XLNet: Generalized Autoregressive Pre-training for Language Understanding

Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le

Presented by Andrew Or, Ksenia Sokolova

Outline

XLNet Key Ideas: high-level comparison with BERT

XLNet Backbone: Transformer-XL

Pre-training Objectives: comparison with AR and BERT

XLNet Design: permutation, masks, two-stream attention

Results: XLNet outperforms BERT on 20 tasks

Background

- ★ Before: autoregressive (ex. ELMo, GPT) and autoencoding (ex. BERT) models are the two most successful pre-training objectives
- \star Both approaches have their own limitations

Autoregressive Models

Use context to predict the next word

X Only considers context in one direction

Autoencoding Models (BERT)

Note: previously a SOTA pretraining approach

Fine-tuning discrepancy caused by [MASK] tokens (not in real data)

No joint probability between masked entries

Two Notable Objectives for Language Pretraining

Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Self-attention mechanisms, uses Transformer-XL backbone

Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Peter's cat likes yarn

Peter's cat likes yarn Peter's cat yarn likes Peter's likes cat yarn Peter's likes yarn cat Peter's yarn cat likes Peter's yarn likes cat yarn Peter's cat likes yarn Peter's likes cat yarn cat Peter's likes yarn cat likes Peter yarn likes Peter's cat yarn likes cat Peter's

Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Peter's cat likes yarn

Peter's cat likes yarn Peter's cat yarn likes Peter's **likes cat** yarn Peter's likes yarn cat Peter's **yarn cat** likes Peter's yarn likes cat

yarn Peter's cat likes yarn Peter's likes cat yarn cat Peter's likes yarn cat likes Peter yarn likes Peter's cat yarn likes cat Peter's

. . .

Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Self-attention mechanisms, uses Transformer-XL backbone

Increases context through segment-level recurrence and a novel positional encoding scheme

Transformer-XL

Increases context through **segment-level recurrence** and a novel positional encoding scheme

- Cache and reuse hidden state from the previous segment
- Allows variable-length context, great for capturing long-term dependencies
- Resolves the problem of context fragmentation

Before (no segment-level recurrence)

Current segment

After segment-level recurrence

Transformer-XL

Increases context through segment-level recurrence and a novel **positional** encoding scheme

Need a way to keep positional information coherent when we reuse the states

- In the original Transformer: *absolute* position within a segment is used
- Need to encode *relative* position

Original Transformer

Before

Current segment

Current segment

Training objectives

Traditional AR models vs BERT vs XLNet

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t}) = \sum_{t=1}^{T} \log \frac{\exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x_t)\right)}{\sum_{x'} \exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x')\right)}$$

Traditional AR models

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_{t} \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x_{t})\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x')\right)}$$

$$BERT$$

$$= 1 \text{ if masked}$$

23

$$\max_{\theta} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{T}} \left[\sum_{t=1}^{T} \log p_{\theta}(x_{z_{t}} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right]$$

Set of all permutations XLNet*

XLNet Design

Permutation only on *factorization order*, not the original *sequence order*

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict *1/K* tokens in each permutation

Context Depends on the Factorization Order

• Standard LM: Left-to-right factorization $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

 $P(\mathbf{x}) = P(x_1)P(x_2 \mid \mathbf{x}_1)P(x_3 \mid \mathbf{x}_{1,2})P(x_4 \mid \mathbf{x}_{1,2,3})\cdots$

Context Depends on the Factorization Order

• Change the Factorization order to: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

 $P(\mathbf{x}) = P(x_4)P(x_1 \mid \mathbf{x}_4)P(x_3 \mid \mathbf{x}_{1,4})P(x_2 \mid \mathbf{x}_{1,2,4})\cdots$

Permutation Language Modeling

- Given a sequence \mathbf{x} of length T
- Uniformly sample a factorization order **z** from all possible permutations
- Maximize the permutated log-likelihood

$$\mathbb{E}_{\mathbf{z}\sim\mathcal{Z}_{T}}\left[\log P(\mathbf{x} \mid \mathbf{z})\right] = \mathbb{E}_{\mathbf{z}\sim\mathcal{Z}_{T}}\left[\sum_{t=1}^{T} P(x_{z_{t}} \mid \mathbf{x}_{\mathbf{z}< t}, z_{t})\right]$$

XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict *1/K* tokens in each permutation

Attention Masks Provide Context

Attention output = w1 * v1 + w2 * v2 + w1 * v3 + w4 * v4

Attention Masks Provide Context

Attention output = **w1** * v1 + **w4** * v4

XLNet Design

Permutation only on *factorization order*, not the original *sequence order*

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

Standard AR Parameterization Fails

The apple was eaten

- $z_1 = apple was the eaten p(x | apple, was)$
- $z_2 = apple was eaten the p(x | apple, was)$

Predicting *the* and *eaten* uses the same distribution Fails to take into account target position

Standard AR Parameterization Fails

The apple was eaten

 $z_1 = apple was the eaten<math>p(\mathbf{x} | apple, was, [pos=0])$ $z_2 = apple was eaten the$ $p(\mathbf{x} | apple, was, [pos=3])$

Predicting *the* and *eaten* uses the same distribution

Fails to take into account target position

Reparameterization

• Standard Softmax does **NOT** work

• **Proposed** solution: incorporate z_t into **hidden** states

$$P(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}, z_t) = \frac{\exp\left(e(x_{z_t})^\top g(\mathbf{z}_t, \mathbf{x}_{\mathbf{z}_{< t}})\right)}{\sum_{x'} \exp\left(e(x')^\top g(\mathbf{z}_t, \mathbf{x}_{\mathbf{z}_{< t}})\right)}$$
 Deep Net

Implement this using two-stream architecture

NT · C

Target Position Aware Representation: $g(z_t, x_{z_{< t}})$

Reuse the Idea of Attention

• Stand at the target position z_t

• Gather information from
$$\mathbf{x}_{Z_{< t}}$$

$$g(z_t, \mathbf{x}_{\mathbf{z}_{< t}}) = \operatorname{Attn}_{\theta} \left(\underbrace{\operatorname{Q} = \operatorname{Enc}(z_t)}_{\operatorname{Stand at} z_t}, \underbrace{\operatorname{KV} = \mathbf{h}(\mathbf{x}_{\mathbf{z}_{< t}})}_{\operatorname{Gather info. from } \mathbf{x}_{\mathbf{z}_{< t}}} \right)$$

Contradiction: Predicting Self and Others

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Should encode x_1

 $\left[g_{4}^{(2)}\right]$

 $g_{4}^{(1)}$

x₄ p₃

Two-Stream Self-Attention

 $g_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = g_{z_t}^{(m-1)}, \text{KV} = \mathbf{h}_{\mathbf{z}_{\leq t}}^{(m-1)}; \theta), \quad (\text{query stream: use } z_t \text{ but cannot see } x_{z_t})$ $h_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \text{KV} = \mathbf{h}_{\mathbf{z}_{\leq t}}^{(m-1)}; \theta), \quad (\text{content stream: use both } z_t \text{ and } x_{z_t}).$

Query stream encodes target position information (z_t)

Content stream encodes both context and the target word (x_{z_t})

$$p_{\theta}(X_{z_t} = x \mid \mathbf{x}_{z_{< t}}) = \frac{\exp\left(e(x)^{\top} g_{\theta}(\mathbf{x}_{z_{< t}}, z_t)\right)}{\sum_{x'} \exp\left(e(x')^{\top} g_{\theta}(\mathbf{x}_{z_{< t}}, z_t)\right)}$$

Two-Stream Self-Attention

 $g_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = g_{z_t}^{(m-1)}, \text{KV} = \mathbf{h}_{\mathbf{z}_{< t}}^{(m-1)}; \theta), \quad (\text{query stream: use } z_t \text{ but cannot see } x_{z_t})$ $h_{z_t}^{(m)} \leftarrow \text{Attention}(\mathbf{Q} = h_{z_t}^{(m-1)}, \text{KV} = \mathbf{h}_{\mathbf{z}_{\le t}}^{(m-1)}; \theta), \quad (\text{content stream: use both } z_t \text{ and } x_{z_t}).$

Two-Stream Attention

• Factorization order: $4 \rightarrow 1 \rightarrow 3 \rightarrow 2$

Encoding. Predicting x_2 and x_3 (others).

 h_1 encodes x_1

Decoding. Predicting $\boldsymbol{x_1}$ (self).

 g_1 does not encode x_1

XLNet Design

Permutation only on *factorization order*, not the original *sequence order*

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

Partial Prediction

Motivation: reduce optimization difficulty from too little context Split sequence into *context words* and *target words*, cut off at c

Only predict target words (1/K of original sequence)

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\log p_{\theta}(\mathbf{x}_{\mathbf{z}_{>c}} \mid \mathbf{x}_{\mathbf{z}_{\le c}}) \right] = \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=c+1}^{|\mathbf{z}|} \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right]$$

$$\mathbf{z}|/(|\mathbf{z}|-c) \approx K$$
= 6 (~17% target)

XLNet-Large

Example: Comparison with BERT

Input sentence: New York is a city, masked *New* and *York* **XLNet factorization order:** [is, a, city, New, York]

$$\log p(\text{New York} \mid \text{is a city})$$

 $\mathcal{J}_{\text{BERT}} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city}),$ $\mathcal{J}_{\text{XLNet}} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{New}, \text{is a city}).$

Evaluation

Comparison with BERT

Experiment 1: Comparison with BERT

- Same training data as in BERT: Wikipedia + BooksCorpus
- Same hyperparameters for pretraining as in BERT
 - Model size: L=24, H=1024, A=16
 - Batch size: 256
 - Number of steps: 1M
 - ...
- Same hyperparameter search space for finetuning as in BERT

XLNet outperforms BERT on 20 tasks

We report the best of 3 BERT variants. Almost identical training recipes.

Experiment 2: Comparison with RoBERTa

- \bullet Less training data for XLNet: 126GB vs 160GB
- Same hyperparameters for pretraining as in RoBERTa
 - Model size: L=24, H=1024, A=16
 - Batch size: 8192
 - Number of steps: 500K
 - ...
- Same hyperparameter search space for finetuning as in RoBERTa

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	Single-task single models on dev									
BERT _{LARGE}	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on test (from leaderboard as of July 25, 2019)										
Ensemples on	i iesi (from ie	eaaerboa	ra as of	July 25,	2019)					
ALICE	88.2/87.9	eaaerboal 95.7	ra as of 90.7	July 25, 83.5	95.2	92.6	68.6	91.1	80.8	86.3
ALICE MT-DNN	88.2/87.9 87.9/87.4	95.7 96.0	ra as of 90.7 89.9	July 25, 83.5 86.3	2019) 95.2 96.5	92.6 92.7	68.6 68.4	91.1 91.1	80.8 89.0	86.3 87.6
ALICE MT-DNN XLNet	88.2/87.9 87.9/87.4 90.2/89.8	95.7 96.0 98.6	90.7 89.9 90.3	<i>July 25,</i> 83.5 86.3 86.3	2019) 95.2 96.5 96.8	92.6 92.7 93.0	68.6 68.4 67.8	91.1 91.1 91.6	80.8 89.0 90.4	86.3 87.6 88.4

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
BERT _{LARGE}	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of .	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task single models on dev									
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-
RoBERTa [21]	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	90.8	69.0	92.5	-
Multi-task ensemb	oles on test (fr	om leader	board as	of Oct 2	28, 2019)				
MT-DNN* [20]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
RoBERTa* [21]	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0
XLNet*	90.9/90.9 [†]	99.0 [†]	90.4 [†]	88.5	97.1 [†]	92.9	70.2	93.0	92.5

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
BERT _{LARGE}	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of .	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI
Single-task single models on dev									
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-
RoBERTa [21]	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	90.8	69.0	92.5	-
Multi-task ensembles on test (from leaderboard as of Oct 28, 2019)									
MT-DNN* [20]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0
RoBERTa* [21]	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0
XLNet*	90.9/90.9 [†]	99.0 [†]	90.4 [†]	88.5	97.1 [†]	92.9	70.2	93.0	92.5

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
BERTLARGE	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet _{LARGE}	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboar	rd as of .	July 25,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

RoBERTa paper

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI	
Single-task single	models on de	v								
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	
RoBERTa [21]	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-	
XLNet	90.8/90.8	94.9	92.3	85.9	97.0	90.8	69.0	92.5	-	
Multi-task ensem	bles on test (fr	om leader	board as	of Oct 2	28, 2019)					
MT-DNN* [20]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	
RoBERTa* [21]	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	
XLNet*	90.9/90.9 [†]	99.0 [†]	90.4 [†]	88.5	97.1 [†]	92.9	70.2	93.0	92.5	

XLNet outperforms RoBERTa on all considered tasks

Almost identical training recipes.

#	Model	RACE	SQuA	AD2.0	MNLI	SST-2
			F1	EM	m/mm	
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base ($K = 7$)	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base ($K = 6$)	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

Transformer-XL and permutation LM contribute to the performance

#	Model	RACE	CE SQuAD2.0		MNLI	SST-2
			F1	EM	m/mm	
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base ($K = 7$)	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base ($K = 6$)	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

			•						
#	Model	RACE	SQu ⊿ F1	A D2.0 EM	MNLI m/mm	SST-2			
1	BERT-Base	64.3	76.30	73.66	84.34/84.65	92.78			
2	DAE + Transformer-XL	65.03	79.56	76.80	84.88/84.45	92.60			
3	XLNet-Base $(K = 7)$	66.05	81.33	78.46	85.84/85.43	92.66			
4	XLNet-Base ($K = 6$)	66.66	80.98	78.18	85.63/85.12	93.35			
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78			
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12			
7	- bidirectional data	66.34	80.6	77 07	05 21/04 00	-00-66			
8	+ next-sent pred	66.76	79.8	lemory	caching is	_			
	• • • • • • • • • • • • • • • • • • •	important. RACE involves longest contexts of the 4							

#	Model	RACE	SQuA	D2.0	MNLI	SST-2
	Bidirectional context		F1	EM	m/mm	
1	is important	64.3	76.30	73.66	84.34/84.65	92.78
2	DAE + Transformer-AL	65.03	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base ($K = 7$)	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base ($K = 6$)	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

#	Model	RACE	SQuA	D2.0	MNLI	SST-2
Next-	Next-sentence prediction objective			EM	m/mm	
does not necessarily help			76.30	73.66	84.34/84.65	92.78
		00.00	79.56	76.80	84.88/84.45	92.60
3	XLNet-Base ($K = 7$)	66.05	81.33	78.46	85.84/85.43	92.66
4	XLNet-Base ($K = 6$)	66.66	80.98	78.18	85.63/85.12	93.35
5	- memory	65.55	80.15	77.27	85.32/85.05	92.78
6	- span-based pred	65.95	80.61	77.91	85.49/85.02	93.12
7	- bidirectional data	66.34	80.65	77.87	85.31/84.99	92.66
8	+ next-sent pred	66.76	79.83	76.94	85.32/85.09	92.89

$XLNet \; {}_{\rm is}$

The **best pretrained model today** Given standard FLOPs.

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel*, Noam Shazeer*, Adam Roberts*, Katherine Lee*, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

A systematic study of pre-training objectives, architectures, datasets, transfer approaches and other factors to create the best architecture. Results: T5 models - Base, Small, Large, 3B, 11B

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Colin Raffel*, Noam Shazeer*, Adam Roberts*, Katherine Lee*, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

A systematic study of pre-training objectives, architectures, datasets, transfer approaches and other factors to create the best architecture. Results: T5 models - Base, Small, Large, 3B, 11B

Question Answering on SQuAD1.1 dev

From: paperswithcode.com/sota/

Question Answering on SQuAD1.1 dev

From: paperswithcode.com/sota/

Text-to-text framework

"translate English to German: That is good."

"cola sentence: The course is jumping well."

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi…" "six people hospitalized after a storm in attala county."

"Das ist gut."

"not acceptable"

"3

Exploration of unsupervised objectives

Exploration of unsupervised objectives

Examples of the unsupervised objectives

Objective	Inputs	Targets
Prefix language modeling BERT-style Deshuffling I.i.d. noise, mask tokens I.i.d. noise, replace spans I.i.d. noise, drop tokens Random spans	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week . Thank you <x> to <y> week .</y></x></y></x></m></m></m></m></m>	<pre>me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z> for inviting last <x> for inviting me <y> your party last <z></z></y></x></z></y></x></pre>

Other parameters considered

- Datasets for pre-training
 - Introduce C4: cleaned Common Crawl dataset (745GB)
- Size of the pre-training dataset
- Training strategy
- Scaling: what to do with 4x compute resources

The best model based on experiments: T5

- Encoder-decoder Transformer architecture
- Span-corruption objective, mean span of 3 and corrupt 15%
- Increase number of pre-training steps and batch size
- Use C4 to avoid repetition (large dataset)
- Train 5 different sizes of the models
- Multi-task pre-training
- Fine-tune on individual GLUE/SuperGLUE
- Beam search for tasks with long sequences

Takeaways and insights

Systematic study can lead to an improved model

- Increasing the training time and/or model size improves the baseline
- Objectives that produce short target sequences are more computationally efficient
- Ensembling models that were only fine-tuned separately can give substantial performance and could be a cheaper mean of improving performance
- Pre-training on on-domain data can improve performance
- Updating all parameters during fine-tuning is the most effective but costly

References

Transformer-XL blog: https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html

Transformer paper: https://arxiv.org/abs/1706.03762

Transformer-XL paper: https://arxiv.org/abs/1

RoBERTa paper: https://arxiv.org/pdf/1907.11692.pdf901.02860

XLNet paper: https://arxiv.org/pdf/1906.08237.pdf

XLNet NeurIPS slides: https://github.com/zihangdai/xlnet/blob/master/misc/slides.pdf

XLNet blog post: <u>https://towardsdatascience.com/what-is-xlnet-and-why-it-outperforms-bert-8d8fce710335</u>

T5 paper: <u>https://arxiv.org/pdf/1910.10683.pdf</u>