
XLNet: Generalized Autoregressive
Pre-training for Language Understanding

Presented by Andrew Or, Ksenia Sokolova

Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le

Outline

XLNet Key Ideas: high-level comparison with BERT

XLNet Backbone: Transformer-XL

Pre-training Objectives: comparison with AR and BERT

XLNet Design: permutation, masks, two-stream attention

Results: XLNet outperforms BERT on 20 tasks

Background

★ Before: autoregressive (ex. ELMo, GPT) and autoencoding (ex.
BERT) models are the two most successful pre-training objectives

★ Both approaches have their own limitations

Autoregressive Models
Use context to predict the next word

Only considers context in one direction

Autoencoding Models (BERT)

Fine-tuning discrepancy caused by [MASK] tokens (not in real data)

Note: previously a SOTA pretraining approach

Peter has a [MASK] that does not like [MASK]

Assumes cat and yarn are independent, which is wrong

No joint probability between masked entries

XLNet Key Ideas
Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Self-attention mechanisms, uses Transformer-XL backbone

XLNet Key Ideas
Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Peter’s cat likes yarn

Peter’s cat likes yarn
Peter’s cat yarn likes
Peter’s likes cat yarn
Peter’s likes yarn cat
Peter’s yarn cat likes
Peter’s yarn likes cat

yarn Peter’s cat likes
yarn Peter’s likes cat
yarn cat Peter’s likes
yarn cat likes Peter
yarn likes Peter’s cat
yarn likes cat Peter’s

...

XLNet Key Ideas
Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Peter’s cat likes yarn

Peter’s cat likes yarn
Peter’s cat yarn likes
Peter’s likes cat yarn
Peter’s likes yarn cat
Peter’s yarn cat likes
Peter’s yarn likes cat

yarn Peter’s cat likes
yarn Peter’s likes cat
yarn cat Peter’s likes
yarn cat likes Peter
yarn likes Peter’s cat
yarn likes cat Peter’s

...

XLNet Key Ideas
Autoregressive: use context to predict the next word

Bidirectional context from permutation language modeling

Self-attention mechanisms, uses Transformer-XL backbone

Transformer-XL
Increases context through segment-level recurrence and a novel positional
encoding scheme

extra long

Transformer-XL
Increases context through segment-level recurrence and a novel positional
encoding scheme

● Cache and reuse hidden state from the previous segment

● Allows variable-length context, great for capturing long-term dependencies

● Resolves the problem of context fragmentation

Before (no segment-level recurrence)

After segment-level recurrence

Transformer-XL
Increases context through segment-level recurrence and a novel positional
encoding scheme

Need a way to keep positional information coherent when we reuse the states

● In the original Transformer: absolute position within a segment is used

● Need to encode relative position

Original Transformer

Before

After

Training objectives
Traditional AR models vs BERT vs XLNet

Traditional AR models

BERT

XLNet*Set of all permutations

= 1 if masked

XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

Bidirectional
context

XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

Attention Masks Provide Context

w1 = f(q3 • k1)
w2 = f(q3 • k2)
w3 = f(q3 • k3)
w4 = f(q3 • k4)

Attention output = w1 * v1 + w2 * v2 + w1 * v3 + w4 * v4

f = softmax + scale

4 < 1 < 3 < 2

Attention Masks Provide Context

w1 = f(q3 • k1)
w2 = 0
w3 = 0
w4 = f(q3 • k4)

Attention output = w1 * v1 + w4 * v4

f = softmax + scale

4 < 1 < 3 < 2

XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

Standard AR Parameterization Fails

The apple was eaten

z1 = apple was the eaten

z2 = apple was eaten the

p(x|apple, was)

p(x|apple, was)

Predicting the and eaten uses the same distribution

Fails to take into account target position

Standard AR Parameterization Fails

The apple was eaten

z1 = apple was the eaten

z2 = apple was eaten the

p(x|apple, was, [pos=0])

p(x|apple, was, [pos=3])

Predicting the and eaten uses the same distribution

Fails to take into account target position

Implement this using two-stream architecture

Two-Stream Self-Attention

Query stream encodes target position information ()

Content stream encodes both context and the target word ()

Two-Stream Self-Attention

Content streamQuery stream

h(1)h2
h(1)h3 h(1)h4

h2h(2) h3h(2) h4h(2)

h(1)h1

h(2)h1

h1h(1)

h1h(2)

h(1)h2

h(2)h2

h(1)h3

h(2)h3

h(1)h4

h(2)h4

p4p4

XLNet Design

Permutation only on factorization order, not the original sequence order

Attention masks provide the context for each prediction

Two-stream self-attention allows prediction to be aware of target position

Partial prediction: only predict 1/K tokens in each permutation

Partial Prediction

Motivation: reduce optimization difficulty from too little context

Split sequence into context words and target words, cut off at c

Only predict target words (1/K of original sequence)

= 6 (~17% target)
XLNet-Large

Example: Comparison with BERT

Input sentence: New York is a city, masked New and York

XLNet factorization order: [is, a, city, New, York]

Evaluation
Comparison with BERT

RoBERTa paper

XLNet paper

Ablation Study

Ablation Study Transformer-XL and permutation
LM contribute to the performance

Ablation Study

Memory caching is
important. RACE involves
longest contexts of the 4

Ablation Study

Bidirectional context
is important

Ablation Study

Next-sentence prediction objective
does not necessarily help

Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer

Colin Raffel*, Noam Shazeer*, Adam Roberts*, Katherine Lee*, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

A systematic study of pre-training objectives, architectures, datasets, transfer approaches and
other factors to create the best architecture. Results: T5 models - Base, Small, Large, 3B, 11B

Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer

Colin Raffel*, Noam Shazeer*, Adam Roberts*, Katherine Lee*, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu

A systematic study of pre-training objectives, architectures, datasets, transfer approaches and
other factors to create the best architecture. Results: T5 models - Base, Small, Large, 3B, 11B

T5

Question Answering on SQuAD1.1 dev

From: paperswithcode.com/sota/

Question Answering on SQuAD1.1 dev

From: paperswithcode.com/sota/

Text-to-text framework

Exploration of unsupervised objectives

Exploration of unsupervised objectives

In: Thank you <X> me to your party
<Y> week
Out: <X> for inviting <Y> last <Z>

Examples of the unsupervised objectives

Other parameters considered

● Datasets for pre-training
○ Introduce C4: cleaned Common Crawl dataset (745GB)

● Size of the pre-training dataset

● Training strategy

● Scaling: what to do with 4x compute resources

The best model based on experiments: T5
● Encoder-decoder Transformer architecture

● Span-corruption objective, mean span of 3 and corrupt 15%

● Increase number of pre-training steps and batch size

● Use C4 to avoid repetition (large dataset)

● Train 5 different sizes of the models

● Multi-task pre-training

● Fine-tune on individual GLUE/SuperGLUE

● Beam search for tasks with long sequences

Takeaways and insights
Systematic study can lead to an improved model

● Increasing the training time and/or model size improves the baseline

● Objectives that produce short target sequences are more computationally

efficient

● Ensembling models that were only fine-tuned separately can give substantial

performance and could be a cheaper mean of improving performance

● Pre-training on on-domain data can improve performance

● Updating all parameters during fine-tuning is the most effective but costly

References
Transformer-XL blog: https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html

Transformer paper: https://arxiv.org/abs/1706.03762

Transformer-XL paper: https://arxiv.org/abs/1

RoBERTa paper: https://arxiv.org/pdf/1907.11692.pdf901.02860

XLNet paper: https://arxiv.org/pdf/1906.08237.pdf

XLNet NeurIPS slides: https://github.com/zihangdai/xlnet/blob/master/misc/slides.pdf

XLNet blog post: https://towardsdatascience.com/what-is-xlnet-and-why-it-outperforms-bert-8d8fce710335

T5 paper: https://arxiv.org/pdf/1910.10683.pdf

https://ai.googleblog.com/2019/01/transformer-xl-unleashing-potential-of.html
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1906.08237.pdf
https://github.com/zihangdai/xlnet/blob/master/misc/slides.pdf
https://towardsdatascience.com/what-is-xlnet-and-why-it-outperforms-bert-8d8fce710335
https://arxiv.org/pdf/1910.10683.pdf

