Semantic Role Labeling

Chong Xiang and Zhongqiao Gao

02/20/2020

SRL introduction slides adapted from https://web.stanford.edu/~jurafsky/slp3/slides/22_SRL.pdf

B-arg0; O; B-arg1; I-arg0; B-arg2; I-arg2; TMP

B_arg0, B_v, B_arg2, B_arg2, B_arg1, B_arg1, B_argm_temp

BOBIOOO

y1 = B, y2 = O, y3 = B, y4 = I, y5 = B, y6 = I, y7 = O

B_ARG1 O B_ARG2 I_ARG2 O B_ARG3 O

Alice, gave, Bob's, mom, a, book, yesterday B_ARG0, B_V, B_ARG1, I_ARG1, B_ARG2, I_ARG2, B_ARG3

y1=B-ARG0, y2=B-v, y3=B-ARG1,y4=I-ARG1,y5=B-ARG2,y6=I-ARG2,y7=O

BOBIOBB

B, O, B, I, O, B, B

I'm not *quite* sure, but:

y1=B-ARG0 y2=I-ARG0 y3=B-ARG1 y4=I-ARG1 y5=O y6=B-ARG2 y7=O B-ARG1, V, O, I-ARG2, O, I-ARG3, O; I am very confused by the BIO sequence

B_{arg0} B_v B_{arg1} I_{arg1} B_{arg2} I_{arg2} O

Ir, O,Ir, Ir, O,O,O

y1 = B, y2 = O, y3 = B, y4 = I, y5 = B, y6 = I, y7 = O

B(arg0), B(v), B(arg1), I(arg1), B(arg2), I(arg2), O

B, O, B, I, B, I, B

y1=Alice, y2=Bob's mom, y3=a book, modifier=yesterday

The Proposition Bank (PropBank)

Give

Arg0: giver Arg1: thing given Arg2: entity given to ArgM-TMP: when? ArgM-LOC: where? ArgM-DIR: where to/from? ArgM-MNR: how? ArgM-PRP/CAU: why?

Alice gave Bob's mom a book yesterday

The Proposition Bank (PropBank)

Give

Arg0: giver Arg1: thing given Arg2: entity given to ArgM-TMP: when? ArgM-LOC: where? ArgM-DIR: where to/from? ArgM-MNR: how? ArgM-PRP/CAU: why?

[Arg0: Alice] gave [Arg2: Bob's mom] [Arg1: a book] [ArgM-TMP: yesterday]

BIO (Beginning-Inside-Outside) tagging

Alex is going to Los Angeles

Alex: B-PER is: O going: O to: O Los: B-LOC Angeles: I-LOC

[Arg0: Alice] gave [Arg2: Bob's mom] [Arg1: a book] [ArgM-TMP: yesterday]

Alice: B-Arg0 gave: B-v Bob': B-Arg2 mom: I-Arg2 a: B-Arg1 book: I-Arg1 Yesterday: B-ArgM-TMP

CoNLL-2005

WORDS>	NE>	POS	PARTIA	L_SYNT	FULL_SYNT>	VS	TARGETS	PROPS>	
The	*	DT	(NP*	(S*	(S(NP*	(] =	-	(A0*	(A0*
\$	*	\$	*	*	(ADJP(QP*		-	*	*
1.4	*	CD	*	*	*	3 — 12 —	-	*	*
billion	*	CD	*	*	*))	2. 82	-	*	*
robot	*	NN	*	*	*	-	_	*	*
spacecraft	*	NN	*)	*	*)	0 <u>—</u> 32	-	*)	*)
faces	*	VBZ	(VP*)	*	(VP*	01	face	(V*)	*
а	*	DT	(NP*	*	(NP*	2	-	(A1*	*
six-year	*]]	*	*	*		5-1	*	*
journey	*	NN	*)	*	*	1 — 8	-	*	*
to	*	TO	(VP*	(S*	(S(VP*		-	*	*
explore	*	VB	*)	*	(VP*	01	explore	*	(V*)
Jupiter	(ORG*)	NNP	(NP*)	*	(NP(NP*)	1 <u>-</u> 51	_	*	(A1*
and	*	CC	*	*	*	1	-	*	*
its	*	PRP\$	(NP*	*	(NP*		L.	*	*
16	*	CD	*	*	*			*	*
known	*]]	*	*	*	7 — 84	-	*	*
moons	*	NNS	*)	*)	*)))))))	-	-	*)	*)
•	*	•	*	*)	*)		-	*	*

Traditional features:

Predicate and POS tag of predicate Path S↑NP↑PP↑VP↓VBN **Subcategorization**

> Figure copied from *The* **Importance of Syntactic** Parsing and Inference in Semantic Role Labeling

Feature based Semantic Role Labeling

Syntax seems to be a prerequisite for SRL

• Deep Semantic Role Labeling: What Works and What's Next ACL'2017

End-to-end model without syntactic input

• Linguistically-Informed Self-Attention for Semantic Role Labeling ACL'2018

Explicitly model the syntactic information in neural network

Feature based Semantic Role Labeling

Syntax seems to be a prerequisite for SRL

• Deep Semantic Role Labeling: What Works and What's Next ACL'2017

End-to-end model without syntactic input

• Linguistically-Informed Self-Attention for Semantic Role Labeling ACL'2018

Explicitly model the syntactic information in neural network

• Feature based Semantic Role Labeling Syntax seems to be a prerequisite for SRL

• Deep Semantic Role Labeling: What Works and What's Next ACL'2017

End-to-end model without syntactic input

• Linguistically-Informed Self-Attention for Semantic Role Labeling ACL'2018

Explicitly model the syntactic information in neural network

Basic idea: BiLSTM

Design detail? Training Technique?

Input: Glove word embedding and binary predicate mask

A simplification of ACL'2015 (word, predicate, predicate context, and region mark)

Basic structure: BiLSTM

$$i_{l,t} = \sigma(\mathbf{W}_{0}^{l}[\mathbf{h}_{l,t+\delta_{l}}, \mathbf{x}_{l,t}] + \mathbf{b}_{0}^{l})$$

$$o_{l,t} = \sigma(\mathbf{W}_{0}^{l}[\mathbf{h}_{l,t+\delta_{l}}, \mathbf{x}_{l,t}] + \mathbf{b}_{0}^{l})$$

$$f_{l,t} = \sigma(\mathbf{W}_{f}^{l}[\mathbf{h}_{l,t+\delta_{l}}, \mathbf{x}_{l,t}] + \mathbf{b}_{f}^{l} + 1)$$

$$\tilde{c}_{l,t} = \tanh(\mathbf{W}_{c}^{l}[\mathbf{h}_{l,t+\delta_{l}}, \mathbf{x}_{l,t}] + \mathbf{b}_{c}^{l})$$

$$c_{l,t} = i_{l,t} \circ \tilde{c}_{l,t} + f_{l,t} \circ c_{t+\delta_{l}}$$

$$h_{l,t} = o_{l,t} \circ \tanh(c_{l,t})$$

$$\delta_{l} = \begin{cases} 1 & \text{if } l \text{ is even} \\ -1 & \text{otherwise} \end{cases}$$

$$Word \& Predicate The 0$$

Network Training: Highway Connections and Recurrent Dropout

Highway Connection: somewhat like residual network

Output: Constrained A* decoding

Another difference with ACL'2015 (CRF)

Softmax
$$P(B_{ARG0}) P(I_{ARG0}) P(B_V) P(B_{ARG1})$$

- 1. Model the dependencies between the output tags
- 2. Add constraints to reject invalid output
- 3. Use A* searching algorithm to find the "optimal" tag sequence

$$p(y_t \mid \boldsymbol{x}) \propto \exp(\mathbf{W}_{tag}^{y} \boldsymbol{h}_{L,t} + \boldsymbol{b}_{tag}) \qquad \leftarrow \quad \text{Softmax output}$$

$$f(\boldsymbol{w}, y_{1:t}) = \sum_{i=1}^{t} \log p(y_i \mid \boldsymbol{w}) - \sum_{c \in \mathcal{C}} c(\boldsymbol{w}, y_{1:i}) \leftarrow \quad \text{Confidence value with penalization}$$

$$g(\boldsymbol{w}, y_{1:t}) = \sum_{i=t+1}^{n} \max_{y_i \in \boldsymbol{T}} \log p(y_i \mid \boldsymbol{w}) \qquad \leftarrow \quad \text{A* heuristic}$$

Constraint example

BIO Constraints

Reject invalid BIO transitions, such as $B_{ARG0}\,$ followed by $\,I_{ARG1}\,$ SRL Constraints

• Unique core roles (U): Each core role (ARG0-ARG5, ARGA) should appear at most once for each predicate.

• Continuation roles (C): A continuation role C-X can exist only when its base role X is realized before it.

• **Reference roles (R):** A reference role R-X can exist only when its base role X is realized (not necessarily before R-X).

Syntactic Constraints

We can enforce consistency with a given parse tree by rejecting or penalizing arguments that are not constituents.

Intuition on A* searching

Record the distance from the starting point

Record the distance away from the destination

Consider both distances

Output: Constrained A* decoding

Another difference with ACL'2015 (CRF)

Not used during the training
 A* searching algorithm reduced to Viterbi and able find the optimal solution?

$$p(y_t \mid \boldsymbol{x}) \propto \exp(\mathbf{W}_{tag}^{y} \boldsymbol{h}_{L,t} + \boldsymbol{b}_{tag}) \qquad \leftarrow \quad \text{Softmax output}$$

$$f(\boldsymbol{w}, y_{1:t}) = \sum_{i=1}^{t} \log p(y_i \mid \boldsymbol{w}) - \sum_{c \in \mathcal{C}} c(\boldsymbol{w}, y_{1:i}) \leftarrow \quad \text{Confidence value with penalization}$$

$$g(\boldsymbol{w}, y_{1:t}) = \sum_{i=t+1}^{n} \max_{y_i \in \boldsymbol{T}} \log p(y_i \mid \boldsymbol{w}) \quad \leftarrow \quad \text{A* heuristic}$$

	CoNLL-2005 (PropBank)	CoNLL-2012 (OntoNotes)
Size	40k sentences	140k sentences
Domains	WSJ / newswireBrown (test-only)	 telephone conversations newswire newsgroups broadcast news broadcast conversation weblogs
Annotated predicates	Verbs	Added some nominal predicates
		"George III is the king of England"

CoNLL-2005

WORDS>	NE>	POS	PARTIA	L_SYNT	FULL_SYNT>	VS	TARGETS	PROPS>	
The	*	DT	(NP*	(S*	(S(NP*	() =	-	(A0*	(A0*
\$	*	\$	*	*	(ADJP(QP*		-	*	*
1.4	*	CD	*	*	*	3 — 12 —	-	*	*
billion	*	CD	*	*	*))	2. 82	-	*	*
robot	*	NN	*	*	*	-	_	*	*
spacecraft	*	NN	*)	*	*)	0 <u>—</u> 32	-	*)	*)
faces	*	VBZ	(VP*)	*	(VP*	01	face	(V*)	*
а	*	DT	(NP*	*	(NP*	2	-	(A1*	*
six-year	*]]	*	*	*		5-1	*	*
journey	*	NN	*)	*	*	1 — 8	-	*	*
to	*	TO	(VP*	(S*	(S(VP*		-	*	*
explore	*	VB	*)	*	(VP*	01	explore	*	(V*)
Jupiter	(ORG*)	NNP	(NP*)	*	(NP(NP*)	1 <u>-</u> 51	_	*	(A1*
and	*	CC	*	*	*	1	-	*	*
its	*	PRP\$	(NP*	*	(NP*		L.	*	*
16	*	CD	*	*	*			*	*
known	*]]	*	*	*	7 — 84	-	*	*
moons	*	NNS	*)	*)	*)))))))	-	-	*)	*)
•	*	•	*	*)	*)		-	*	*

Model Performance

	Development				WSJ Test				Brown Test				Combined
Method	Р	R	F1	Comp.	Р	R	F1	Comp.	Р	R	F1	Comp.	F1
Ours (PoE) Ours	83.1 81.6	82.4 81.6	82.7 81.6	64.1 62.3	85.0 83.1	84.3 83.0	84.6 83.1	66.5 64.3	74.9 72.9	72.4 71.4	73.6 72.1	46.5 44.8	83.2 81.6
Zhou FitzGerald (Struct.,PoE) Täckström (Struct.) Toutanova (Ensemble) Punyakanok (Ensemble)	79.7 81.2 81.2 - 80.1	79.4 76.7 76.2 - 74.8	79.6 78.9 78.6 78.6 77.4	55.1 54.4 58.7 50.7	82.9 82.5 82.3 81.9 82.3	82.8 78.2 77.6 78.8 76.8	82.8 80.3 79.9 80.3 79.4	57.3 56.0 60.1 53.8	70.7 74.5 74.3 - 73.4	68.2 70.0 68.6 - 62.9	69.4 72.2 71.3 68.8 67.8	41.3 39.8 40.8 32.3	81.1 - - 77.9

Table 1: Experimental results on CoNLL 2005, in terms of precision (P), recall (R), F1 and percentage of completely correct predicates (Comp.). We report results of our best single and ensemble (PoE) model. The comparison models are Zhou and Xu (2015), FitzGerald et al. (2015), Täckström et al. (2015), Toutanova et al. (2008) and Punyakanok et al. (2008).

Contributions of Three Training Techniques

1. Without any of the three, seems unable to beat stateof-the-art

2. Orthogonal initialization is very important at the early stage of training

End-to-End SRL

Train a separate predicate detection model

	Predicate Detection			End-to-	-end SRL (Single)	End-to-end SRL (PoE)			
Dataset	Р	R	F1	Р	R	F1	Р	R	F1	Δ F1
CoNLL 2005 Dev.	97.4	97.4	97.4	80.3	80.4	80.3	81.8	81.2	81.5	-1.2
WSJ Test	94.5	98.5	96.4	80.2	82.3	81.2	82.0	83.4	82.7	-1.9
Brown Test	89.3	95.7	92.4	67.6	69.6	68.5	69.7	70.5	70.1	-3.5
CoNLL 2012 Dev.	88.7	90.6	89.7	74.9	76.2	75.5	76.5	77.8	77.2	-6.2
CoNLL 2012 Test	93.7	87.9	90.7	78.6	75.1	76.8	80.2	76.6	78.4	-5.0

Table 3: Predicate detection performance and end-to-end SRL results using predicted predicates. Δ F1 shows the absolute performance drop compared to our best ensemble model with gold predicates.

Long-range Dependency

Distance (num. words in between)

Performance deteriorates as distance increases.

Adding Syntactic Constraints

Feature based Semantic Role Labeling

Syntax plays an important role

• Deep Semantic Role Labeling: What Works and What's Next ACL'2017

End-to-end model without syntactic input

• Linguistically-Informed Self-Attention for Semantic Role Labeling ACL'2018

Explicitly model the syntactic information in neural network

LISA

Linguistically-Informed Self-Attention for Semantic Role Labeling

Linguistically-Informed Self-Attention

Multi-task learning

- Part-of-speech tagging
- Labeled dependency parsing
- Predicate detection
- Semantic role spans & labeling

Syntactically-informed self-attention

- Multi-head self-attention supervised by syntax

Outline

- LISA: Linguistically-informed self attention
 - Multi-head self-attention
 - Syntactically-informed self-attention

- Multi-task learning, single-pass inference
- Experimental results & error analysis

Self-attention

Self-attention

OOC 0000 Ŏ O O Õ C C Q K 00 000 000 00 0000 000 OOC (0000)Layer p <u>0000</u> 00000000 0000 (000C 0000 Nobel committee awards Strickland who advanced optics

Self-attention

optics advanced Ŏ O O O Strickland awards committee Nobel Q 000 0000 0000 000 000 0000 K 00000000 (0000)Layer p (0000)0000 0000 0000 Nobel committee awards Strickland who advanced optics

optics 000000 advanced who Strickland awards committee Nobel Α Q 000 \bigcirc \mathbf{O} K 0000 (0000)Layer p (0000)0000 0000 0000 0000 Nobel committee awards Strickland who advanced optics

[Vaswani et al. 2017]

M optics advanced 000000 Ŏ O O O who Strickland awards committee Nobel Α Q 000 000 0000 000 000 0000 K (0000)Layer p (000C 2000 000 0000 ၁ဂဂ 0000 Nobel committee awards Strickland who advanced optics

[Vaswani et al. 2017]

M optics advanced 000000 who Strickland awards committee Nobel Α Q 00 O 0000 00 000 OO \bigcirc K (0000)Layer p 0000 (000C 2000 0000 0000 OOCNobel committee awards Strickland who advanced optics

[Vaswani et al. 2017]

[Vaswani et al. 2017] Multi-head self-attention

[Vaswani et al. 2017]

Multi-head self-attention

[Vaswani et al. 2017]

Multi-head self-attention

[Vaswani et al. 2017]

Multi-head self-attention

[Vaswani et al. 2017] Multi-head self-attention

$$\begin{split} s_{t}^{(j)} &= LN(s_{t}^{(j-1)} + T^{(j)}(s_{t}^{(j-1)})) \\ & \\ A_{h}^{(j)} &= \mathrm{softmax}(d_{k}^{-0.5}Q_{h}^{(j)}K_{h}^{(j)^{T}}) \\ & \\ M_{h}^{(j)} &= A_{h}^{(j)}V_{h}^{(j)} \\ & \\ M_{h}^{(j)} &= A_{h}^{(j)}V_{h}^{(j)} \\ \end{split}$$

Outline

- LISA: Linguistically-informed self attention
 - Multi-head self-attention
 - Syntactically-informed self-attention

[Vaswani et al. 2017]

- Multi-task learning, single-pass inference
- Experimental results & error analysis

How to incorporate syntax?

- Multi-task learning [Caruana 1993; Collobert et al. 2011]:
 - Overfits to training domain like single-task end-to-end NN.
 - Must re-train SRL model to leverage new (improved) syntax.
- Dependency path embeddings [Roth & Lapata 2016]; Graph CNN over parse [Marcheggiani & Titov 2017]
 - Restricted context: path to predicate or fixed-width window.
- Syntactically-informed self-attention
 - In one head, token attends to its likely syntactic parent(s).
 - Global context: In next layer, tokens observe all other parents.
 - At test time: can use own predicted parse, OR
 supply syntax to improve SRL model without re-training.

Syntactically-informed self-attention

Syntactically-informed self-attention

$$A_{parse} = \operatorname{softmax}(Q_{parse}U_{heads}K_{parse}^T)$$

$$P(q = \text{head}(t) \mid \mathcal{X}) = A_{parse}[t, q]$$

Outline

- LISA: Linguistically-informed self attention
 - Multi-head self-attention
 - Syntactically-informed self-attention
 - Multi-task learning, single-pass inference
- Experimental results & error analysis

28

$$\frac{1}{T} \sum_{t=1}^{T} \left[\sum_{f=1}^{F} \log P(y_{ft}^{role} \mid \mathcal{P}_G, \mathcal{V}_G, \mathcal{X}) + \log P(y_t^{prp} \mid \mathcal{X}) + \lambda_1 \log P(head(t) \mid \mathcal{X}) + \lambda_2 \log P(y_t^{dep} \mid \mathcal{P}_G, \mathcal{X}) \right]$$

Outline

- LISA: Linguistically-informed self attention
 - Multi-head self-attention
 - Syntactically-informed self-attention
 - Multi-task learning, single-pass inference
- Experimental results & error analysis

Experimental results

	CoNLL-2005	CoNLL-2012		
domains	Train, dev: news Test: news, novels	Train, dev, test: 7 domains (news, telephone, bible,)		
word embeddings	GloVe [Pennington et al. 2014] ELMo [Peters et al. 2018]	GloVe [Pennington et al. 2014] ELMo [Peters et al. 2018]		
predicates	predicted; gold	predicted		
baselines	He et al. 2017 He et al. 2018 Tan et al. 2018	He et al. 2018		
our models	SA LISA LISA+D&M, +Gold <u>iser</u> Lisa_Gold	SA LISA LISA+D&M, +Gold <u>sep</u> Lisa_Gold		

Experimental results

He et al. 2017	PoE
He et al. 2018	jointly predict all predicates and argument spans
SA	does not incorporate syntactic information
LISA	Predicted parser
+D&M	injecting state-of-the-art predicted parses at test time (+D&M)
+Gold	the gold syntactic parse at test time (+Gold)

Experimental results

	₩ GloVe		ELMo	
	in-domain	out-of-domain	in-domain	out-of-domain
He et al. 2017	82.7	70.1		
He et al. 2018	82.5	70.8	86.0	76.1
SA	83.72	71.51	86.09	76.35
LISA	83.61	71.91	86.55	78.05
+D&M	9489.09 S	907.4.68AS	968.90AS	978825AS
	+2.49 F1	+3.86 F1	+0.9 F1 ?	+2.15 F1

Experimental results: CoNLL-2005

Jert GloVe	ELMo 🥳
in-domain (dev)	in-domain (dev)

96.5 UAS!
Experimental results: Analysis

Experimental results: Analysis

Summary

- **LISA**: Multi-task learning + multi-head self attention trained to attend to syntactic parents
 - Achieves state-of-the-art F1 on PropBank SRL
 - Linguistic structure improves generalization
 - Fast: encodes sequence *only once* to predict predicates, parts-of-speech, labeled dependency parse, SRL

Slide reference: Emma Strubell on Linguistically-Informed Self-Attention for Semantic Role Labeling (best paper, EMNLP 2018)