
Improving Language
Understanding by

Generative Pre-Training

Motivation
- Semi-supervised learning: embeddings

- Unsupervised learning of word-level or phrase-level stats
- E.g. Word embeddings, ELMo vectors

- Supervised training using these word-level features
- ELMo Example:

- Question Answering: Add ELMo to modified BiDAF model
- Textual Entailment: Add ELMo to ESIM sequence model
- Coreference Resolution: Add ELMo to end-to-end span-based neural model

Question Answering Textual Entailment Coreference Resolution

ELMo: Different Models for Each Task

Generative Pre-Training (GPT)
- Single Model: Transformers

- Make longer-distance connections
- Faster training

- Unsupervised pre-training
- Similar objective as Word2Vec
- Predict context words

- Supervised fine-tuning
- Use pre-trained model
- Only swap the last layer

- Takeaways
- Apply one pre-trained model to many tasks
- BPE Tokens
- Pre-trained Transformers learn something, even with no supervision

Transformer

Transformer Encoder and Decoder

Transformer is more efficient than LSTM because it lends
itself to parallelization.

Self-Attention

Self-Attention in Detail

Self-Attention in Detail

Transformers

GPT Framework

- Multi-layer Transformer decoder

Unsupervised Pre-Training
- Similar objective as Word2Vec
- Given tokens u, maximize:

- k is context window size
- is score for each word
- softmax gives probability distribution

Supervised Fine-Tuning
- Keep the pre-trained Transformers
- Replace the final linear layer

- Replace W_e with W_y

- Data inputs x, label y
- Maximize

Auxiliary Training Objective

Framework

- Multi-layer Transformer decoder
-
-

- Unsupervised pre-training
- Similar objective as Word2Vec
- Maximize:

-
-
-

- Supervised fine-tuning
- Data inputs x, label y
- Maximize

Task Adaptations
- How to adapt a single architecture to multiple input formats?

Task Overviews
- Classification (e.g. sentiment analysis)

- Given a piece of text, is it positive or negative?
- Answers: "Yes", "No"
- Answers: "Very positive", "Positive", "Neutral", "Negative", "Very negative"

- Entailment
- Given a premise p and a hypothesis h, does p imply h?
- Answers: "entailment", "contradiction", or "neutral"

- Similarity
- Are two sentences semantically equivalent?
- Answers: "Yes", "No"

- Multiple Choice (e.g. Story Cloze)
- Given a short story and two sentences, which is the sentence that ends the story?
- Given a passage and a question, and some multiple-choice answers, which is the answer?
- Answers: A_1, A_2, … A_N

Task-Specific Adaptations Pre-trained Task-specific

Softmax

Special delimiter tokenSpecial start token Special end token

Experiments
- BooksCorpus for unsupervised training

- About the same size as 1B Word Benchmark (used for ELMo)
- Preserves longer structure

- Model
- 12-layer transformer network

- Returns strong results on most tasks, especially question answering and
commonsense reasoning

Data
Textual Entailment: ~2-6% improvement

Data
Question answering and story completion: 3-6% improvement

Data
Semantic similarity and text classification: wide range

Takeaways (discussion?)

Takeaways (discussion?)
- Few new parameters for each supervised task

- One linear layer, plus delimiter embedding

- Transformers
- Allow long-term dependencies to be made
- Faster to train

- BPE Tokens (next)
- Zero-shot Behavior (next next)

Binary Pair Encoding (BPE) Tokens
- Drawbacks of regular word tokens

- Other forms? (play vs. playing)
- Compound words (overripe)
- Large vocab size

- Begin with a vocabulary: 'A', 'B', 'C', ...
- Add to your vocabulary: Combine common character-pairs
- 'A' + 'B' → 'AB'
- Also, add an end-of-word symbol *
- Example: { 'low', 'lowest', 'newer', 'wider' }
- { 'low*', 'lowest*', 'newer*', 'wider*' }

- Add { r* , lo , low , er* } to vocabulary
- Before: l + o + w + e + r + *
- After: low + er*

Zero-shot Behavior
- Use heuristics, rather than supervised training
- Use pre-trained model directly
- E.g: Question answering: Pick the answer the generative model assigns the

highest probability to, conditioned on the document and question

Analysis: Zero-Shot Behavior
State of Art

Random Guessing

Takeaways (discussion?)
- Few new parameters for each supervised task

- One linear layer, plus delimiter embedding

- Transformers
- Allow long-term dependencies to be made
- Faster to train

- BPE Tokens (next)
- Zero-shot training (next next)

Analysis: Layer Transfer

Related Work
- Pre-trained LSTM

- (Dai et al. 2015) and (Howard and Ruder 2018)
- Pre-train LSTM's on sequence autoencoding, then apply to text classification

- Auxiliary unsupervised objectives
- Add an unsupervised goal to your objective

- E.g. Ask your model to do context-prediction and text classification
- (Collobert and Weston 2008) and (Rei 2017)

BERT: Pre-training of Deep
Bidirectional Transformers for
Language Understanding

Devlin et al. (Google AILanguage)
Slides From
https://www.slideshare.net/minhpqn/bert-pretraining-of-deep-bidirectionaltransformers-for-languageunderstanding-1264298
63/37

Previous Work

● Language model pre-training has been used to improve
many NLP tasks
○ Elmo(Peters et al., 2018)
○ OpenAI GPT(Radford et al., 2018)
○ ULMFit(Howard and Rudder, 2018)

● Language model pre-training has been used to improve
many NLP tasks
○ Feature-based: include pre-trained representations as additional

features(e.g., ELMo)
○ Fine-tuning: introduce task-specific parameters and fine-tune the

pre-trained parameters

Limitations of Previous Techniques
● Problem: Language models only use left

context or right context, but language
understanding is bidirectional.

● Why are LMs unidirectional?
● Reason: Words can “see themselves” in a

bidirectional encoder.

Main Ideas
● Propose a new training objective so that a

deep bidirectional transformer can be trained
○ The masked language model
○ Next Sentence Prediction

● Merits of BERT
○ Just fine-tune BERT Model for specific tasks to

achieve state-of-the-art performance
○ BERT advances the state-of-the-art for eleven NLP

tasks

Masked LM

Borrowed From Jacob Devlin’s Slides

Masked LM
● Problem: Mask token never seen at fine-tuning
● Solution: 15% of the words to predict, but don’t

replace with [MASK] 100% of the time.
Instead:

● 80% of the time, replace with [MASK]
● 10% of the time, replace random word
● 10% of the time, keep same

Next Sentence Prediction
● To learn relationships between sentences, predict whether

Sentence B is actual sentence that proceeds Sentence A,
or a random sentence

Training Loss

● The training loss is the sum of the mean
masked Language Model likelihood and the
mean next sentence prediction likelihood

Input Representation

● Use 30,000 WordPiece vocabulary on input
● Each token is sum of three embeddings

Model Architecture
Transformer encoder

Model Architecture

Model Details
● Data: Wikipedia (2.5B words) + BookCorpus (800M

words)
● Batch Size: 131,072 words (1024 sequences * 128 length

or 256 sequences * 512 length)
● Training Time: 1M steps (~40 epochs)
● Optimizer: AdamW, 1e-4 learning rate, linear decay
● BERT-Base: 12-layer, 768-hidden, 12-head
● BERT-Large: 24-layer, 1024-hidden, 16-head
● Trained on 4x4 or 8x8 TPU slice for 4 days

Fine-Tuning Procedure

Fine-Tuning For Specific Tasks

Results

SQuAD 1.1

The training objective is the sum of the log-likelihoods of the
correct start and end positions.

SWAG

Swag Result

Ablation Study

Effect of Training Time

Effects of Model Size

Effects of Masking Strategy

Feature-Based Approach Using BERT
Advantages of Feature-Based Approach:

● Not all tasks can be represented by a transformer encoder
architecture, and therefore require a task-specific model
architecture to be added

● Major computational benefits to pre-compute an
expensive representation of the training data once and
then run many experiments with cheaper models on top of
this representation.

Feature-Based BERT Results

Comparison to Computer Vision

● Take a ConvNet pretrained on ImageNet,
remove the last fully-connected layer (this
layer’s outputs are the 1000 class scores for a
different task like ImageNet), then treat the
rest of the ConvNet as a fixed feature
extractor for the new dataset.

Conclusions
● Pre-trained language models are increasingly

adopted in many NLP tasks
● Major contribution of this paper is to propose a

deep bidirectional architecture from
Transformer

