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A philosophical shift

Hand-engineered models:
e Lotsof components
e Easytointuit what each
component s learning

New concept:
e Onemodel
e Black-box: hard to tell what the
model is learning

Interpretability

@ Linear Regression
@ Decision Tree

@ K-Nearest Neighbors
@ Random Forest

@ Support Vector Machines

@ Neural Nets

Accuracy



Interpretability background

e Problems of annotation artifacts, biases and adversarial attacks
What does it mean for a model to be interpretable?

e No mathematical definition of interpretability.

o ‘Interpretability is the degree to which a human can understand the cause of a decision.” (*)

o ‘Interpretability is the degree to which a human can consistently predict the model's result” (")
e Interpret on the level of predictions

o Why did the model make certain predictions?

e Interpret on the level of components

o How does the model make predictions?

"Miller, Tim. “Explanation in artificial intelligence: Insights from the social sciences." arXiv Preprint arXiv:1706.07269. (2017)
" Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, learn to criticize! Criticism for interpretability.” Advances in Neural
Information Processing Systems (2016)



Interpretability is becoming more popular

A Note Note

Google trends result for ‘explainable AP’
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AllenNLP

An open-source NLP research library, built on PyTorch

Package Overview O

allennlp an open-source NLP research library, built on PyTorch
allennlp.commands  functionality for a CLI and web service

a data processing module for loading datasets and encoding strings as integers for representation
allennlp.data

in matrices
allennlp.models a collection of state-of-the-art models
allennlp.modules a collection of PyTorch modules for use with text
allennlp.nn tensor utility functions, such as initializers and activation functions

allennlp.training functionality for training models



Introduction

Why did my model make this prediction?

Most of the open-source interpretation before either were
narrow focused or analyzed existing models



Introduction

Why did my model make this prediction?

Most of the open-source interpretation before either were
narrow focused or analyzed existing models

Allen NLP Interpret: allows to apply existing
Interpretation methods to new models, as well as
develop new interpretation methods



AllenNLP Interpret Toolkit

AllenNLP

Interpret




AllenNLP Interpret Toolkit

’ ______

Existing interpretation For example APIs to obtain input
techniques implemented — AllenNLP gradients

Interpret

~

Interactive visualizations



AllenNLP Interpret Toolkit

APIs to develop new
interpretation methods

Existing interpretation
techniques implemented AllenNLP

Interpret

HTML and JavaScript components that
are available for clear vis



Available
Interpretations



Saliency based

Available

Interpretations

"= Adversarial
attacks



Saliency maps

ldentifying the importance of the input tokens using gradients

Attempt to highlight regions which model was “looking at” when making
decisions

Images from: Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networRs: Visualising image classification
models and saliency maps. 2014. In ICLR.



Saliency maps implemented in AllenNLP Interpret

Vanilla Gradient Integrated Gradient SmoothGrad

Simonyan et al, 2014 Sundararajan et al, 2017 Smilkov et al, 2017



Vanilla Gradient

Gradient of the loss with respect to each token

e Derivative of the input is found by backpropagation on the trained model
e Saliency map for each token

Method published in: Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. 2014. In ICLR.



Vanilla Gradient

Gradient of the loss with respect to each token

Simple Gradients Visualization

See saliency map interpretations generated by visualizing the gradient.
Example for BERT

~. Sentence:

[CLS] This is an [MASK] for a gradient calculation . [SEP]

Method published in: Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising image
classification models and saliency maps. 2014. In ICLR.



Integrated Gradients

An intuitive understanding:

Input image H

Uniformly scale
from baseline to
input image

e Construct a sequence of entries,
interpolating from baseline to the
actual entry

e Average the gradients

Baseline
(all zeros)

(e =0)

Image from: http://theory.stanford.edu/ ~ataly/Talks/sri_attribution_talk_jun_2017.pdf



Integrated Gradients

Define a baseline x', which is an input absent of information. Word importance is determined
by integrating the gradient along the path from this baseline to the original input

...accumulate local gradients
7\

Difference from baseline e
—_—— /1 6f (2’ + a(z — )

$6i¢(f,z, )= (mi—2%) X 5%

do

a=0
N~

From baseline to input. ..

e Avoids problems with local gradients being saturated

Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.



What is an “empty input'?

Integrated Gradients

Define@ baseline x', yhich is an input absent of information. Word importance is determined
by integra e gradient along the path from this baseline to the original input

\

...accumulate local gradients
7\

Difference from baseline e
—_—— /1 O0f(2’ 4+ a(x — )

$6i¢(f,z, )= (mi—2%) X 5%

do

a=0
N~

From baseline to input. ..

e Avoids problems with local gradients being saturated

Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.



Integrated Gradients

# List of Embedding inputs
embeddings_list: List[numpy.ndarray] = []

|r] F)réi(iti(léé a (jiESCZFEBtEE sum # Use 10 terms in the summation approximation of the integral in integrated grad
. . . . steps = 10

approximation is used, with a scale

F)EirEiFYWEBtEer. # Exclude the endpoint because we do a left point integral approximation

for alpha in numpy.linspace(@, 1.0, num=steps, endpoint=False):
# Hook for modifying embedding value
handle = self._register_forward_hook(alpha, embeddings_list)

grads = self.predictor.get_gradients([instancel) [0]
handle. remove()

# Running sum of gradients
if ig_grads == {}:
ig_grads = grads
else:
for key in grads.keys():
ig_grads[key]l += grads[key]

# Average of each gradient term
for key in ig_grads.keys():
ig_grads[key] /= steps
Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.



Integrated Gradients

Define a baseline x', which is an input absent of information. Word importance is determined
by integrating the gradient along the path from this baseline to the original input

Integrated Gradients Visualization

See saliency map interpretations generated using Integrated Gradients.

Sentence:

[CLS] This is an [MASK] for a gradient calculation . [SEP]

Method published in: Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution for deep networks. In ICML.



SmoothGrad

Average the gradient over many noisy versions of the input by adding Gaussian noise to
embeddings and taking averages

SmoothGrad Visualization

See saliency map interpretations generated using SmoothGrad.

Sentence:

[CLS] This is an [MASK] for a gradient calculation . [SEP]

Method published in: Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viegas, and Martin Wattenberg. 2017. SmoothGrad: removing noise
by adding noise. In ICML Workshop on Visualization for Deep Learning



SmoothGrad

Average the gradient over many noisy versions of the input by adding Gaussian noise to

embeddings and taking averages
Gradient Integrated

Label: tricycle

ute|d

peigyloows

Method published in: Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viegas, and Martin Wattenberg. 2017. SmoothGrad: removing noise
by adding noise. In ICML Workshop on Visualization for Deep Learning



Saliency maps: comparison

Sentence:

Hand [MASK] is the act of cleaning one's hands for the purpose of removing soil,

grease, microorganisms, or other unwanted substances.

Mask 1 Predictions:
71.5% cleaning

25.3% washing
0.6% wash
0.5% wiping

0.4% removal



Saliency maps: comparison

Sentence: Mask 1 Predictions:
71.5% cleaning

Hand [MASK] is the act of cleaning one's hands for the purpose of removing soil,
grease, microorganisms, or other unwanted substances.

25.3% washing
0.6% wash
0.5% wiping

0.4% removal

Vanilla gradient

[CLS] Hand [MASK] is the act of cleaning one ' s hands for the purpose of removing soil , g ##rease , micro ##or ##gan ##isms , or other unwanted substances . [SEP]

Integrated gradient

[CLS] Hand [MASK] is the act of cleaning one ' s hands for the purpose of removing soil , g ##rease , micro ##or ##gan ##isms , or other unwanted substances . [SEP]

SmoothGrad

[CLS] Hand [MASK] is the act of cleaning one ' s hands for the purpose of removing soil , g ##rease , micro ##or ##gan ##isms , or other unwanted substances . [SEP]



Adversarial Attacks

HotFlip

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial examples for
text classification. In ACL.

uses the gradient to swap out
words from the input in order
to change the model’s
prediction

Input Reduction

Shi Feng, Eric Wallace, Alvin Grissom 1l
Mohit lyyer, Pedro Rodriguez, and Jordan
Boyd-Graber. 2018. Pathologies of neural
models make interpretations difficult. In
EMNLP.

remove as many words as
possible from the input
without changing a
model’s prediction



HotFlip Attack

South Africa’s historic Soweto township marks its
100th birthday on Tuesday in a mood of optimism.

57% World

South Africa’s historic Soweto township marks its
Use gradients to estimate an individual 100th birthday on Tuesday in a mooP of optimism.
change that would have the greatest 95% Sci/Tech

effect, followed by a beam search to

Chancellor Gordon B has sought t 11 spec-
find an optimal manipulation strategy ARCEII0E. Sun. DIOWN. X S0NS T 19:g00. Spec

ulation over who should run the Labour Party and
turned the attack on the opposition Conservatives.
75% World

Chancellor Gordon Brown has sought to quell spec-
ulation over who should run the Labour Party and
turned the attack on the oBposition Conservatives.
94% Business

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. 2018. HotFlip: White-box adversarial examples for text classification. In ACL.



HotFlip Attack

Example from AllenNLP paper:

Original Input: an interesting story about two lovers , | would recommend it to - !

Flipped Input: an interesting story about two lovers , | would recommend it to- !

Prediction changed to: Negative

From online demo:

Original Input: [CLS] . is an [MASK] of' Hot ##F ##lip -for the _ [SEP]
Flipped Input: [CLS] - is an [MASK] of. Hot ##F ##lip -for the - [SEP]

Prediction changed to: extension



Input Reduction

Answer

Keanu Reeves, Laurence Fishburne, Carrie-Anne Moss, Hugo Weaving, and Joe Pantoliano

Passage Context

The Matrix is a 1999 science fiction action film written and directed by The Wachowskis, starring [ZGELIER I EEVEEE BTN TR 21 316 TF f TN e 10

. It depicts a dystopian future in which reality as perceived by most humans is actually a
simulated reality called "the Matrix", created by sentient machines to subdue the human population, while their bodies' heat and electrical
activity are used as an energy source. Computer programmer "Neo" learns this truth and is drawn into a rebellion against the machines, which
involves other people who have been freed from the "dream world."

Question

Who stars in The Matrix?

Original Input: . stars .. Matrix '

Reduced Input: stars Matrix



Input reduction

Textual entailment example (decomposable attention combined with ELMo model,
trained on SNLI dataset)

Premise: Two women are wandering along the shore drinking iced tea.

igina nput: [ I D G 0 0 D O |

Reduced Input: politics

Result: contradiction for both original and reduced inputs



Adversarial attacks and interpretability

Adversarial attacks can help to diagnose model vulnerabilities

Training using adversarial examples could provide more interpretable saliency
maps *

Alternatively, can use interpretability to detect adversarial attacks ™

* Etmann, Christian, et al. "On the connection between adversarial robustness and saliency map interpretability." arXiv preprint arXiv.1905.04172 (2019).
" Tao, Guanhong, et al. "Attacks meet interpretability: Attribute-steered detection of adversarial samples." Advances in Neural Information Processing Systems.
2018.



Quick demo



Available Models in AllenNLP Interpret

e Reading Comprehension
o NAQANEet, BiDAF

e Masked Language Modeling
o BERT, RoBERTa and more

e Jext Classification and Textual Entailment
o BILSTM and self-attention classifiers

e Named Entity Recognition (NER) and Coreference Resolution



System Overview

AllenNLP
Predictor Interpreter Attacker
def predict_json() def interpret() def attack()
S # abstract # abstract
def get gradients()
def p_to_label inst() | &) smoothGrad HotFlip

# abstract

# NERPredictor
def p to_label inst()

def interpret()

p_to_label inst()
get gradients()

def attack()

p_to _label inst()
get _gradients()

AllenNLP-Demo

Front-end Components

Front-end Pages

SaliencyMap
./interpret

AdversarialAttack

./attack

Entailment
SaliencyMap
AdversarialAttack

|:| Existing - AllenNLP Interpret

NER
SaliencyMap
AdversarialAttack




Conclusions - what is AllenNLP Interpret

Open-source flexible toolkit that facilitates model analysis

Convenient framework that can run on custom models

Existing methods as well as ability to add custom analysis methods

Ready-to-use visualization toolkit

Interesting demo online to play with in your free time



Conclusions: saliency maps and adversarial
attacks

Saliency maps allow to assess the importance of input tokens for prediction using
gradients

e Convenient tool to gain insights into the model
e Different methods might produce different results

Adversarial attacks demonstrate network misbehaviors and can be used to
produce more interpretable results (or alternatively interpretable models should
be less susceptible to adversarial attacks)



Probing




Probing is a hot new
interpretability technique
developed to understand
large models.



A philosophical shift

Hand-engineered models: Unsupervised representations
e Lots of components e One model, one component
e Easytointuit what each e Black-box: hard to tell what the

componentis learning model is learning




Hypothesis: Deep
learners encode
linguistic

properties In their
intermediate
representations.

How to test this hypothesis?




Formal definitions

Sentence |  The cat ran quickly
Part-of-speech DT NN VBD RB

a sentence : x1.7 = {x1,%2,..., 7}

intermediate representations : hi.T
output labels : Y1:T
a task : f(z1.7) =y1.7

a probe : f@(hlzT) . gl:T



Probing

f@(hlzT) — gl:T

Probes are supervised models.
A probe consumes the representation of another model to perform a task.

Argument: Good performance by a probe on some task > the upstream model encodes
linguistic information about that task.

Say we study BERT embeddings. If a probe consumes BERT embeddings and performs
well on POS tagging, we say BERT implicitly encodes parts of speech.



Probing

e Term coined by Guillaume Alain & Yoshua Bengio
e "Understanding intermediate layers using linear classifier probes." ICLR 2017
e Used linear classifiers on ResNets

e "We suggest that the reader think of those probes as thermometers used to
measure the temperature simultaneously at many different locations."




Why this analogy makes sense

e Probes have access to all intermediate layers
e Probes map the representations to a continuous space

e Using probes, we get a reading for one value.




Why do we care about
probing?

A: It's a simple method for
peering into the black box.



Probing for contextualized word embeddings

e "Whatdo you learn from context? Probing for sentence structure in contextualized
word representations." ICLR 2019.

e Answer: mostly syntactic information. Contextualized embeddings provide gains in
probe performance on syntactical tasks. (POS tagging)

e Probing for syntax.

e Uses MLP probes.



POS

The important thing about Disney is that it is a global [brand],. — NN (Noun)

Constit.

The important thing about Disney is that it [is a global brand],. — VP (Verb Phrase)

Depend.

[Atmosphere]; is always [fun]> — nsubj (nominal subject)

Entities

The important thing about [Disney], is that it is a global brand. — Organization

SRL

[The important thing about Disney], [is]; that it is a global brand. — Argl (Agent)

SPR

[It]; [endorsed]> the White House strategy. .. — {awareness, existed_after, ... }

Coref.°

The important thing about [Disney]; is that [it]> is a global brand. — True

Coref.W

[Characters], entertain audiences because [they], want people to be happy. — True
Characters entertain [audiences], because [they], want people to be happy. — False

Rel.

The [burst], has been caused by water hammer [pressure],. — Cause-Effect(e,, €;)

Table 1: Example sentence, spans, and target label for each task. O = OntoNotes, W = Winograd.

A summary of labeling tasks used in probing.



Probing for sentence embeddings

Ray Mooney, ACL 2014, opening talk: "You can't cram the meaning of a whole
f**king sentence into a single f**king vector!"

"What You Can Cram into a Single Vector: Probing Sentence Embeddings for
Linguistic Properties." ACL 2018.

Probe sentence encoders for surface-level, syntactic, and semantic information.
Result: BiLSTM encoder beats simple bag-of-vectors baseline.

Uses MLP probes.



Issues with probing: attribution

Model Task |
Representations Supervision
-' Probe .--°

0'
*
4
*
L 2
2
*

2

“. .. 975F1,

oo wow!
- because of..

Do we attribute good probe
performance to:

1. Theupstream model's
representation?

2. Training?

Figure credit: John Hewitt



Issues with probing: capacity

Representations are lossless.
v v ) @ )
tovoous + =} ! ! i ! Word2vec

Classification Layer: Fully-connected layer + GELU + Norm ] f/’%\

I I I i
[?11[?1[?1[?1[?51 king o B
Transformer encoder J man * .7
—— T f T T woman ® -

Lw ) (we J ([we ] (owsa ] [ w ] _

w1 w2 W3 Wa Ws

If your probe is too complex, all you're doing is feeding embeddings to a model!

Ex: BERT would be a terrible probe.



Issues with probing

To say anything conclusive about probing, we need metrics.

We need to distinguish between:
1. Probesthat work because of emergent linguistic representations.
2. Probes that treat deep representations as word embeddings.

> control tasks

We need to quantify how reflective a probe is of its input representation.

> selectivity



Designing and Interpreting
Probes with Control Tasks

John Hewitt and Percy Liang




Control tasks

1. Generate a label for each word in a vocabulary independently at random
(randomness).

2. Assign this label to that word for the rest of the experiment (structure).

3 10 1 g

gg?lf rol I . e ran ~quickly

after s dog

Vocab 42 370":]t = 9
Sentence |  The cat ran quickly . Control tasks are defined per task.

Part-of-speech DT NN VBD RB .
Controltask 10 37 10 15 3

Sentence2  The dog ran  after !
Part-of-speech DT NN VBD IN :
Control task 10 15 10 42 42




Control tasks

A probe dependent on linguistic representation should perform badly on control tasks.
Why: control task labels do not correspond with real linguistic knowledge.

So: a probe can only perform well if it uses word embeddings from representation to
memorize control task labels.

Control tasks trap probes that are too smart.

www.shutterstock.com - 1199811589



Selectivity: a balancing act

We want a probe that:

1. Hasenough capacity to draw out info from representation
2. Does not have enough capacity to memorize the task

selectivity = linquistic accuracy (1) - control accuracy (2)



High Accuracy

High Selectivity
0.90
>) T
&
= 0.70 High Accuracy
8 Low Selectivity
. 0.50 ~@— Part-of-speech task
—&— Control task
B Sclectivity
0.30

2 DY A0 Na) \QQQ

MLP Hidden Units (Complexity)

Selectivity: how reflective a probe is of its input representation.



Experiments




Setting: Tasks

1. Partof Speech tagging

o 45 possible tags (NN, VB, etc.)

o Assign 45 randomized control tags.
2. Dependency edge prediction

o Alot of possibilities.
o 3 control tags: attach to self (i), attach to first (1), or attach to last (7).

Dependency Edge Prediction and Control Task Examples

[ = \ : e e \
The Ways and Means Committee will hold a hearing on the bill next Tuesday .

Dependency:

B
1

=,
N\

xR > — / o T t I
Cikrals The Ways and Means Committee will hold a hearing on the bill next Tuesday .




Setting: Probe families
f@(hlzT) — gl:T

1. POStagging: 3 probes.

linear probe : y; ~ softmax(Ah;)
2-layer MLP (MLP-1) : yi ~ softmax(Wag(W1h;))
3-layer MLP (MLP-2): y; ~ softmax(Wsg(Wag(W1h;)))

2. Dependency edge prediction: 3 probes, replace linear with bilinear.

bilinear probe : y; ~ softmax(hlzTTAhi)



Setting: Complexity Control (= Regularization)
Probes can't be too complex.

y; ~ softmax(Ah;)

1. Rank/hidden dimensionality constraint.

o Factorize A=LR, force L to have dimension [
o Force MLPs to have hidden state size [

Dropout (temporarily zero out nodes).
Constraining the number of training examples.
L2 regularization (weight decay).

Early stopping.

as W N



Dataset

Penn Treebank: dataset of sentences from Wall Street Journal

e Sentences labeled with parts of speech and dependency trees.

)

John loves Mary



Probe PoS Ctl Select.| Dep Ctl Select.

Probes with Default Hyperparameters

Linear 97.2 71.2 26.0 - - -
Bilinear - -189.0 82.4 6.6
MLP-1 97.3 928 451923 93.0 -0.7
MLP-2 97.3 93.2 4.2193.9 92.0 1.9

Probes with 0.4 Dropout

Linear 97.1 67.3 29.8 - - -
Bilinear - -190.4 73.7 16.7
MLP-1 97.5 934 4.1193.8 93.1 0.7
MLP-2 974 94.1 3.4194.7 93.5 1.3

Probes Designed with Control Tasks

Linear 97.0 64.0 33.0 - - -
Bilinear - -191.0 83.1 7.9
MLP-1 97.2 806 16.6[90.5 84.3 6.2
MILP-2 97.2 81.7 15.4(92.8 89.8 3.0

Results for different probe families, under various

hyperparameter settings.



Parts-of-speech Dependencies

Acc. Select. Acc. Select.

Linear Q72 25.5 - B
Bilinear - - 89.4 16.6

MLP-1layer 973 465 925 335
MLP-2-2layer 973 525 934 417

Figure credit: John Hewitt



Part-of-speech Accuracy and Selectivity Across Complexity Control Methods

08 Sample Count Rank/Hidden Dim Dropout Weight Decay Gradient Steps

9 i

g 0.97 ././”:-::"q et

8 0.96 —e— MLP-2

b N —+— MLP-1

wn 0.95 —a— Linear .
S 094 Dropout doesn't

really help.

Zoa
£ 028 ~— s
% 0.4 N —_— ,

S A R aTat

N R S SR\

Unlabeled Dependency Accuracy and Selectivity Across Complexi trol Methods
B e Sample Count Rank/Hidden Dim Dropout Weight Decay aciont=Steps Con Straining rank
g0
- g _e——=—w—  seems to help
3 0.85 —e— MLP-2
< =+ MLP-1
o 0.80 —=— Linear
£ 075
i 0.20
= 014
i 0.09 e ———a—a
% o | 4 g’i ; F"{: >~_< Q =L T
-0.03
A 5\9\\ &\({9 EEEERI \@0\\ QP Q% M 2 O Yod (O Q AP o @O,

Effectiveness of various regularization strategies. What we
want: big increase in accuracy, small decrease in selectivity.



How hard is it to find selective probes?

Results:

e Dropout and early stopping don't help selectivity

e Constraining hidden state dimensionality is effective!
o Used MLP hidden state size of 10 for POS and 50 for dependency head prediction

Author conclusions:

e Current probes are needlessly overparameterized! They have too much capacity.
e The most selective probes are linear or bilinear models.

e MLPs have the best accuracy on dependency edge prediction.
o - some syntactical info can't be extracted by a bilinear probe.



POS error analysis

e Linear models tend to classify adjective-noun pairs as noun-noun pairs

Kan.-based/JJ National/NNP Pizza/NNP
rental/JJ equipment/NN

e MLPstend to pluralize singular nouns.
Environmental/NNP Systems/NNP Co./NNP
Cara/NNP Operations/NNP Co./NNP

7.8/CD %/NN stake/NN in/IN Dataproducts/NNP
e Hypothesis: MLPs have enough capacity to get confused by the 's".



Selectivity and layer differences

Claim: the first layer of ELMo (ELMo1) is better for POS tagging than ELMo2.
Hewitt & Liang: not so fast! ELMol is closer to a straight word representation.

Notes for the next slide:

e Recall that ELMo runs a character CNN over the words before feeding into biLSTMs.

e Asabaseline, Hewitt & Liang run an untrained biLSTM and call this representation
Projo0.



POS tagging: We see an
increase in selectivity,
for a comparably
smaller decrease in
accuracy.

Implication: Because
ELMol is closer to a
word representation,
probes on ELMo1 are
leveraging the word
identity and not the
encoded linguistic
knowledge.

Part-of-speech Tagging

Linear MLP-1
Model Accuracy Selectivity Accuracy Selectivity
Proj0 96.3 20.6 97.1 1.6
ELMol . 26.0 97.3 4.5
ELMo2 96.6 314 97.0 8.8

Dependency Edge Prediction

Bilinear MLP-1
Model Accuracy Selectivity Accuracy Selectivity
Proj0 79.9 -4.3 86.5 -9.0
ELMol 89.7 6.7 92.5 -1.0
ELMo2 84.5 6.2 89.5 1.4

Probe performance on different layers of ELMo



Linear Probe Parts-of-speech
Acc. Select.

Projo 06.3 20.6
ELMo1 97.2 26.0
ELMo2 06.6 31.4

ELMo1-ELMo2 +0.6 -5.4
ELMo2-Proj0  +0.3 +10.8

Figure credit: John Hewitt



"Without considering selectivity, [we might
think] that ELMo2 encodes nothing about
part-of-speech, since it doesn't beat the Projo
baseline.

"Taking selectivity into account, we see that
probes on ELMo2 are unable to rely on word
identity features like those on Projo. To
achieve high accuracy, they must rely on
emergent properties of the representation!’

-Hewitt & Liang



Summary

e Use control tasks to identify models using representations as word embeddings.
e Probesshould be selective. They should perform poorly on the control task.
e Linear and bilinear probes are the most selective.

e Many probes nowadays are too powerful.



Q1: In Hewitt and Liang et al 2019, why do
they claim that linear and bilinear classifiers
work better as probes than multi-layer
perceptrons?

Linear and bilinear classifiers work better because they are more selective. Selective
probes better reflect linguistic properties of the representation. MLPs tend to be too
overparameterized, allowing them to memorize control-task mappings.



Where probing is going

e Designing and Interpreting Probes with Control Tasks:
o appeared on arXiv September 2019
o published November 2019, EMNLP best paper runner-up

e Probingis a nascent technique: there's no consensus on best practice.

e Thoughts? Is probing a good technique?
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