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Dialogue Agents

● Personal assistants:
○ Google Assistant, Alexa, Bixby

● Communicating with robots

● Therapy for mental health

● For fun



Two Classes of Systems

● Chatbots (this lecture and next lecture) 

○ Open domain

● Goal-based dialog agents (next Tuesday)

○ Book restaurants or flights

○ Closed domain



Previous Chatbots

● Eliza (1966)

● Parry (1968)

● CleverBot

● Microsoft Little Bing （小冰）



Chatbot Architectures 

● Rule-based 
○ Pattern-action rules (Eliza) 
○ + a mental model (Parry)

● Corpus-based
○ Information Retrieval (IR) (CleverBot)
○ Neural Network Encoder-Decoder (this lecture)



Eliza



Eliza

The trick: to be a Rogerian 
psychologist: draw patients 
out by reflecting back at them



Eliza



CleverBot

https://www.cleverbot.com

https://www.cleverbot.com


IR-based Systems

● Given user query, find response to the closest turn in corpus

● Return closest turn in corpus



Evaluation

● Ideally want human evaluation, but it’s not feasible for 
training, expensive even for evaluation

● Heuristics: perplexity, BLEU, dialogue length/diversity

● Still an open question



This lecture: neural conversational models

● Paper 1: (Vinyals and Le, 2015) A Neural Conversational Model
○ Pioneered seq2seq models for dialogue generation, trained 

on both large closed-domain and open-domain datasets

● Paper 2: (Li et al, 2016) Deep Reinforcement Learning for 
Dialogue Generation
○ Proposed to apply deep reinforcement learning to model 

future reward in chatbot conversations 



Paper 1: A Neural Conversation Model

Motivation:

● Previously this task was specialized to a narrow domain and 
relied on hand-engineered features.

● Advances in Seq2Seq models are suitable for conversational 
modeling. 

● This work casts this task as sequence prediction. End-to-end 
approach, not domain-specific.



Concurrent Work

● Twitter: A Neural Network Approach to Context-Sensitive 

Generation of Conversational Responses (Sordoni et al. 2015)

● Weibo: Neural Responding Machine for Short-Text Conversation 

(Shang et al. 2015)

● Main Idea: Use RNNs to model dialogue in short conversations



Concurrent Work on Twitter
A Neural Network Approach to Context-Sensitive Generation of Conversational 

Responses (Sordoni et al. 2015)

● Encoding step: Multilayer non-linear forward                         

architecture

● Decoding step: Recurrent Neural Network                                

Language Model (RLM)



Concurrent Work on Twitter



Neural Responding Machine for Short-Text Conversation (Shang et al. 2015)

● encoder-decoder framework

● both steps use an RNN

● argues against seq2seq encoding                                           

approach

Concurrent Work on Weibo



Concurrent Work on Weibo



Seq2Seq ‘backbone’

● Encode the input sequence to fixed-size vector w/ one RNN

● Decode the vector to the target sequence w/ another RNN

● <EOS> marker enables model to define a probability distribution 
over sequences of all possible lengths.



Seq2Seq Models for Response Generation

● Input: Context

● Output: Response

● Loss: Cross-entropy  

● Teacher forcing during training

● ‘Greedy’ inference



Seq2Seq Models for Response Generation
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Seq2Seq Models for Response Generation



Closed Domain Dataset: IT Helpdesk



IT Helpdesk (Closed Domain) Experiment
● Dataset:

○ From a IT helpdesk 

troubleshooting chat service

○ ~400 words/ interaction

○ Turns are clearly signaled

○ Training: ~30M tokens

○ Validation: ~3M tokens

● Model:

○ Vocab: most common 20k words

○ 1-layer LSTM, 1024 memory cells

○ SGD



IT Helpdesk Example



IT Helpdesk Example

The <URL> indeed contains information 
about vpn access!!



IT Helpdesk Example

The <URL> indeed contains information 
about vpn access!!



IT Helpdesk Example
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IT Helpdesk Example



● Pros:

○ Model sometimes successfully resolves issue

● Cons:

○ Doesn’t always make sense

○ Doesn’t always retain information

○ Not very good English

○ Very non-human-like

IT Helpdesk Example Take-aways



Open Domain Dataset: OpenSubtitles



OpenSubtitles (Open Domain) Experiment
● Dataset:

○ Movie subtitles transcript

○ Assume every sentence is a turn

○ Training: ~920M tokens

○ Validation: ~395M tokens

● Model:

○ Vocab: most frequent 100K 
words

○ 2-layer LSTM, 4096 cells

○ AdaGrad



OpenSubtitles Examples
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OpenSubtitles Examples



OpenSubtitles Examples Take-away I

● Pros:

○ Remembering facts

○ Understanding concepts

○ Common sense reasoning

○ Generalization 



OpenSubtitles Examples



OpenSubtitles Examples



OpenSubtitles Examples



OpenSubtitles Examples



OpenSubtitles Examples Take-away II

● Cons:

○ No coherent personality

○ Unsatisfying replies



Comparison with CleverBot



Comparison with CleverBot



Evaluation: Perplexity

● 8 for IT Helpdesk (vs. 18 for n-gram model)

● 17 for OpenSubtitles (vs. 28 for smoothed 5-gram)



Human Evaluation

● four different humans rate proposed model vs. CleverBot
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Human Evaluation

● four different humans rate proposed model vs. CleverBot

● 48.5% proposed model

● 30% CleverBot

● 21.5 % tie or disagreement



Designing a good metric to quickly measure the quality of 
a conversational model remains an open question!



Advantages

● General architecture, can be used in translation, Q&A, etc.

● Simple implementation

● Among the first end-to-end neural network approaches to 

dialogue generation



Limitations

● Objective function doesn’t capture human communication

● Lacks long-term consistency

● Doesn’t measure the amount of information exchanged



Paper 2: Deep RL for Dialogue Generation

● Vanilla seq2seq gives repetitive or boring replies

● MLE may be a bad objective for approximating real-world 

goals of chatbots



“I don’t know“ problem (Sordoni et al., 2015; Serban et al.,2015; )

How old are you ?

Problem 1: Dull and generic responses



“I don’t know“ problem (Sordoni et al., 2015; Serban et al.,2015; )

I don’t know .

How old are you ?

Problem 1: Dull and generic responses



How is life ?

Problem 1: Dull and generic responses

“I don’t know“ problem (Sordoni et al., 2015; Serban et al.,2015; )



I don’t know what you are talking about.

How is life ?

Problem 1: Dull and generic responses

“I don’t know“ problem (Sordoni et al., 2015; Serban et al.,2015; )



 

Shut up !

Problem 2: Repetitive responses
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No, you shut up !

No, you shut up 
!

Shut up !

No, you shut up 
!

No, you shut up !

……

Problem 2: Repetitive responses



How old are you ?

Problem 3: Short-sighted decisions
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i 'm 16 .
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're talking about

Problem 3: Short-sighted decisions
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i 'm 16 .

16 ?
i don 't know what you 're talking about

you don 't know what you 're saying 
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How old are you ?

i 'm 16 .

16 ?
i don 't know what you 're talking about

you don 't know what you 're saying 

i don 't know what you 're talking about

you don 't know what you 're saying 

Bad Action

Problem 3: Short-sighted decisions



Deep RL for Dialogue Generation

● Want to reward interesting, diverse and informative replies

● Need ability to model future direction of a dialogue

● Goal: integrate the Seq2Seq and reinforcement learning 

paradigms



Why RL?

● Powerful paradigm for optimizing for long-term goals across a 

conversation

● Ability to integrate rewards that better mimic the true goal of 

chatbot development

● Overcome the limitations of the MLE objective



RL Recap

● RL problem formulation

■ action space
■ state space
■ transition probability
■ reward function
■ time horizon

● Goal: learn a policy that maximizes the expected reward.

● Policy: a probability distribution over actions given a state



RL for Open-Domain Dialogue

● Action: the dialogue utterance to generate

● State: the previous two dialogue turns

● Policy: the parameters of the LSTM encoder-decoder

● Reward: computable reward function observed after agent 

reaches end of each sentence (more about this on next slides!)



Reward I: Ease of Answering

● Define set of dull responses S = { “I have no idea”, “I don’t know 
what you’re talking about”, … }

● Reward negative log likelihood of responding with a sentence in S

● Hope: a model less likely to generate replies in S is also less likely 
to give other dull replies



Reward II: Information Flow

● Want semantic dissimilarity between consecutive terms of the 
same agent 

● Reward negative log of cosine similarity

● Hope: agent will contribute new info to keep dialogue moving and 
avoid repetitive sequences



Reward III: Semantic Coherence

● Want coherent and appropriate replies

● Model by mutual information between action a and previous turns

■ Train a backward seq2seq with sources and targets 
swapped

■ Scale probabilities by target length



Total Reward

● weighted sum of the 3 rewards discussed

● λ1 = 0.25 [ ease of answering ]

● λ2 = 0.25 [ information flow ]

● λ3 = 0.5  [ semantic coherence ]



Integrating the RL paradigm: Overview

● Idea: simulate two virtual agents taking turns conversing with each 

other

● Stage 1: Supervised Learning

○ Seq2Seq with attention on OpenSubtitles

○ 80M source-target pairs

○ Target: each turn

○ Source: concatenate two previous sentences



Integrating the RL paradigm: Overview

● Stage 2: Maximize the Mutual Information

○ Treat as an RL problem

○ Training: MIXER, a form of curriculum learning

● Stage 3: Train the Policy

○ Simulation: explore the state-action space

○ Optimization

○ Curriculum learning



Mutual Information Model

● Motivation: promote diversity for better exploration

● Treat max mutual information task as an RL problem with mutual 

information as reward

● Recall that the policy is initialized with parameters of a vanilla 

Seq2Seq model



MIM Training

● Use policy gradient 

● For each state, generate a list of actions from policy

● For each generated action, obtain mutual information score as 
reward



MIM Training

● Reward:

● Gradient:

● Add baseline to reduce variance

● Use curriculum learning: MIXER



MIXER



● Loss:

● Gradient:

● Compared to cross-entropy:

REINFORCE

Estimated using a NN

Generated words



Final Policy Training

● Initialize agents with model after Stage 2

● Dialogue Simulation

● maximize expected future reward



Visualization of Dialogue Simulation Procedure
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Visualization of Dialogue Simulation Procedure



Notes on Dialogue Simulation: Curriculum Learning

● 5 candidate responses generated at each step of the simulation

● simulate the dialogue for 2 turns at first

● gradually increase the number of simulated turns (up to 5)



Visualization of Training Procedure





Compute Accumulated Reward R(S1, …, Sn) !



Compute Accumulated Reward R(S1, …, Sn) !



1. Easy to Answer (r1)

Compute Accumulated Reward R(S1, …, Sn) !



1. Easy to Answer (r1)

r1(S1) r2(S2) r1(Sn)

Compute Accumulated Reward R(S1, …, Sn) !



1. Easy to Answer (r1)

2. Information Flow (r2)

Compute Accumulated Reward R(S1, …, Sn) !



1. Easy to Answer (r1)

2. Information Flow (r2)

Compute Accumulated Reward R(S1, …, Sn) !



1. Easy to Answer (r1)

2. Information Flow (r2)

r2(S1, S3)

Compute Accumulated Reward R(S1, …, Sn) !



1. Easy to Answer (r1)

2. Information Flow (r2)

3. Semantic Coherence (r3)

Compute Accumulated Reward R(S1, …, Sn) !



1. Easy to Answer (r1)

2. Information Flow (r2)

3. Semantic Coherence (r3)

Compute Accumulated Reward R(S1, …, Sn) !



r3(S1, S2)

1. Easy to Answer (r1)

2. Information Flow (r2)

3. Semantic Coherence (r3)

Compute Accumulated Reward R(S1, …, Sn) !



r2(S1, S3)r3(S1, S2)

1. Easy to Answer (r1)

2. Information Flow (r2)

3. Semantic Coherence (r3)

Compute Accumulated Reward R(S1, …, Sn) !



r2(S1, S3)r3(S1, S2)

r3(S2, S3)

1. Easy to Answer (r1)

2. Information Flow (r2)

3. Semantic Coherence (r3)

Compute Accumulated Reward R(S1, …, Sn) !















what we want to learn!



Experiments: Baseline Models

● Vanilla Seq2Seq

● Mutual Information Model

■ Seq2Seq + Mutual Information Rescoring during testing



Mutual Information Baseline

● avoid responses with unconditionally high probability 

● bias towards those responses specific to the given input

● Objective:

● Introduce hyperparameter that controls how much to penalize 

generic responses



Mutual Information Baseline

● adapting MMI to SEQ2SEQ training is empirically nontrivial

● Want to adjust λ w/o repeatedly training neural network models 

from scratch

● Solution: train MLE model, use MMI criterion only during testing

● Decoding:  

○ Generate best n responses from 

○ Re-rank them by 



Experiments

● For open-domain, the goal is not to predict the highest probability 

response, but rather the long-term success of the dialogue

=> BLEU and Perplexity are not appropriate

● Evaluate on dialogue length and diversity instead

● + human evaluation against proposed baseline models



Dialogue Length

● Dialogue ends when “I don’t know” is generated or utterances are 
highly overlapping

● Test set: 1000 input messages

● Limit # of simulated turns to be less than 8



Diversity

● Number of distinct unigrams and bigrams in generated responses 
per token



Human Evaluation

● single-turn general quality: which generated reply is better for 
a given input message

● single-turn ease to answer: which output is easier to respond to

● multi-turn general quality: which simulated conversation is of 
higher quality



Example Responses



Example Conversations



Example Analysis 

● RL model generates more interactive responses than the other 
baselines

● RL model has a tendency to end a sentence with another 
question and hand the conversation over to the user

● RL model manages to produce more interactive and sustained 
conversations than the mutual information model

● Model sometimes starts a less relevant topic during the 
conversation (trade-off between relevance and less repetitiveness!)



Example Conversations with Cycle

● Model sometimes enters a 
cycle with length greater than 
one

● can be ascribed to the limited 
amount of conversational 
history considered



Limitations 

● Currently there is a tradeoff between relevance and less 
repetitiveness

● A manually defined reward function can’t cover all crucial 
aspects of an ideal conversation; would be idea to receive real 
rewards from humans

● Can only afford to explore a very small number of candidates 
and simulated turns since the number of cases to consider grow 
exponentially



Extra: Meena Chatbot

● multi-turn open-domain chatbot
● 2.6B parameter neural network

○ Seq2seq
○ Evolved Transformer



Extra: Meena Chatbot

● trained end-to-end on social media conversations

● simply trained to minimize perplexity of the next token



Extra: Meena Chatbot

● trained end-to-end on social media conversations

● simply trained to minimize perplexity of the next token

Much more appropriate than OpenSubtitles!



Extra: Meena Chatbot



Sensibleness and Specificity Average (SSA)

● new evaluation metric

● covers two fundamental aspects of a human-like chatbot

■ making sense

■ being specific

● human judges to label every model response on these two criteria

● static and interactive version



Sensibleness and Specificity Average (SSA)

● (surprising) empirical observation: strongly correlated with 
perplexity, both in static and interactive evaluation


