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Generative Pre-Training



Motivation
- Semi-supervised learning: embeddings

- Unsupervised learning of word-level or phrase-level stats
- E.g. Word embeddings, ELMo vectors

- Supervised training using these word-level features
- ELMo Example:

- Question Answering: Add ELMo to modified BiDAF model
- Textual Entailment: Add ELMo to ESIM sequence model
- Coreference Resolution: Add ELMo to end-to-end span-based neural model



Question Answering Textual Entailment Coreference Resolution

ELMo: Different Models for Each Task



Generative Pre-Training (GPT)
- Single Model: Transformers

- Make longer-distance connections
- Faster training

- Unsupervised pre-training
- Similar objective as Word2Vec
- Predict context words

- Supervised fine-tuning
- Use pre-trained model
- Only swap the last layer

- Takeaways
- Apply one pre-trained model to many tasks
- BPE Tokens
- Pre-trained Transformers learn something, even with no supervision



Transformer 



Transformer Encoder and Decoder

Transformer is more efficient than LSTM because it lends 
itself to parallelization.



Self-Attention 



Self-Attention in Detail



Self-Attention in Detail



Transformers



GPT Framework

- Multi-layer Transformer decoder



Unsupervised Pre-Training
- Similar objective as Word2Vec
- Given tokens u, maximize:

- k is context window size
-            is score for each word
- softmax gives probability distribution



Supervised Fine-Tuning
- Keep the pre-trained Transformers
- Replace the final linear layer

- Replace W_e with W_y

- Data inputs x, label y
- Maximize

Auxiliary Training Objective



Framework

- Multi-layer Transformer decoder
-  
-

- Unsupervised pre-training
- Similar objective as Word2Vec
- Maximize:

-  
-  
-

- Supervised fine-tuning
- Data inputs x, label y
- Maximize



Task Adaptations
- How to adapt a single architecture to multiple input formats?



Task Overviews
- Classification (e.g. sentiment analysis)

- Given a piece of text, is it positive or negative?
- Answers: "Yes", "No"
- Answers: "Very positive", "Positive", "Neutral", "Negative", "Very negative"

- Entailment
- Given a premise p and a hypothesis h, does p imply h?
- Answers: "entailment", "contradiction", or "neutral"

- Similarity
- Are two sentences semantically equivalent?
- Answers: "Yes", "No"

- Multiple Choice (e.g. Story Cloze)
- Given a short story and two sentences, which is the sentence that ends the story?
- Given a passage and a question, and some multiple-choice answers, which is the answer?
- Answers: A_1, A_2, … A_N



Task-Specific Adaptations Pre-trained Task-specific

Softmax

Special delimiter tokenSpecial start token Special end token



Experiments
- BooksCorpus for unsupervised training

- About the same size as 1B Word Benchmark (used for ELMo)
- Preserves longer structure

- Model
- 12-layer transformer network

- Returns strong results on most tasks, especially question answering and 
commonsense reasoning



Data
Textual Entailment: ~2-6% improvement



Data
Question answering and story completion: 3-6% improvement



Data
Semantic similarity and text classification: wide range



Takeaways (discussion?)



Takeaways (discussion?)
- Few new parameters for each supervised task

- One linear layer, plus delimiter embedding

- Transformers
- Allow long-term dependencies to be made
- Faster to train

- BPE Tokens (next)
- Zero-shot Behavior (next next)



Binary Pair Encoding (BPE) Tokens
- Drawbacks of regular word tokens

- Other forms? (play vs. playing)
- Compound words (overripe)
- Large vocab size

- Begin with a vocabulary: 'A', 'B', 'C', ...
- Add to your vocabulary: Combine common character-pairs
- 'A' + 'B' → 'AB'
- Also, add an end-of-word symbol *
- Example: { 'low', 'lowest', 'newer', 'wider' }
- { 'low*', 'lowest*', 'newer*', 'wider*' }

- Add  { r* , lo , low , er* } to vocabulary
- Before:   l + o + w + e + r + *
- After:      low + er*



Zero-shot Behavior
- Use heuristics, rather than supervised training
- Use pre-trained model directly
- E.g: Question answering: Pick the answer the generative model assigns the 

highest probability to, conditioned on the document and question



Analysis: Zero-Shot Behavior
State of Art

Random Guessing



Takeaways (discussion?)
- Few new parameters for each supervised task

- One linear layer, plus delimiter embedding

- Transformers
- Allow long-term dependencies to be made
- Faster to train

- BPE Tokens (next)
- Zero-shot training (next next)



Analysis: Layer Transfer



Related Work
- Pre-trained LSTM

- (Dai et al. 2015) and (Howard and Ruder 2018)
- Pre-train LSTM's on sequence autoencoding, then apply to text classification

- Auxiliary unsupervised objectives
- Add an unsupervised goal to your objective

- E.g. Ask your model to do context-prediction and text classification
- (Collobert and Weston 2008) and (Rei 2017)



BERT: Pre-training of Deep 
Bidirectional Transformers for 
Language Understanding

Devlin et al. (Google AILanguage) 
Slides From 
https://www.slideshare.net/minhpqn/bert-pretraining-of-deep-bidirectionaltransformers-for-languageunderstanding-1264298
63/37



Previous Work

● Language model pre-training has been used to improve 
many NLP tasks 
○ Elmo(Peters et al., 2018)      
○ OpenAI GPT(Radford et al., 2018)
○ ULMFit(Howard and Rudder, 2018)

● Language model pre-training has been used to improve 
many NLP tasks
○ Feature-based: include pre-trained representations as additional 

features(e.g., ELMo)
○ Fine-tuning: introduce task-specific parameters and fine-tune the 

pre-trained parameters



Limitations of Previous Techniques 
● Problem: Language models only use left 

context or right context, but language 
understanding is bidirectional. 

● Why are LMs unidirectional? 
● Reason: Words can “see themselves” in a 

bidirectional encoder.



Main Ideas
● Propose a new training objective so that a 

deep bidirectional transformer can be trained
○ The masked language model
○ Next Sentence Prediction

● Merits of BERT
○ Just fine-tune BERT Model for specific tasks to 

achieve state-of-the-art performance
○ BERT advances the state-of-the-art for eleven NLP 

tasks



Masked LM

Borrowed From Jacob Devlin’s Slides



Masked LM
● Problem: Mask token never seen at fine-tuning 
● Solution: 15% of the words to predict, but don’t 

replace with [MASK] 100% of the time. 
Instead: 

● 80% of the time, replace with [MASK] 
● 10% of the time, replace random word
● 10% of the time, keep same



Next Sentence Prediction
● To learn relationships between sentences, predict whether 

Sentence B is actual sentence that proceeds Sentence A, 
or a random sentence



Training Loss

● The training loss is the sum of the mean 
masked Language Model likelihood and the 
mean next sentence prediction likelihood



Input Representation

● Use 30,000 WordPiece vocabulary on input
● Each token is sum of three embeddings



Model Architecture
Transformer encoder



Model Architecture



Model Details
● Data: Wikipedia (2.5B words) + BookCorpus (800M 

words)
● Batch Size: 131,072 words (1024 sequences * 128 length 

or 256 sequences * 512 length)
● Training Time: 1M steps (~40 epochs)
● Optimizer: AdamW, 1e-4 learning rate, linear decay 
● BERT-Base: 12-layer, 768-hidden, 12-head  
● BERT-Large: 24-layer, 1024-hidden, 16-head
● Trained on 4x4 or 8x8 TPU slice for 4 days





Fine-Tuning Procedure



Fine-Tuning For Specific Tasks



Results



SQuAD 1.1

The training objective is the sum of the log-likelihoods of the 
correct start and end positions.



SWAG



Swag Result



Ablation Study



Effect of Training Time



Effects of Model Size



Effects of Masking Strategy



Feature-Based Approach Using BERT
Advantages of Feature-Based Approach:

● Not all tasks can be represented by a transformer encoder 
architecture, and therefore require a task-specific model 
architecture to be added

● Major computational benefits to pre-compute an 
expensive representation of the training data once and 
then run many experiments with cheaper models on top of 
this representation. 



Feature-Based BERT Results



Comparison to Computer Vision

● Take a ConvNet pretrained on ImageNet, 
remove the last fully-connected layer (this 
layer’s outputs are the 1000 class scores for a 
different task like ImageNet), then treat the 
rest of the ConvNet as a fixed feature 
extractor for the new dataset. 



Conclusions
● Pre-trained language models are increasingly 

adopted in many NLP tasks
● Major contribution of this paper is to propose a 

deep bidirectional architecture from 
Transformer


