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SRL introduction slides adapted from https://web.stanford.edu/~jurafsky/slp3/slides/22_SRL.pdf





Give

Arg0: giver
Arg1: thing given
Arg2: entity given to

Alice gave Bob's mom a book yesterday

The Proposition Bank (PropBank)

ArgM-TMP: when? 
ArgM-LOC: where? 
ArgM-DIR: where to/from? 
ArgM-MNR: how? 
ArgM-PRP/CAU: why?



Give

Arg0: giver
Arg1: thing given
Arg2: entity given to

[Arg0: Alice] gave [Arg2: Bob's mom] [Arg1: a book] [ArgM-
TMP: yesterday]

The Proposition Bank (PropBank)

ArgM-TMP: when? 
ArgM-LOC: where? 
ArgM-DIR: where to/from? 
ArgM-MNR: how? 
ArgM-PRP/CAU: why?



BIO (Beginning-Inside-Outside) tagging

[Arg0: Alice] gave [Arg2: Bob's mom] [Arg1: a book] 
[ArgM-TMP: yesterday]

Alice: B-Arg0
gave: B-v
Bob’: B-Arg2
mom: I-Arg2
a: B-Arg1
book: I-Arg1
Yesterday: B-ArgM-TMP

Alex is going to Los Angeles

Alex: B-PER
is: O
going: O
to: O
Los: B-LOC
Angeles: I-LOC



CoNLL-2005



Traditional features:

Predicate and POS tag of predicate
Voice
Phrase type
Position
Path S↑NP↑PP↑VP↓VBN
Subcategorization
……

Figure copied from The 
Importance of Syntactic 
Parsing and Inference in 
Semantic Role Labeling



• Feature based Semantic Role Labeling
Syntax seems to be a prerequisite for SRL

• Deep Semantic Role Labeling: What Works and What’s 
Next ACL’2017

End-to-end model without syntactic input

• Linguistically-Informed Self-Attention for Semantic 
Role Labeling ACL’2018

Explicitly model the syntactic information in neural network
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• Feature based Semantic Role Labeling
Syntax seems to be a prerequisite for SRL

• Deep Semantic Role Labeling: What Works and What’s 
Next ACL’2017

End-to-end model without syntactic input

• Linguistically-Informed Self-Attention for Semantic 
Role Labeling ACL’2018

Explicitly model the syntactic information in neural network



Basic idea: BiLSTM

Design detail? 
Training Technique?



Input: Glove word embedding and binary predicate mask

A simplification of ACL’2015 (word, predicate, predicate context, and region mark)



Basic structure: BiLSTM



Network Training: Highway Connections and Recurrent Dropout

Highway Connection: somewhat like residual network

Transform gate

LSTM output without gate

Gated output

Gated output

Masked/dropout output

Recurrent Dropout

Orthonormal initialization



Output: Constrained A* decoding

Another difference with ACL’2015 (CRF)

Softmax output

Confidence value with penalization

A* heuristic

1. Model the dependencies between the output tags
2. Add constraints to reject invalid output
3. Use A* searching algorithm to find the “optimal” tag sequence



BIO Constraints
Reject invalid BIO transitions, such as              followed by

SRL Constraints 
• Unique core roles (U): Each core role (ARG0-ARG5, ARGA) should 

appear at most once for each predicate.
• Continuation roles (C): A continuation role C-X can exist only when 

its base role X is realized before it.
• Reference roles (R): A reference role R-X can exist only when its 

base role X is realized (not necessarily before R-X).
Syntactic Constraints

We can enforce consistency with a given parse tree by rejecting or 
penalizing arguments that are not constituents. 

Constraint example



Intuition on A* searching

Record the distance 
from the starting point

Record the distance away 
from the destination Consider both distances



Output: Constrained A* decoding

Another difference with ACL’2015 (CRF)

Softmax output

Confidence value with penalization

A* heuristic

1. Not used during the training
2. A* searching algorithm reduced to Viterbi and able find the optimal 
solution?





“George III is the king of England”



CoNLL-2005



Model Performance



Contributions of Three Training Techniques

1. Without any of the three, 
seems unable to beat state-
of-the-art

2. Orthogonal initialization 
is very important at the 
early stage of training



End-to-End SRL

Train a separate predicate detection model



Long-range Dependency

Performance deteriorates 
as distance increases.



Adding Syntactic Constraints

1. Syntax helps!

2. We need a better 
automatic parser (syntax 
modeling), though

Gold: Penn Treebank constituents.
Choe: Parsing as language modeling, Choe and Charniak, 2016 
(SOTA)
Charniak: A maximum-entropy-inspired parser, Charniak, 2000
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• Feature based Semantic Role Labeling
Syntax plays an important role

• Deep Semantic Role Labeling: What Works and What’s 
Next ACL’2017

End-to-end model without syntactic input

• Linguistically-Informed Self-Attention for Semantic 
Role Labeling ACL’2018

Explicitly model the syntactic information in neural network



Linguistically-Informed Self-Attention
for Semantic Role Labeling

Andrew
McCallum

Daniel
Andor

Patrick
Verga

Emma
Strubell

David
Weiss

1 1 12 2

LISA



Linguistically-Informed Self-Attention

2

• Multi-task learning,  single-pass inference

– Part-of-speech tagging
– Labeled dependency parsing
– Predicate detection
– Semantic role spans & labeling

• Syntactically-informed self-attention

– Multi-head self-attention supervised by syntaxMulti-head self-attention supervised by syntax



• LISA: Linguistically-informed self attention

• Multi-head self-attention

• Syntactically-informed self-attention

• Multi-task learning, single-pass inference

• Experimental results & error analysis

Outline
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[Vaswani et al. 2017]
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Multi-head self-attention
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Multi-head self-attention
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Multi-head self-attention
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[Vaswani et al. 2017]

p+1



Multi-head self-attention + feed forward

Multi-head self-attention + feed forward

Multi-head self-attention

16

Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J

committee awards Strickland advanced opticswhoNobel

[Vaswani et al. 2017]





• LISA: Linguistically-informed self attention

• Multi-head self-attention

• Syntactically-informed self-attention

• Multi-task learning, single-pass inference

• Experimental results & error analysis

Outline
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[Vaswani et al. 2017]



How to incorporate syntax?

19

• Multi-task learning [Caruana 1993; Collobert et al. 2011]:
– Overfits to training domain like single-task end-to-end NN.
– Must re-train SRL model to leverage new (improved) syntax.

• Dependency path embeddings [Roth & Lapata 2016]; Graph 
CNN over parse [Marcheggiani & Titov 2017]
– Restricted context: path to predicate or fixed-width window.

• Syntactically-informed self-attention
– In one head, token attends to its likely syntactic parent(s).
– Global context: In next layer, tokens observe all other parents.
– At test time: can use own predicted parse, OR

supply syntax to improve SRL model without re-training.



Syntactically-informed self-attention
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Syntactically-informed self-attention

committee awards Strickland advanced opticswhoNobel



Syntactically-informed self-attention

Multi-head self-attention + feed forward

Syntactically-informed self-attention
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Layer 1

Layer p

Multi-head self-attention + feed forwardLayer J
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• LISA: Linguistically-informed self attention

• Multi-head self-attention

• Syntactically-informed self-attention

• Multi-task learning, single-pass inference

• Experimental results & error analysis

Outline

2424



Layer p Syntactically-informed self-attention

Multi-head self-attention + feed forwardLayer J

LISA: Linguistically-Informed Self-Attention
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Layer 1 Multi-head self-attention + feed forward

Multi-head self-attention + feed forwardLayer r

NNP NN VBZ/PRED NNP WP VBN/PRED NN
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LISA: Linguistically-Informed Self-Attention
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Layer 1
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LISA: Linguistically-Informed Self-Attention
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Layer 1 Multi-head self-attention + feed forward

committee awards Strickland advanced opticswhoNobel
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LISA: Linguistically-Informed Self-Attention
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LISA: Linguistically-Informed Self-Attention
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Layer r Multi-head self-attention + feed forward

Layer p
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• LISA: Linguistically-informed self attention

• Multi-head self-attention

• Syntactically-informed self-attention

• Multi-task learning, single-pass inference

• Experimental results & error analysis
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Experimental results
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CoNLL-2005 CoNLL-2012

domains
Train, dev: news
Test: news, novels

Train, dev, test: 7 domains 
(news, telephone, bible, ...)

word 
embeddings

GloVe [Pennington et al. 2014]
ELMo [Peters et al. 2018]

GloVe [Pennington et al. 2014]
ELMo [Peters et al. 2018]

predicates predicted; gold predicted

baselines
He et al. 2017
He et al. 2018
Tan et al. 2018

He et al. 2018

our models

SA
LISA
LISA+D&M, 

+Gold Lisa_Gold

SA
LISA
LISA+D&M, 

+Gold Lisa_Gold



Experimental results

He et al. 2017 PoE

He et al. 2018 jointly predict all predicates and argument 
spans

SA does not incorporate syntactic information

LISA Predicted parser

+D&M injecting state-of-the-art predicted parses at 
test time (+D&M)

+Gold the gold syntactic parse at test time (+Gold)



Experimental results

41

GloVe ELMo

in-domain out-of-domain in-domain out-of-domain

He et al. 2017 82.7 70.1 --- ---

He et al. 2018 82.5 70.8 86.0 76.1

SA 83.72 71.51 86.09 76.35

LISA 83.61 71.91 86.55 78.05

+D&M 84.99 74.66 86.90 78.25

+Gold

?



Experimental results: CoNLL-2005
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GloVe ELMo

in-domain (dev) in-domain (dev)

He et al. 2017 81.5 ---

He et al. 2018 81.6 85.3

SA 82.39 85.26

LISA 82.24 85.35

+D&M 83.58 85.17

+Gold 86.81 87.63



Experimental results: Analysis

43





Experimental results: Analysis
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boundary mistakes



Summary

• LISA: Multi-task learning + multi-head self attention 
trained to attend to syntactic parents
– Achieves state-of-the-art F1 on PropBank SRL
– Linguistic structure improves generalization
– Fast: encodes sequence only once to predict predicates, 

parts-of-speech, labeled dependency parse, SRL

46


