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Outline

XLNet Key Ideas: high-level comparison with BERT

XLNet Backbone: Transformer-XL

Pre-training Objectives: comparison with AR and BERT

XLNet Design: permutation, masks, two-stream attention

Results: XLNet outperforms BERT on 20 tasks



Background

★ Before: autoregressive (ex. ELMo, GPT) and autoencoding (ex. 
BERT) models are the two most successful pre-training objectives

★ Both approaches have their own limitations



Autoregressive Models
Use context to predict the next word

Only considers context in one direction



Autoencoding Models (BERT)

Fine-tuning discrepancy caused by [MASK] tokens (not in real data)

Note: previously a SOTA pretraining approach

Peter has a [MASK] that does not like [MASK]

Assumes cat and yarn are independent, which is wrong

No joint probability between masked entries
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Transformer-XL
Increases context through segment-level recurrence and a novel positional 
encoding scheme

extra long



Transformer-XL
Increases context through segment-level recurrence and a novel positional 
encoding scheme

● Cache and reuse hidden state from the previous segment

● Allows variable-length context, great for capturing long-term dependencies

● Resolves the problem of context fragmentation



Before (no segment-level recurrence)



After segment-level recurrence



Transformer-XL
Increases context through segment-level recurrence and a novel positional 
encoding scheme

Need a way to keep positional information coherent when we reuse the states

● In the original Transformer: absolute position within a segment is used

● Need to encode relative position

Original Transformer



Before



After



Training objectives
Traditional AR models vs BERT vs XLNet



Traditional AR models

BERT

XLNet*Set of all permutations

= 1 if masked



XLNet Design
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Bidirectional 
context





XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction
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Attention Masks Provide Context

w1 = f(q3 • k1)
w2 = f(q3 • k2)
w3 = f(q3 • k3)
w4 = f(q3 • k4)

Attention output = w1 * v1 + w2 * v2 + w1 * v3 + w4 * v4

f = softmax + scale

4 < 1 < 3 < 2



Attention Masks Provide Context

w1 = f(q3 • k1)
w2 = 0
w3 = 0
w4 = f(q3 • k4)

Attention output = w1 * v1 + w4 * v4

f = softmax + scale

4 < 1 < 3 < 2



XLNet Design

Permutation only on factorization order, not the original sequence order
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Standard AR Parameterization Fails

The apple was eaten

z1 = apple was the eaten

z2 = apple was eaten the

p(x|apple, was)

p(x|apple, was)

Predicting the and eaten uses the same distribution

Fails to take into account target position



Standard AR Parameterization Fails

The apple was eaten

z1 = apple was the eaten

z2 = apple was eaten the

p(x|apple, was, [pos=0])

p(x|apple, was, [pos=3])

Predicting the and eaten uses the same distribution

Fails to take into account target position



Implement this using two-stream architecture







Two-Stream Self-Attention

Query stream encodes target position information (   )

Content stream encodes both context and the target word (    )



Two-Stream Self-Attention

Content streamQuery stream
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Partial Prediction

Motivation: reduce optimization difficulty from too little context

Split sequence into context words and target words, cut off at c

Only predict target words (1/K of original sequence)

= 6 (~17% target)
XLNet-Large



Example: Comparison with BERT

Input sentence: New York is a city, masked New and York

XLNet factorization order: [is, a, city, New, York]



Evaluation
Comparison with BERT















RoBERTa paper

XLNet paper





Ablation Study



Ablation Study Transformer-XL and permutation 
LM contribute to the performance



Ablation Study

Memory caching is 
important. RACE involves 
longest contexts of the 4



Ablation Study

Bidirectional context 
is important



Ablation Study

Next-sentence prediction objective 
does not necessarily help





Exploring the Limits of Transfer Learning with a 
Unified Text-to-Text Transformer

Colin Raffel*, Noam Shazeer*, Adam Roberts*, Katherine Lee*, Sharan Narang, 
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

A systematic study of pre-training objectives, architectures, datasets, transfer approaches and 
other factors to create the best architecture. Results: T5 models - Base, Small, Large, 3B, 11B 
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Question Answering on SQuAD1.1 dev

From: paperswithcode.com/sota/



Question Answering on SQuAD1.1 dev

From: paperswithcode.com/sota/



Text-to-text framework



Exploration of unsupervised objectives



Exploration of unsupervised objectives

In: Thank you <X> me to your party 
<Y> week
Out: <X> for inviting <Y> last <Z>



Examples of the unsupervised objectives



Other parameters considered

● Datasets for pre-training
○ Introduce C4: cleaned Common Crawl dataset (745GB)

● Size of the pre-training dataset

● Training strategy 

● Scaling: what to do with 4x compute resources



The best model based on experiments: T5
● Encoder-decoder Transformer architecture

● Span-corruption objective, mean span of 3 and corrupt 15%

● Increase number of pre-training steps and batch size

● Use C4 to avoid repetition (large dataset)

● Train 5 different sizes of the models

● Multi-task pre-training

● Fine-tune on individual GLUE/SuperGLUE

● Beam search for tasks with long sequences



Takeaways and insights
Systematic study can lead to an improved model

● Increasing the training time and/or model size improves the baseline

● Objectives that produce short target sequences are more computationally 

efficient

● Ensembling models that were only fine-tuned separately can give substantial 

performance and could be a cheaper mean of improving performance

● Pre-training on on-domain data can improve performance

● Updating all parameters during fine-tuning is the most effective but costly
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