -




Seg2Tree: Decoding Example

Logic form: A B (C)

a=A a,=B a;=<n> a;=</s>

P(CL|Q) — p(a1a2a3a4\q) P(%%\Cbgs, Q)




Model Training

d Goal: Algorithm 1 Decoding for SEQ2TREE
Maximize the likelihood of the generated Input: ¢: Natural language utterance
logical forms given natural language Output: a: Decoding result

. > Push the encoding result to a queue
. Q.init({hid : SeqEnc(q)})

: > Decode until no more nonterminals
. while (¢ < Q.pop()) # @ do

utterances as input ;
3
4
5: > Call sequence decoder
6
7
8
9

[ Obijective function:

c.child < SeqDec(c.hid)

> Push new nonterminals to queue
for n < nonterminal in c.child do
Q.push({hid : HidVec(n)})

10: a «— convert decoding tree to output sequence




Inference

] At test time, we predict the logical form for an input utterance g by:

a = argmax p(a’|q)
a/

1 It is impractical to iterate over all possible results to obtain the optimal
prediction. = Greedy search or beam search to generate tokens.



Argument Identification

* Motivation:
Many NLUs contain entities or numbers and they are usually the
arguments in logical form
- Unavoidably rare
- Do not appear in the training set at all

e Goal:

|dentify entities and numbers in input questions and replace them with
their type names and unique IDs.



Argument ldentification

* Procedure:
1. Pre-processing training data:
e.g. “jobs with a salary of 40000 — “jobs with a salary of num,”
and its logical form: “job(ANS), salary greater than(ANS, 40000, year)”
— “Job(ANS), salary greater than(ANS, num,, year)”

2. Perform training using pre-processed data

3. At inference time, we also mask entities and numbers with their types and
IDs.

4. Once we obtain the decoding result, a post-processing step recovers all the
markers type,; to their corresponding logical constants.



Evaluation Metrics

d For GEO, JOBS, ATIS, accuracy is defined as:

sentences that are correctly parsed to gold standard

total number of sentences

d For IFTTT, dataset is extremely noisy and measuring accuracy
is problematic. Consider three metrics: the accuracy of correct
“channels”, the accuracy of “channels+funcs”, and F1 score.



Accuracy

Results
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Ablation Study

Accuracy

Seq2Seq Seq2Seq Seq2Seq  Seq2Tree Seq2Tree
w/o attention w/o argument w/o attention

Seq2Seq  Seq2Seq Seq2Seq  Seg2Tree Seq2Tree
w/o attention w/o argument w/o attention

Accuracy

Seq2Seq  Seq2Seq Seq2Seq  Seq2Tree Seq2Tree
w/o attention w/o argument w/o attention

IFTTT (= 3 turkers agree with gold)

66.25

575

F1 Score

48.75

40

Seqg2Seq Seg2Seq Seqg2Seq Seqg2Tree Seq2Tree
w/o w/o w/o
attention argument attention



Attention helps!
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Figure 6: Alignments (same color rectangles) produced by the attention mechanism (darker color rep-

resents higher attention score). Input sentences are reversed and stemmed. Model output is shown for
SEQ2SEQ (a, b) and SEQ2TREE (c, d).



Result Summary

 Overall, Seg2Tree is superior to Seg2Seq.

1 Adding attention substantially improves performance on all
three datasets.

1 Argument identification is critical for small scale datasets.



Error Analysis

4 Under-Mapping
Doesn’t take alignment history into consideration

1 Argument Identification

« Some mentions are incorrectly identified as arguments, e.g. may is
sometimes identified as a month when it is simply a modal verb

« Some argument mentions are ambiguous, e.g. 6 o’clock can be
used to express either 6 am or 6 pm

] Rare Words:

Some question words are rare in the training set, which makes it hard
to estimate reliable parameters for them.



Conclusions

1 This paper presented an encoder-decoder neural network model for
mapping natural language descriptions to their meaning
representations

L Encode natural language utterances into vectors and generate their

corresponding logical forms as sequences or trees using recurrent
neural networks with LSTM units

L Experimental results show that enhancing the model with a
hierarchical tree decoder and an attention mechanism improves
performance across the board



So far, we only consider parsing NLUs independently.

But how to parse context-dependent sentences?

mp Semantic Parsing for Context-Dependent Sentences



<

Learning to Map Context-Dependent
Sentences to Executable Formal >
Queries S

?

>




Goal:

- Language understanding in long sequence of interactions
- Learn to translate human utterance to executable queries

- Use contextual information



Background Study

Related works

- “Learning to Parse Database Queries Using Inductive Logic
Programming” (Zelle, Mooney, 1996)

- “Language to Logical Form with Neural Attention” (Dong,
Lapata, 2016)

- Single turn interaction



Background Study

Context-Dependent Prior research work

- SCONE (Long et al. 2016): only focus on specific interaction
phenomena

- ATIS (Zettlemoyer and Collins 2009): use different

representations, and require extra training and annotation of
data.



A Case Study:

Query a database with natural Language

T AN



A Case Study

User Show me flights from Seattle to Boston next Monday



A Case Study

User Show me flights from Seattle to Boston next Monday



A Case Study

User Show me flights from Seattle to Boston next Monday

SQL (SELECT DISTINCT flight.flight_id FROM flight WHERE
(flight.from_airport IN (SELECT airport_service.airport_code
Query FROM airport_service WHERE airport_service.city_code IN
(SELECT city.city_code FROM city WHERE city.city_name =
'SEATTLE'))) AND (flight.to_airport IN (SELECT
airport_service.airport_code FROM airport_service WHERE
airport_service.city_code IN (SELECT city.city_code FROM
city WHERE city.city_name = 'BOSTON'))) AND
(flight.flight_days IN (SELECT days.days_code FROM days
WHERE days.day_name IN (SELECT date_day.day_name FROM
date_day WHERE date_day.year = 1993 AND
date_day.month_number = 2 AND date_day.day_number = 8))));



A Case Study

User|Show me flights from Seattle to Boston next Monday

Found 31 Flights: A AAAAAAAAT



A Case Study

User On American Airlines

Result| Found 2764 Flights: HAAHAAAAAAAXAAAAAAA
AAAAAARAARAAARAAA?

aaaaaaaaaaaaaaaaa

«««««««««««««««




A Case Study

User Show me flights from Seattle to Boston next Monday

Result Found 31 Flights: [/ <A
User On American Airlines

Result Found 5 Flights: AA<A<1<f




A Case Study

User Show me flights from Seattle to Boston next Monday

Result Found 31 Flights: A A AN dAiicio Y-
User On American Airlines

Result Found 5 Flights: AA<1<1¢]
User Which ones arrive after 7pm?

Result No flights found.



A Case Study

User Show me flights from Seattle to Boston next Monday
Result Found 31 Flights: A ANAAAAA 77X
User On American Airlines
Result Found 5 Flights: <1141

User Which ones arrive after 7pm?
Result No flights found.

User Show me Delta flights
Result Found 5 Flights: AAAAA



Challenges

- For long history of interactions:

- Relevant but elided information was mentioned many turns
before

- User may change focus during interaction



A Case Study

Show me all flights from Boston to Pittsburgh on
User Wednesday of next week whivk_depart from Boston
after 5pm

(3 turns)

User | Please describe the class of service Y

(5 turns)

User Show the cost of tickets on flight US 345



Key Element

- Implicit mechanism for carrying information from beginning to
end of interaction



Key Element

- Implicit mechanism for carrying information from beginning to
end of interaction

- Interaction History dependency
- Previous user request (natural language form)
- Previous generated queries (SQL form)



Solutions

Solutions Ingredients:

a) Incorporate previous request

b) Incorporate previous queries



ldea

Show me flights from
Seattle to Boston next
Monday

>

Encoder

v

SQL query

Decoder




ldea

Show me flights from
Seattle to Boston next
Monday

On American Airlines

P>

Encoder

v

SQOL query

Decoder

>

SQOL query

Encoder

|

Decoder




ldea

Show me flights from
Seattle to Boston next
Monday

On American Airlines

o Encoder _}Turn-LeveI
Encoder
v
SQL queryq_ Decoder
Turn-Level
>| Encoder Encoder
SQL query « Decoder

Mechanism 1| Previous Requests: Turn-level Encoder




ldea

Show me flights from Turn-Level
Seattle to Boston next » Encoder .
Encoder
Monday 1
SQL query |+ Decoder
v
| . Turn-Level
On American Airlines ) > Encoder I Encoder
Query Segment
Copying

~~
SQL query |« Decoder

Mechanism 1| Previous Requests: Turn-level Encoder
Mechanism 2| Previous Queries: Query Segment Copying




Mechanism #1:

Incorporating Previous Request

VO



Incorporating Previous Requests

Show me flights from
Seattle to Boston next
Monday

On American Airlines

>

Encoder

Turn-Level
Encoder

!

P

Encoder

Turn-Level
Encoder

!

Mechanism 1| Previous Requests: Turn-level Encoder




Incorporating Previous Requests

Show me flights from
Seattle to Boston next

Monday

Encoded

>

Turn-Level

Encoder = Encoder

0000000000

l

Discourse-level
vector state

0000000

request

RNN Update

l

0000000000

New
discourse-level
vector state



Show me flights from

Seattle to Boston next

Monday

On American Airlines

2. Using

State on

American

Alirlines

Incorporating Previous Requests

\ 4

Encoder

Turn-Level
Encoder

Word
embeddings

\4

Encoder

Discourse-
level state

0000000000

OO0O0O0O00000O

A

7Y

0000000000

0000000000

\ 4

4

0000000000

0000000000




Incorporating Previous Requests

Show me flights from
Seattle to Boston next

Monday

Encoded

>

Turn-Level

Encoder = Encoder

0000000000

l

Discourse-level
vector state

0000000

request

RNN Update

l

0000000000

New
discourse-level
vector state



Incorporating Previous Requests

Show me flights from

Seattle to Boston next
Monday

\ 4

On American Airlines

* Persistent vector state, updated
throughout interaction

e Encode information from
beginning to end of interaction

« Completely learned

Turn-Level
Encoder >

Encoder

Turn-Level
Encoder Encoder

|



Incorporating Previous Requests

hij = LSTME([¢(x;;); hiza |; i j-1)
x; is the current utterance

¢ is the embedding

h._, is the discourse state following utterance x;_;

hi = LSTM! (hE|xi|; h{—l)

l



Mechanism #2:

Incorporating Previous Query

VO



Incorporating Previous Query

Show me flights from

Seattle to Boston next » Encoder
Monday
SQL query <« Decoder
On American Airlines 7 » Encoder
Query Segment
Copying
~

SQL query s Decoder

Mechanism 2| Previous Queries: Query Segment Copying




Incorporating Previous Query

Previous Query:
(SELECT DISTINCT flight.flight_id FROM flight
WHERE (flight.from_airport IN (SELECT
airport_service.airport_code FROM airport_service
WHERE airport_service.city_code IN (SELECT
city.city_code FROM city WHERE city.city_name =

Decoder

A

1. Segment Extraction

city.city_name = 'SEATTLE'
city.city_name = 'BOSTON'
date_day.year = 1993
date_day.month_number
date_day.day_number = 8

Deterministic,
operates on
the SQL tree

2



Incorporating Previous Query

Previous Query:
(SELECT DISTINCT flight.flight_id FROM flight
WHERE (flight.from_airport IN (SELECT
airport_service.airport_code FROM airport_service
WHERE airport_service.city_code IN (SELECT Decoder
city.city_code FROM city WHERE city.city_name =

WHERE| |city.city_name E 'SEATTLE'

\4

A \4

\A 4

city.city_name = 'SEATTLE'



Incorporating Previous Query

Previous Query:

(SELECT DISTINCT flight.flight_id FROM flight
WHERE (flight.from_airport IN (SELECT
airport_service.airport_code FROM airport_service
WHERE airport_service.city_code IN (SELECT
city.city_code FROM city WHERE city.city_name =

On American Airlines

Decoder

\ 4

Query Segment
Copying

Encoder

~

SQL query

<
-

|

Decoder

Probability of query segment

computed using its vector state




Incorporating Previous Query

SQOL query

Decoder

>

On American Airlines

Query Segment
Copying

~

SQOL query

Encoder

|

Decoder

* Explicit mechanism for copying
previous constraints

* Encoding and generating segments
learned with the rest of the model




Incorporating Previous Requests

-h° = [hQ, hg, gbg(yb)] represents the hidden state of segment

encoding
9 is the embedding of the SQL

- < hf» h? --.,h,‘i > are the query level hidden state
Yy, is the generated SQL



System Diagram

Z1: show me flights from seattle to boston
Y1 : (SELECT DISTINCT flight.flight_id ... );

To : on american airlines

7, : (SELECT DISTINCT flight.flight_id ... );

T3 : which ones arrive at Tpm

Word z Discourse
Embeddings® ** Statehy

Encoder State h3

v

Turn-Level

Encoder r--=-=-=-===--ccccmccccc e e e m ==

E' [:l' /53 ° f1ight.from_airport IN (SELECT
‘airport_service.airport_code ... city.city_code
FROM city WHERE city.city_name = 'SEATTLE'))

Segment
Encoder

( SELECT
Attention Attention D3
g SoftMax + Statecs
cores 3y Weighted Sum g

HEOC000000 e 000 Output
[SQL Tokens  Sogments| - | Distribution
i

(SELECT DISTINCT flight.flight_id FROM flight ...



ldea

Show me flights from Turn-Level
Seattle to Boston next » Encoder .
Encoder
Monday 1
SQL query |+ Decoder
v
| . Turn-Level
On American Airlines ) > Encoder I Encoder
Query Segment
Copying

~~
SQL query |« Decoder

Mechanism 1| Previous Requests: Turn-level Encoder
Mechanism 2| Previous Queries: Query Segment Copying




Training
End to end training ...

1) Training data: interactions with <SQL, request > pairs

2) Loss function: minimize token-level cross-entropy loss (against
with gold query)



Evaluation

ATIS Dataset (Hemphill et al; Dahl et al 1994)
1) Flight information, 27 tables, 162K entries

2) Small corpus: <2000 interactions
3) Long interactions: average 7 turns; maximum: 64 turns

4) Complex and long queries: average 102.9 tokens each;



Models to Evaluate

- Seq2Seq w/o history seg2seq on current utterance only

- Seg2Seq + history seq2seq by concatenating last four
utterances

- Full model use turn-level encoder and query segment copying



Evaluation Metric

- Measures the effect of error propagation:
- Full model with access to gold previous query

Evaluation Metric: Denotation accuracy

- Comparing against with retrieved tables executed by
generated-query vs gold-query



Other Evaluation measures..

e Query accuracy
- % predicted query match with gold query

e Strict denotation accuracy
- % table executed by query match with that of gold

o Relaxed denotation accuracy
- Give credit to b) if the gold query produce empty table



Performance

.......................................................................................................................................... B Seq2Seq w/o history
M Seqg2Seq + history

~ Full model

B Full model (with gold previous query)

e Using interaction history is
critical

e Error propagation contributes
about 3% performance drop

Denotation accuracy (test)



Performance

Without interaction
history, performance
drops immediately

Our model: relatively
stable

Denotation accuracy (de

0123 4546 7 8 91011121314
Turn index in interaction

— Seg2Seq w/o history
— Seqg2Seq + history
Full model
— Full model (with gold previous query)




Ablation Study

Full model
B w/o turn-level encoder
B w/o query segment copying

Denotation accuracy (dev)



Error Propagation

User Which ones arrive around 7pm?

SQL

( SELECT DISTINCT flight.flight_id FROM flight WHERE
( flight.from_airport IN ( SELECT

Query airport_service.airport_code FROM airport_service WHERE

airport_service.city_code IN ( SELECT city.city_code FROM
city WHERE city.city_name = 'ATLANTA' ) ) AND

( flight.to_airport IN ( SELECT airport_service.airport_code
FROM airport_service WHERE airport_service.city_code IN
( SELECT city.city_code FROM city WHERE city.city_name
'BALTIMORE' ) ) AND ( flight.flight_days IN ( SELECT
days.days_code FROM days WHERE days.day_name IN ( SELECT
date_day.day_name FROM date_day WHERE date_day.year = 1991
AND date_day.month_number = 9 AND date_day.day_number =

6 ) ) AND ( flight.arrival_time >= 1630 AND
flight.arrival_time <= 1730 ) ) ) ) ) ;



Error Propagation

User Which ones arrive around 7pm?

SQL
Query

Error: looking for flights
around 5pm

flight.arrival_time >= 1630 AND
flight.arrival_time <= 1730



Error Propagation

User Which kind of airplane is that?

S ( SELECT DISTINCT aircraft.aircraft_code FROM aircraft WHERE

Q aircraft.aircraft_code IN ( SELECT

Query equipment_sequence.aircraft_code FROM equipment_sequence
WHERE equipment_sequence.aircraft_code_sequence IN ( SELECT
flight.aircraft_code_sequence FROM flight WHERE
( flight.arrival_time >= 1630 AND flight.arrival_time <=
1730 AND ( flight.from_airport IN ( SELECT
airport_service.airport_code FROM airport_service WHERE
airport_service.city_code IN ( SELECT city.city_code FROM
city WHERE city.city_name = 'ATLANTA' ) )



Ssummary

e Language understanding in long and complex interactions

e Turn-level encoder: implicit mechanism for reasoning about
previous requests

e Query segment copying: explicitly derive meaning of request
(SQL query) from interaction history



Question:

The paperuses several different evaluation metrics. Describe their
differences. Which one do you think is more reasonable (combining

with the training objective)?
A -‘



Question:

How to mitigate error propagation?

VO



