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A philosophical shift
Hand-engineered models:
● Lots of components
● Easy to intuit what each 

component is learning

New concept:
● One model
● Black-box: hard to tell what the 

model is learning



Interpretability background
● Problems of annotation artifacts, biases and adversarial attacks

What does it mean for a model to be interpretable?

● No mathematical definition of interpretability. 

○ “Interpretability is the degree to which a human can understand the cause of a decision.” (*)

○ “Interpretability is the degree to which a human can consistently predict the model’s result” (**)

● Interpret on the level of predictions

○ Why did the model make certain predictions? 

● Interpret on the level of components 

○ How does the model make predictions?
*Miller, Tim. “Explanation in artificial intelligence: Insights from the social sciences.” arXiv Preprint arXiv:1706.07269. (2017)
** Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, learn to criticize! Criticism for interpretability.” Advances in Neural 
Information Processing Systems (2016)



Interpretability is becoming more popular

Google trends result for ‘explainable AI’ 
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Open source toolkit with methods to analyze 
model performance and reasoning

Turning supervised tasks into tools for 
interpreting representations





AllenNLP
An open-source NLP research library, built on PyTorch



Introduction

Most of the open-source interpretation before either were 
narrow focused or analyzed existing models

Why did my model make this prediction?



Introduction

Most of the open-source interpretation before either were 
narrow focused or analyzed existing models

Why did my model make this prediction?

Allen NLP Interpret: allows to apply existing 
interpretation methods to new models, as well as 

develop new interpretation methods



AllenNLP Interpret Toolkit

AllenNLP 
Interpret

Existing interpretation 
techniques implemented 

Interactive visualizations

APIs to develop new 
interpretation methods



AllenNLP Interpret Toolkit

AllenNLP 
Interpret

Existing interpretation 
techniques implemented 

Interactive visualizations

APIs to develop new 
interpretation methods

For example APIs to obtain input 
gradients



AllenNLP Interpret Toolkit

AllenNLP 
Interpret

Existing interpretation 
techniques implemented 

Interactive visualizations

APIs to develop new 
interpretation methods

HTML and JavaScript components that 
are available for clear vis



Available 
Interpretations



Available 
Interpretations

Saliency based

Adversarial 
attacks



Saliency maps
Identifying the importance of the input tokens using gradients

Attempt to highlight regions which model was “looking at” when making 
decisions 

Images from: Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image classification 
models and saliency maps. 2014.  In ICLR.



Saliency maps implemented in AllenNLP Interpret

Vanilla Gradient Integrated Gradient SmoothGrad

Simonyan et al, 2014 Sundararajan et al,  2017 Smilkov et al, 2017



Vanilla Gradient
Gradient of the loss with respect to each token

● Derivative of the input is found by backpropagation on the trained model
● Saliency map for each token

Method published in: Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image 
classification models and saliency maps. 2014.  In ICLR.



Vanilla Gradient
Gradient of the loss with respect to each token

Method published in: Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image 
classification models and saliency maps. 2014.  In ICLR.

Example for BERT



Integrated Gradients

An intuitive understanding:

● Construct a sequence of entries, 
interpolating from baseline to the 
actual entry

● Average the gradients 

Image from: http://theory.stanford.edu/~ataly/Talks/sri_attribution_talk_jun_2017.pdf



Integrated Gradients
Define a baseline x′, which is an input absent of information. Word importance is determined 
by integrating the gradient along the path from this baseline to the original input

Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.

● Avoids problems with local gradients being saturated



Integrated Gradients
Define a baseline x′, which is an input absent of information. Word importance is determined 
by integrating the gradient along the path from this baseline to the original input

Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.

● Avoids problems with local gradients being saturated

What is an “empty input”?



Integrated Gradients

Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.

In practice a discrete sum 
approximation is used, with a scale 
parameter.



Integrated Gradients
Define a baseline x′, which is an input absent of information. Word importance is determined 
by integrating the gradient along the path from this baseline to the original input

Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.



SmoothGrad
Average the gradient over many noisy versions of the input by adding Gaussian noise to 
embeddings and taking averages

Method published in: Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viegas, and Martin Wattenberg. 2017. SmoothGrad: removing noise 
by adding noise. In ICML Workshop on Visualization for Deep Learning



SmoothGrad 
Average the gradient over many noisy versions of the input by adding Gaussian noise to 
embeddings and taking averages

Method published in: Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viegas, and Martin Wattenberg. 2017. SmoothGrad: removing noise 
by adding noise. In ICML Workshop on Visualization for Deep Learning



Saliency maps: comparison



Saliency maps: comparison

Vanilla gradient

Integrated gradient

SmoothGrad



Adversarial Attacks

HotFlip Input Reduction

uses the gradient to swap out 
words from the input in order 

to change the model’s 
prediction

remove as many words as 
possible from the input 

without changing a 
model’s prediction

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing 
Dou. 2018. HotFlip: White-box adversarial examples for 
text classification. In ACL.

Shi Feng, Eric Wallace, Alvin Grissom II, 
Mohit Iyyer, Pedro Rodriguez, and Jordan 
Boyd-Graber. 2018. Pathologies of neural 
models make interpretations difficult. In 
EMNLP.



HotFlip Attack

Use gradients to estimate an individual 
change that would have the greatest 
effect, followed by a beam search to 
find an optimal manipulation strategy 

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-box adversarial examples for text classification. In ACL.



HotFlip Attack
Example from AllenNLP paper:

From online demo:



Input Reduction



Input reduction

Textual entailment example (decomposable attention combined with ELMo model, 
trained on SNLI dataset)

Result: contradiction for both original and reduced inputs



Adversarial attacks and interpretability

Adversarial attacks can help to diagnose model vulnerabilities

Training using adversarial examples could provide more interpretable saliency 
maps *

Alternatively, can use interpretability to detect adversarial attacks **

* Etmann, Christian, et al. "On the connection between adversarial robustness and saliency map interpretability." arXiv preprint arXiv:1905.04172 (2019).
** Tao, Guanhong, et al. "Attacks meet interpretability: Attribute-steered detection of adversarial samples." Advances in Neural Information Processing Systems. 
2018.



Quick demo



Available Models in AllenNLP Interpret

● Reading Comprehension
○ NAQANet, BiDAF

● Masked Language Modeling
○ BERT, RoBERTa and more

● Text Classification and Textual Entailment
○ BiLSTM and self-attention classifiers

● Named Entity Recognition (NER) and Coreference Resolution



System Overview



Conclusions - what is AllenNLP Interpret

Open-source flexible toolkit that facilitates model analysis

● Convenient framework that can run on custom models

● Existing methods as well as ability to add custom analysis methods

● Ready-to-use visualization toolkit

● Interesting demo online to play with in your free time



Conclusions: saliency maps and adversarial 
attacks

Saliency maps allow to assess the importance of input tokens for prediction using 
gradients

● Convenient tool to gain insights into the model
● Different methods might produce different results

Adversarial attacks demonstrate network misbehaviors and can be used to 
produce more interpretable results (or alternatively interpretable models should 
be less susceptible to adversarial attacks) 



Probing



Probing is a hot new 
interpretability technique 
developed to understand 
large models.



A philosophical shift

Hand-engineered models:
● Lots of components
● Easy to intuit what each 

component is learning

Unsupervised representations
● One model, one component
● Black-box: hard to tell what the 

model is learning



Hypothesis: Deep 
learners encode 
linguistic 
properties in their 
intermediate 
representations.

How to test this hypothesis?



Formal definitions



Probing

Probes are supervised models.

A probe consumes the representation of another model to perform a task.

Argument: Good performance by a probe on some task →  the upstream model encodes 
linguistic information about that task.

Say we study BERT embeddings. If a probe consumes BERT embeddings and performs 
well on POS tagging, we say BERT implicitly encodes parts of speech.



Probing

● Term coined by Guillaume Alain & Yoshua Bengio

● "Understanding intermediate layers using linear classifier probes." ICLR 2017

● Used linear classifiers on ResNets 

● "We suggest that the reader think of those probes as thermometers used to 
measure the temperature simultaneously at many different locations."

Model



Why this analogy makes sense

● Probes have access to all intermediate layers

● Probes map the representations to a continuous space

● Using probes, we get a reading for one value.

Model



Why do we care about 
probing?

A: It's a simple method for 
peering into the black box.



Probing for contextualized word embeddings

● "What do you learn from context? Probing for sentence structure in contextualized 
word representations." ICLR 2019.

● Answer: mostly syntactic information. Contextualized embeddings provide gains in 
probe performance on syntactical tasks. (POS tagging)

● Probing for syntax.

● Uses MLP probes.



A summary of labeling tasks used in probing.



Probing for sentence embeddings

● Ray Mooney, ACL 2014, opening talk: "You can't cram the meaning of a whole 
f**king sentence into a single f**king vector!"

● "What You Can Cram into a Single Vector: Probing Sentence Embeddings for 
Linguistic Properties." ACL 2018.

● Probe sentence encoders for surface-level, syntactic, and semantic information.

● Result: BiLSTM encoder beats simple bag-of-vectors baseline.

● Uses MLP probes.



Issues with probing: attribution

Figure credit: John Hewitt

Do we attribute good probe 
performance to:

1. The upstream model's 
representation?

2. Training?



Issues with probing: capacity

Representations are lossless. 

If your probe is too complex, all you're doing is feeding embeddings to a model!

Ex: BERT would be a terrible probe.



Issues with probing

To say anything conclusive about probing, we need metrics.

We need to distinguish between:
1. Probes that work because of emergent linguistic representations.
2. Probes that treat deep representations as word embeddings. 

→  control tasks

We need to quantify how reflective a probe is of its input representation.

→  selectivity 



Designing and Interpreting 
Probes with Control Tasks
John Hewitt and Percy Liang



Control tasks

1. Generate a label for each word in a vocabulary independently at random 
(randomness).

2. Assign this label to that word for the rest of the experiment (structure).

Control tasks are defined per task.



Control tasks 

A probe dependent on linguistic representation should perform badly on control tasks.

Why: control task labels do not correspond with real linguistic knowledge.

So: a probe can only perform well if it uses word embeddings from representation to 
memorize control task labels.

Control tasks trap probes that are too smart.



Selectivity: a balancing act

We want a probe that:

1. Has enough capacity to draw out info from representation
2. Does not have enough capacity to memorize the task

selectivity = linguistic accuracy (1) - control accuracy (2)



Selectivity:  how reflective a probe is of its input representation.



Experiments



Setting: Tasks

1. Part of Speech tagging
○ 45 possible tags (NN, VB, etc.)
○ Assign 45 randomized control tags.

2. Dependency edge prediction
○ A lot of possibilities.
○ 3 control tags: attach to self (i), attach to first (1), or attach to last (T).



Setting: Probe families

1. POS tagging: 3 probes.

2.      Dependency edge prediction: 3 probes, replace linear with bilinear.



Setting: Complexity Control (= Regularization)

Probes can't be too complex.

1. Rank/hidden dimensionality constraint.
○ Factorize A = LR, force L to have dimension l
○ Force MLPs to have hidden state size l

2. Dropout (temporarily zero out nodes).
3. Constraining the number of training examples.
4. L2 regularization (weight decay).
5. Early stopping.



Dataset

Penn Treebank: dataset of sentences from Wall Street Journal

● Sentences labeled with parts of speech and dependency trees.



Results for different probe families, under various 
hyperparameter settings.

Probes with 
hyperparameters 
tuned for 
selectivity.



Figure credit: John Hewitt



Dropout doesn't 
really help.

Effectiveness of various regularization strategies. What we 
want: big increase in accuracy, small decrease in selectivity.

Constraining rank 
seems to help



How hard is it to find selective probes?

Results:

● Dropout and early stopping don't help selectivity
● Constraining hidden state dimensionality is effective!

○ Used MLP hidden state size of 10 for POS and 50 for dependency head prediction

Author conclusions:

● Current probes are needlessly overparameterized! They have too much capacity.
● The most selective probes are linear or bilinear models.
● MLPs have the best accuracy on dependency edge prediction.

○ →  some syntactical info can't be extracted by a bilinear probe. 



POS error analysis

● Linear models tend to classify adjective-noun pairs as noun-noun pairs

● MLPs tend to pluralize singular nouns.

● Hypothesis: MLPs have enough capacity to get confused by the 's'.



Selectivity and layer differences

Claim: the first layer of ELMo (ELMo1) is better for POS tagging than ELMo2.

Hewitt & Liang: not so fast! ELMo1 is closer to a straight word representation.

Notes for the next slide:

● Recall that ELMo runs a character CNN over the words before feeding into biLSTMs.
● As a baseline, Hewitt & Liang run an untrained biLSTM and call this representation 

Proj0.



Probe performance on different layers of ELMo

POS tagging: We see an 
increase in selectivity, 
for a comparably 
smaller decrease in 
accuracy.

Implication: Because 
ELMo1 is closer to a 
word representation, 
probes on ELMo1 are 
leveraging the word 
identity and not the 
encoded linguistic 
knowledge.



Figure credit: John Hewitt



"Without considering selectivity, [we might 
think] that ELMo2 encodes nothing about 
part-of-speech, since it doesn’t beat the Proj0 
baseline. 

"Taking selectivity into account, we see that 
probes on ELMo2 are unable to rely on word 
identity features like those on Proj0. To 
achieve high accuracy, they must rely on 
emergent properties of the representation."

-Hewitt & Liang



Summary

● Use control tasks to identify models using representations as word embeddings.

● Probes should be selective. They should perform poorly on the control task.

● Linear and bilinear probes are the most selective.

● Many probes nowadays are too powerful.



Q1: In Hewitt and Liang et al 2019, why do 
they claim that linear and bilinear classifiers 
work better as probes than multi-layer 
perceptrons?

Linear and bilinear classifiers work better because they are more selective. Selective 
probes better reflect linguistic properties of the representation. MLPs tend to be too 
overparameterized, allowing them to memorize control-task mappings.



Where probing is going

● Designing and Interpreting Probes with Control Tasks:
○ appeared on arXiv September 2019
○ published November 2019, EMNLP best paper runner-up

● Probing is a nascent technique: there's no consensus on best practice.

● Thoughts? Is probing a good technique?
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