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Outline

XLNet Key Ideas: high-level comparison with BERT
XLNet Backbone: Transformer-XL

Pre-training Objectives: comparison with AR and BERT
XLNet Design: permutation, masks, two-stream attention

Results: XLNet outperforms BERT on 20 tasks



Background

% Before: autoregressive (ex. ELMo, GPT) and autoencoding (ex.
BERT) models are the two most successful pre-training objectives

% Both approaches have their own limitations



Autoregressive Models

Use context to predict the next word

el

problems turning banking crises as p(X) — HZ: 1 p( 4 " | X < t)
—
forward
problems turning ﬁas p(x) — Hjtl:T p(‘rt | X>t)
—
backward

x Only considers context in one direction



Autoencoding Models (BERT)

Note: previously a SOTA pretraining approach

. W

problems turning banking crises as

——
x Fine-tuning discrepancy caused by [MASK] tokens (not in real data)

Peter has a [MASK] that does not like [MASK]

//

Assumes cat and yarn are independent, which is wrong

x No joint probability between masked entries



Two Notable Objectives for Language Pretraining

Auto-regressive Language Modeling

York s a city [EOS]
P 1
Unidirectional Transformer
r 1 1 1t 1
New York is a city

@ Full Auto-regressive Dependence

@ Free from artificial Noise

@ No Bidirectional Context

—
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Denoising Auto-encoding (BERT)

York is
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Bidirectional Transformer
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[MASK][MASK] a city

New

@ Independent Predictions

(%) Artificial Noise: [MASK]

@ Natural Bidirectional Context




XLNet Key Ideas

Autoregressive: use context to predict the next word
Bidirectional context from permutation language modeling

Self-attention mechanisms, uses Transformer-XL backbone



XLNet Key Ideas

Bidirectional context from permutation language modeling

Peter’s cat likes yarn

Peter’s cat likes yarn
Peter’s cat yarn likes
Peter’s likes cat yarn
Peter’s likes yarn cat
Peter’s yarn cat likes
Peter’s yarn likes cat

yarn Peter’s cat likes
yarn Peter’s likes cat
yarn cat Peter’s likes
yarn cat likes Peter

yarn likes Peter’s cat
yarn likes cat Peter’s



XLNet Key Ideas

Bidirectional context from permutation language modeling

Peter’s cat likes yarn

Peter’s cat
likes cat

yarn cat



XLNet Key Ideas

Self-attention mechanisms, uses Transformer-XL backbone
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extra long

Transformer-XL*~

Increases context through segment-level recurrence and a novel positional
encoding scheme



Transformer-XL

Increases context through segment-level recurrence and a novel positional
encoding scheme

e Cache and reuse hidden state from the previous segment
e Allows variable-length context, great for capturing long-term dependencies

e Resolves the problem of context fragmentation



Before (no segment-level recurrence)
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After segment-level recurrence
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Transformer-XL

Increases context through segment-level recurrence and a novel positional

encoding scheme

Need a way to keep positional information coherent when we reuse the states

In the original Transformer: absolute position within a segment is used

Need to encode relative position

Multi-Head
Attention
4t

I

Multi-Head
Attention
At

Positional
Encoding

D @
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Positional
Encoding

Original Transformer



Before

Current segment
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Training objectives

Traditional AR models vs BERT vs XLNet



T T p ((ho(x1:t—1)[" e mt))
max log pa(x glogpe(wt | x<t) [ g 6 Y oexpBglseie ) Vel@))
Traditional AR models

exp (Ho(%){ e(z+))
max  log pg(X ;mt log po(: | %) Zm i >4 exp (Hp(%){ e(z"))
f BERT
= 1 if masked

T
max E,.z. [ log pg(z., | xz<t)]

Set of all permutations XLNet*



XLNet Design

Permutation only on factorization order, not the original sequence order
Attention masks provide the context for each prediction
Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 7/K tokens in each permutation



XLNet Design

Permutation only on factorization order, not the original sequence order



Context Depends on the Factorization Order

 Standard LM: Left-to-right factorization 1 2 2 2> 3 2 4

P(X) = P(xl)P($2 | X1)P(£B3 | X1’2)P(J;4 | x1,2,3) i Bk

2
X1 X1

X1 X1



Context Depends on the Factorization Order

* Change the Factorization order to: 4 2> 1 2> 3 2 2

P(X) — P(£E4)P(:1}1 | X4)P(ZL‘3 ‘ X1’4)P(x2 | x1,2’4) v wre

LI x
h1 ] h2 h3 h4
Xy .

)

[xl € x3 2 XD

 Bidirectional
~ context



Permutation Language Modeling

Given a sequence x of length T

Uniformly sample a factorization order z from all possible permutations

Maximize the permutated log-likelihood

EZNZT [lOgP(X | Z)] — ]EZNZT

A

Zp(ibzt lXZ<t7Zt)

t=1
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XLNet Design

Attention masks provide the context for each prediction



Attention Masks Provide Context

x; =f(q3 * k1)
4<1<3<2 w2 =f(q3+ k2)

w3 =1(q3 * k3)
w4 = f(q3 * k4)

X1 i f = softmax + scale

Attention output = *vi+w2*v2+w1*v3+wd*v4



Attention Masks Provide Context

X3
4<1<3<2 w2=0
w3 =0
w4
X1 X4

Attention output = *v1i+wd *v4



XLNet Design

Two-stream self-attention allows prediction to be aware of target position



Standard AR Parameterization Fails

The apple was eaten

z_ = apple was the eaten  p(x|apple, was)

z, = apple was eaten the ~ p(x|apple, was)

Predicting the and eaten uses the same distribution

Fails to take into account target position



Standard AR Parameterization Fails

p(x|apple, was, [pos=01)

p(x|apple, was, [pos=31)

Fails to take into account target position



Reparameterization

 Standard Softmax does NOT work
I No info.
z Th Z
P(xzt | XZ<t7zt) - — (e(x t)/ T(x <t)) of Zt J
Zm’ exp (6(£C ) h(xz<t))

* Proposed solution: incorporate z; into hidden states

T

exp (e(wz ) olm, )) I J
_ t <t D Net
P(Zz, | Xzeys 2t) S exp (e(x/)'rg(zt,sz)) eep INe

Implement this using two-stream architecture
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Target Position Aware Representation: g(z;,x,_,)

« Stand at the target position z;
Reuse the Idea of Attention

* Gather information from x,_

9(zt,Xz_,) = Attng (9 = Enc(zf)j KV = h(x,_,) )

Stand at z; Gather info. from x, _,

X3 Old View New View X3

a
L

X1 X4 X1 l P3 l X4



Contradiction: Predicting Self and Others

 Factorization order: 4 2 1 2> 3 =2 2

Use ggl) to predict x4 (self) Use gg) to predict x3 (other)

ale  Ee) Bk Mk

Should not encode x4 Should encode x4




Two-Stream Self-Attention

(m) |+ Attention(Q = gg”_l),KV = h{m=1.0), (query stream: use z; but cannot see z,)

gzt Zt

hg") < Attention(Q = hg”_l), KV = thj”;@), (content stream: use both z; and z,,).

Query stream encodes target position information (z:)

Content stream encodes both context and the target word (2:.)
\_ —

exp (e(z) " go(Xz_,,2t))
o €xD (e(2') " go(Xz_,, 2t))

pQ(XZt —Z ’ Xz<t) — Z



Two-Stream Self-Attention

(m) <+ Attention(Q = (m_l) , KV =h{m"1.9), (query stream: use z but cannot see .,)

Z<t
h(m) < Attention(Q = h(m D KV = hgft D.9), (content stream: use both z; and z,,).
g? (1
Query stream Content stream
Attention Attention
Q [ K/V ] Q ] [ K,V ]

0 |.(0 0 0 7



Two-Stream Attention

 Factorization order: 4 2> 1 2> 3 2 2

Encoding. Predicting x, and x3 (others).

h; encodes x4

Decoding. Predicting x4 (self).

X1’

g

L] Gl G
8(

xillp)  [xpe)  (xslles)  [x[md

g1 does not encode x4
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XLNet Design

Partial prediction: only predict 1/K tokens in each permutation



Partial Prediction

Motivation: reduce optimization difficulty from too little context
Split sequence into context words and target words, cut off at C

Only predict target words (1/K of original sequence)

|z

max B,z |l0gPo(Xs., | Xoe,)| = Banze | D 108P0(22, | Xac,)
t=c+1

’Z‘ /(‘Z‘ — C) ~ K=06 (~17% target)

XLNet-Large



Example: Comparison with BERT

Input sentence: New York is a city, masked New and York

XLNet factorization order: [is, a, city, New, York]

log p(New York | is a city)

Jsert = log p(New | is a city) + log p(York | is a city),
Jxinet = log p(New | is a city) + log p(York | New, is a city).



Evaluation

Comparison with BERT



Experiment 1: Comparison with BERT

* Same training data as in BERT: Wikipedia + BooksCorpus

* Same hyperparameters for pretraining as in BERT
* Model size: L=24, H=1024, A=16
» Batch size: 256
 Number of steps: 1M

* Same hyperparameter search space for finetuning as in BERT

19



XLNet outperforms BERT on 20 tasks
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- BN BERT
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Experiment 2: Comparison with RoBERTa,

* Less training data for XLNet: 126GB vs 160GB

« Same hyperparameters for pretraining as in RoOBERTa
* Model size: L=24, H=1024, A=16
* Batch size: 8192
* Number of steps: 500K

* Same hyperparameter search space for finetuning as in
RoBERTa
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XLNet; arcE 89.8/-
RoBERTa 90.2/90.2

XLNet 90.2/89.8 904 884
RoBERTa 90.8/90.2 89.0  88.5




Model MNLI QNLI QQP RTE SST2 MRPC CoLA STS-B

Single-task single models on dev

BERT [2] 86.6/- 92.3 913 704 932 88.0 60.6 90.0
RoBERTa [21] 90.2/90.2 94.7 922 86.6 964 90.9 68.0 92.4
XLNet 90.8/90.8 94.9 923 859 97.0 90.8 69.0 92.5

Multi-task ensembles on test (from leaderboard as of Oct 28, 2019)

MT-DNN* [20] 87.9/87.4 96.0 89.9 86.3 96.5 92.7 68.4 91.1
RoBERT2* [21]  90.8/90.2 98.9 90.2 88.2 96.7 92.3 67.8 92.2
XLNet* 90.9/90.9" 99.0" 904" 885 9717 929 70.2 93,0




RoBERTa [21] 90.2/90.2
XLNet 90.8/90.8

RoBERTa* [21]  90.8/90.2
XLNet* 90.9/90.91




MNLI QNLI QQP RTE SST

MRPC CoLA

STS WNLI Avg

Single-task single models on dev

BERT, zrge 86.6/- 923 913 704 932 88.0 60.6  90.0 - -
XLNetarcE 89.8/- 939 91.8 838 956 892 63.6 91.8 - -
RoBERTa 90.2/90.2 94.7 922 866 964 909 680 924 913 -
Ensembles on test (from leaderboard as of July 25, 2019)

ALICE 88.2/87.9 957 90.7 835 952 926 68.6 91.1 80.8 863
MT-DNN 87.9/87.4 960 899 863 965 92.7 684 91.1 89.0 876
XLNet 90.2/89.8 98.6 903 863 968 93.0 67.8 91.6 904 884
RoBERTa 90.8/90.2 989 90.2 88.2 96.7 923 67.8 922 89.0 88.S5

RoBERTa paper

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B WNLI
Single-task single models on dev

BERT [2] 86.6/- 92.3 913 704 032 88.0 60.6 90.0 -
RoBERTza [21] 90.2/90.2 94.7 922  86.6 96.4 90.9 68.0 924 -
XLNet 90.8/90.8 94.9 923 859 97.0 90.8 69.0 92.5 -
Multi-task ensembles on test (from leaderboard as of Oct 28, 2019)

MT-DNN* [20] 87.9/87.4 96.0 89.9 863 96.5 02.7 68.4 91.1 89.0
RoBERTa" [21]  90.8/90.2 98.9 90.2 882 96.7 92.3 67.8 92.2 89.0
XLNet* 90.9/90.9" 99.0" 904" 885 9717 929 702 930 925

XLNet paper



XLNet outperforms RoBERTa on all considered tasks

100 -
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90 -
85 -
80 -
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70 A

65 -

Almost identical training recipes.
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Ablation Study

# Model RACE SQuAD2.0 MNLI SST-2

F1 EM m/mm
1 BERT-Base 64.3 76.30 73.66 84.34/84.65 92.78
2  DAE + Transformer-XL | 65.03 79.56 76.80 84.88/84.45 92.60
3 XLNet-Base (K = 7) 66.05 81.33 78.46 85.84/85.43 92.66
4  XLNet-Base (K = 6) 66.66 8098 78.18 85.63/85.12 93.35
5 - memory 65.55 80.15 77.27 85.32/85.05 92.78
6 - span-based pred 65.95 80.61 7791 85.49/85.02 93.12
7 - bidirectional data 66.34  80.65 77.87 85.31/84.99 92.66
8 + next-sent pred

66.76

79.83

76.94

85.32/85.09

92.89




Transformer-XL and permutation
LM contribute to the performance

BERT-Base 84.34/84.65
DAE + Transformer-XL 84.88/84.45

XLNet-Base (K = 7) 85.84/85.43
XLNet-Base (K = 6) 85.63/85.12




4  XLNet-Base (K = 6) :66.66 ; 80.98  78.18  85.63/85.12  93.35
5 - memory , 6555 1 80.15  77.27 85.32/85.05  92.78

Memory caching is
important. RACE involves

longest contexts of the 4




Bidirectional context
is important

4  XLNet-Base (K = 6) 66.66 80.98 78.18 85.63/85.12  93.35
7 - bidirectional data 66.34  80.65 77.87 85.31/84.99  92.66




Next-sentence prediction objective
does not necessarily help

80.98 78.18 85.63/85.12  93.35

4  XLNet-Base (K = 6) 66.66

+ next-sent pred 66.76  79.83 76.94 85.32/85.09 92.89




XLNet 1S

The best pretrained model today
Given standard FLOP:s.

///;;ccuracy 1
ALBERT
XLNet

RoBERTa

BERT-Large

1x 4x

.

16x

v

FLOPs
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Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer

Colin Raffel*, Noam Shazeer*, Adam Roberts*, Katherine Lee*, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

2 Google Al

A systematic study of pre-training objectives, architectures, datasets, transfer approaches and
other factors to create the best architecture. Results: T5 models - Base, Small, Large, 3B, 11B



Exploring the Limits of Transfer|Learning with a
Unified Text-to-TextlTransformer

Colin Raffel*, Noam Shazeer*, Adam Roberts*, Katherine Lee*, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

2 Google Al

A systematic study of pre-training objectives, architectures, datasets, transfer approaches and
other factors to create the best architecture. Results: T5 models - Base, Small, Large, 3B, 11B



Question Answering on SQUAD1.1 dev
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Question Answering on SQUAD1.1 dev
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=
Ll
70 BIDAF SEL
Match!:LSTM
P
60
50
Jan'l

From: paperswithcode.com/sota/
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Text-to-text framework

["translate English to German: That is good."

"Das ist gut."]
course is jumping well."

[ “cola sentence: The

“not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

"six people hospitalized after
a storm in attala county.”




Exploration of unsupervised objectives

High-level
approaches
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Exploration of unsupervised objectives

High-level

approaches

Ve

Language

modeling
\ J

~\

Ve

\

BERT-style

~\

J

7

.

Deshuffling

N\

J

Corruption
strategies

s

Mask ]

Replace
spans

Drop

Corruption Corrupted
rate span length

o) L]

In: Thank you <X> me to your party
<Y> week
Out: <X> for inviting <Y> last <Z>

L J \ ( ),

50% ] 10 J




Examples of the unsupervised objectives

Objective

Inputs

Targets

Prefix language modeling
BERT-style

Deshuffling

I.i.d. noise, mask tokens
I.i.d. noise, replace spans
I.i.d. noise, drop tokens
Random spans

Thank you for inviting

Thank you <M> <M> me to your party apple week .
party me for your to . last fun you inviting week Thank
Thank you <M> <M> me to your party <M> week .

Thank you <X> me to your party <Y> week .

Thank you me to your party week .

Thank you <X> to <Y> week .

me to your party last week .

(original text)

(original text)

(original text)

<X> for inviting <Y> last <Z>

for inviting last

<X> for inviting me <Y> your party last <Z>




Other parameters considered

e Datasets for pre-training
o Introduce C4: cleaned Common Crawl dataset (745GB)

e Size of the pre-training dataset
e Training strategy

e Scaling: what to do with 4x compute resources



The best model based on experiments: TS

e Encoder-decoder Transformer architecture

e Span-corruption objective, mean span of 3 and corrupt 15%
e Increase number of pre-training steps and batch size

e Use C4 to avoid repetition (large dataset)

e Train 5 different sizes of the models

e Multi-task pre-training

e Fine-tune on individual GLUE/SuperGLUE

e Beam search for tasks with long sequences



Takeaways and insights

Systematic study can lead to an improved model

Increasing the training time and/or model size improves the baseline
Objectives that produce short target sequences are more computationally
efficient

Ensembling models that were only fine-tuned separately can give substantial
performance and could be a cheaper mean of improving performance
Pre-training on on-domain data can improve performance

Updating all parameters during fine-tuning is the most effective but costly
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