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Summarization: Overview
● Task: Creating a shorter version of one or more documents, 

while preserving their information content

● Motivation: Growing need to access and digest large 
amounts of textual data
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Summarization: Extractive vs Abstractive
● Extractive: Summary created by identifying (i.e. extracting) 

and concatenating the most salient text units in a document

● Abstractive: Summary created by generating novel 
sentences - not restricted to source text
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Recap: Extractive vs Abstractive
● Abstractive can produce higher quality summaries because 

it allows for paraphrasing, generalization, etc

○ But, liable to reproduce factual details inaccurately, 
struggles with OOV words, repeating themselves

● Extractive is easier because copying ensures basic 
grammaticality and accuracy
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Summarization I (Tues) vs Today’s papers
● Tuesday’s papers:

○ Built on top of sequence-to-sequence for abstractive 

summarization of a single document
■ One introduced pointer-generator networks, other incorporated 

reinforcement learning
■ Produce a short summary of a news article

● Today’s papers:

○ First paper is purely extractive summarization

○ Second tries to scale up abstractive summarization to long-text 
generation with an extractive component
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[1] Figure from Kushal Chauhan “Unsupervised Text Summarization using Sentence Embeddings”
https://medium.com/jatana/unsupervised-text-summarization-using-sentence-embeddings-adb15ce83db1
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Timeline

The automatic creation of li
terature abstracts 

(Luhn 1958) - 
Extractive

TextRank (M
ihalcea and Tarau 2004) - 

Extractive

A deep reinforced m
odel fo

r abstractive 

summarization (P
aulus et al. 2

018) - Abstractive 

(fr
om Tuesday!)

Summarization with Pointer-Generator Networks 

(See et al 2
017) - Abstractive (fr

om Tuesday!)

Neural Summarization by Extracting Sentences and 

W
ords (C

heng and Lapata 2016) - Extractive**

Generating W
ikipedia by Summarizing 

Long Sequences (Liu et al. 2
018) - Both

1950s-
2000s

2016 2017 2018

** one of the first to apply neural 
methods for extractive summarization
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Neural Summarization by 
Extracting Sentences and 

Words
Cheng and Lapata 2016
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Previous Extractive Approaches
● Identify sentences based on human-engineered features 

such as sentence position/length, words in title, word 
frequency

● Then score the sentences and select them using binary 
classifiers, graph algorithms
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This work: Contributions
● Data-driven extractive approach based on neural networks 

(NN) rather than manually engineered features
○ NN-based hierarchical document reader/encoder

○ Attention-based content extractor

● Use DailyMail article highlights to make large scale training 
dataset
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Problem Formulation: Sentence Extraction
● Given a document D consisting of a sequence of sentences 

and a word set  :

● Sentence extraction aims to create a summary from D by 
selecting and scoring a subset of j sentences predicting a 
label     indicating whether the sentence should be 
included
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Summary produced with sentence extraction:

Adelaide Crows defender Daniel Talia has  kept his driving license,  telling a  court 
he  was  speeding  36km over the  limit because  he was distracted by his sick cat. In  
the  Adelaide  magistrates  court on Wednesday, Magistrate Bob Harrap fined  Talia 
$824  for  exceeding the speed  limit by more than 30km/h. 

Adelaide Crows defender Daniel Talia has  kept his driving license,  telling a  
court he  was  speeding  36km over the  limit because  he was distracted by his 
sick cat. The 22-year-old AFL star, who drove 96km/h in a 60km/h road works 
zone on the South Eastern expressway in February, said he didn’t see the 
reduced speed sign because he was so distracted by his cat vomiting violently 
in the back seat of his car.  In  the  Adelaide  magistrates  court on Wednesday, 
Magistrate Bob Harrap fined  Talia $824  for  exceeding the speed  limit by 
more than 30km/h. He lost four demerit points, instead of seven, because of his 
significant training commitments.
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Problem Formulation: Word Extraction
● Given a document D consisting of a sequence of sentences 

and a word set  :

● Word extraction aims to find a subset of words in D and 
their optimal ordering to form a summary 
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Summary produced with word extraction:
defender Daniel Talia was speeding distracted by his sick cat. didn’t see reduced 
speed sign. Magistrate Bob Harrap fined Talia

Adelaide Crows defender Daniel Talia has  kept his driving license,  telling a  
court he  was  speeding  36km over the  limit because  he was distracted by his 
sick cat. The 22-year-old AFL star, who drove 96km/h in a 60km/h road works 
zone on the South Eastern expressway in February, said he didn’t see the 
reduced speed sign because he was so distracted by his cat vomiting violently 
in the back seat of his car.  In  the  Adelaide  magistrates  court on Wednesday, 
Magistrate Bob Harrap fined  Talia $824  for  exceeding the speed  limit by 
more than 30km/h. He lost four demerit points, instead of seven, because of his 
significant training commitments.
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Training Objective: Sentence Extraction
● Maximize the likelihood of all sentence labels 

given the input document D and model parameters θ:
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Training Objective: Word Extraction
● Maximize the likelihood of the generated sentences, which 

can be further decomposed by enforcing conditional 
dependencies among their constituent words:
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Word Extraction
● Most existing extractive approaches extract sentences
● Why word extraction?

○ Extractive summaries contain redundant info → 
word extraction could be middle ground between 
full abstractive summarization which can exhibit a 
wide range of rewrite operations and extractive 
which has none
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Training Data
● Limitation: summarization training data

○ Existing dataset DUC-2002 only has 567 documents

● Create two large-scale datasets by reverse-approximating 
gold standard summary using DailyMail article highlights
○ Sentence Extraction (200K docs)
○ Word Extraction (170K docs)
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DailyMail article

Highlights
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Training Data: Sentence Extraction
● Designed a rule based system to determine whether a 

document sentence matches a highlight and should be in 
the gold-standard summary

● Rules take into account the position of the sentence, 
unigram and bigram overlap, number of entities

● Rule-based system was 85% accurate
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Training Data: Word Extraction
● Lexical overlap between highlights and news article

○ All highlight words come from original document → 
valid training example

○ For OOV words try to find semantically equivalent 
replacement in news article using pre-trained 
embeddings
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Neural Summarization Model
● Document reader
● Sentence extractor
● Word extractor
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Model: Document Reader
● Hierarchical structure: CNN at word level to acquire sentence-level 

representations → input to the RNN to acquire document level 

representations

○ Convolutional sentence encoder

○ Recurrent document encoder
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Convolutional 
Sentence Encoder

Setup:

Sentence has 6 words, word 
embeddings have 5 dimensions

Sentence embeddings have 6 
dimensions → 6 feature maps 
per width

Blue feature maps have width 2 
→ 5 elements

Red feature maps have width 3 
→ 4 elements

5 x 6

6 x 5 6 x 4
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Convolutional 
Sentence Encoder

        is jth element of ith feature map, 
calculated by applying convolution 
between W (word embeddings) 
and kernel K

a feature map f1 for width c=2 6 x 5 6 x 4

5 x 6
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Hadamard Product
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Convolutional 
Sentence Encoder

Max pooling over j to obtain the 
i-th feature

These features s
i,K

 make up the 
sentence vector for width c
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Convolutional 
Sentence Encoder

Sum these sentence vectors for 
different widths to obtain the 
final sentence representation
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Why CNN?
● More efficient than RNN

● Can be trained effectively without any long-term 
dependencies in the model

● Have been successfully used for sentence-level 
classification tasks
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Recurrent Document 
Encoder

● Standard RNN

● Composes a sequence of 
sentence vectors into a 
document representation 
(h1 h2 h3 h4)

● Captures document 
organization at the level 
of sentence-to-sentence 
transitions
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Model: Sentence Extractor
● RNN that labels sentences sequentially, applies attention, 

predicts a label for the next sentence at each time step
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Model: Sentence Extractor
Given encoder hidden states

and extractor hidden states

decoder attends the t-th sentence by 
relating its current decoding state to the 
corresponding encoding state

p
t-1

 represents the degree to which the 
extractor believes the previous sentence 
should be extracted and memorized

32



The sentence extraction model essentially regards the 
problem as sequence labeling: whether each sentence in the 
source document should be selected or not (labeled as 0 or 1). 
Why did they still adopt an encoder-decoder framework 
instead of a more direct sequence tagger model?

● Sequence tagging doesn't have long term dependencies or require 

context from what was previously tagged

● Choosing a sentence for a summary is not independent of the other 

sentences’ labels since redundancy matters, better to treat all 

sentences as a whole

○ Next labeling decision made with both the encoded document and 

previously labeled sentences in mind
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Model: Word Extractor
● Generation task instead of sequence labeling - instead of predicting 

label for next sentence, output next word in summary
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Model: Word Extractor
● Hierarchical attention 

architecture: at time step t:

○ the decoder softly 
attends each sentence 
and subsequently each 
word in the document

○ computes probability of 
the next word to be 
included in the summary 
with a softmax classifier
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Model: Word Extractor
● Hierarchical attention 

architecture: at time step t:

○ the decoder softly 
attends each sentence 
and subsequently each 
word in the document

○ computes probability of 
the next word to be 
included in the summary 
with a softmax classifier

Encoder hidden states 
(h1 h2 …)

Sentence extractor 

hidden states (h̅1 h̅2 …)
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Model: Word Extractor
● Hierarchical attention 

architecture: at time step t:

○ the decoder softly 
attends each sentence 
and subsequently each 
word in the document

○ computes probability of 
the next word to be 
included in the summary 
with a softmax classifier

Word 
extractor 
hidden 
states 
(ĥ1 ĥ2 …)
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Model: Word Extractor
● Hierarchical attention 

architecture: at time step t:

○ the decoder softly 
attends each sentence 
and subsequently each 
word in the document

○ computes probability of 
the next word to be 
included in the summary 
with a softmax classifier
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Experimental Setup
● Proper nouns: named entity recognition

● Number of sentences to extract - use 3, relative ranking

● Compare to lead-3 sentences, logistic and human 
engineered feature classifier, neural abstractive baseline, 3 
previous systems
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Models
This paper
● NN-SE: sentence extraction
● NN-WE: word extraction

Baselines
● NN-ABS (Rush et al. 2015): neural abstractive baseline
● LEAD: first 3 sentences
● LREG: logistic regression 
● ILP (Woodsend and Lapata 2010): phrase-based constraints
● URANK (Wan 2010): graph-based sentence ranking
● TGRAPH (Parveen et al. 2015): graph-based using topic models
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Evaluation
● ROUGE scores
● Human judgement
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ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

● Compare an automatically produced summary against a reference or a 

set of references (human-produced) summary

● ROUGE-N: Overlap of N-grams between the system and reference 

summaries

● ROUGE-L: Longest Common Subsequence (LCS) based
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Human Judgement
● Mechanical Turk participants asked to rank a set of 

summaries in order of informativeness and fluency for 
randomly sampled news articles

● Set of summaries included NN-SE, NN-WE, baselines and 
the human authored summary
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Results: ROUGE
NN and LREG models 
trained on DailyMail 
news set and evaluated 
on DUC-2002 and 
DailyMail

TGRAPH, URANK, ILP 
from previously published 
results
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Results: Human Judgement
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Results
● NN-SE does well in ROUGE score

● NN-WE does less well because ROUGE not suited to 
paraphrasing but does better than NN-ABS

● Human evaluation - human summaries best, then NN-SE
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Takeaways
● Hierarchical neural structures that reflect the nature of 

the summarization task

● Generation by extraction

● Large-scale dataset  using DailyMail highlights
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Generating Wikipedia by 
Summarizing Long Sequences

Liu et al., 2018
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Previous Abstractive Approaches
● Datasets/tasks:

○ Gigaword (Graff & Cieri, 2003): used for sentence to 
headline generation pioneered in (Rush et al., 2015)

○ CNN/DailyMail (Nallapati et al., 2016): news article 
to story highlights

● Models:
○ RNN-based models that mirrored MT techniques 
○ Transformer encoder-decoder models (Vaswani et 

al., 2017) 50



This Work: Contributions
● Generating English Wikipedia articles as a multi-document 

summarization of source documents

● Model: a decoder-only Transformer architecture that can 
scalably attend to very long sequences

○ Handles input length of 11,000 words 

● Dataset: WikiSum dataset is orders-of-magnitude larger 
than previous summarization datasets in terms of 
input/output length
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Problem Formulation 
● Supervised machine learning task

○ Input: Wikipedia topic (article title) + collection of 
non-Wikipedia reference documents

○ Target: Wikipedia article text
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Dataset
● English Wikipedia as a multi-document summarization 

dataset:
○ Wikipedia = a collection of summaries given by title
○ All reputable documents = source material

■ Sources cited in references section of Wikipedia 
articles

■ Top 10 web search results with low level of unigram 
overlap with target article 
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Methods
● Stage 1: Extractive summarization

○ Select a subset of the (very large) input
● Stage 2: Abstractive summarization

○ Train abstractive model that generates Wikipedia text 
by conditioning on the output of the extractive stage
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Extractive Stage
● Investigated 5 extractive methods that aim to return L 

tokens as the input to the abstractive stage:
○ Identity
○ Tf-idf
○ Cheating
○ TextRank (Mihalcea & Tarau, 2004): rank paragraphs using 

similarity measure based on word overlap 

○ SumBasic (Nenkova & Vanderwede, 2005): rank sentences by 

assigning scores to words using word frequencies in input text
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Extractive Stage (cont.)
● Identity: use first L tokens of input
● Tf-idf: rank paragraphs as documents  in a query-retrieval 

problem

● Cheating: rank paragraphs using recall of bigrams in ground 
truth text

N
w

 = count of the word in the document
N

d
 = total number of documents

N
dw 

= total number of documents containing the word

a
i
 = article

pi
j
 = jth paragraph of ith input reference document
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Abstractive Stage
● Input: title + concatenation of ordered paragraphs 

● Output: Wikipedia lead text

● Formulated as a sequence transduction problem: 
very long input sequences (<= 11,000) → medium output 
sequences (<500)
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Abstractive Stage (cont.) 
● Models tested:

○ Standard LSTM encoder-decoder with attention 
(seq2seq-att)

○ Transformer encoder-decoder (T-ED)
○ Transformer decoder (T-D)
○ Transformer decoder with memory-compressed 

attention (T-DMCA)
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Abstractive Stage: T-D 
● Transformer decoder (T-D):

○ Drop the encoder module
○ Combine input and output 

sequences into a single 
“sentence” 

○ Train as a standard language 
model
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Abstractive Stage: T-DMCA
● T-D with memory-compressed attention (T-DMCA)

○ Motivation: reduce memory usage to handle longer 
sequences

○ Modify multi-head self-attention of Transformer

○ Consists of two kinds of attention layers:
■ Local attention
■ Memory-compressed attention
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Abstractive Stage: T-DMCA 
● Local attention: perform attention 

individually within a block of 256 
sequence tokens
○ Attention memory cost per 

block becomes constant
○ Allows the number of 

activations to stay linear with 
respect to the sequence length

63



Abstractive Stage: T-DMCA 
● Memory-compressed attention: 

exchange information globally on 
the entire sequence
○ Project tokens into query, key, 

value embeddings
○ Use strided convolution to 

reduce number of keys and 
values
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Abstractive Stage: T-DMCA
● Final architecture: 5-layer network (LMLML) alternating 

between local-attention (L) layers and memory-compressed 
attention (M) layers

● Mixture of experts (MoE) layer (Shazeer et al., 2017) to 
increase the network’s capacity
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Evaluation Metrics
● Perplexity

○ Low perplexity indicates the probability distribution is 
good at predicting the sample

● ROUGE-L F1
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Experiments 
● Varied along 4 dimensions:

○ Extractive method: SumBasic, TextRank, tf-idf, identity, 
cheating extractor

○ Input corpus: citations, search results, combined
○ Abstractive model input length, L: values between 100 

and 11000
○ Abstractive model architecture: seq2seq-att, T-ED, T-D, 

T-DMCA
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Results 
● Extractive-only is not enough

● Extractive method matters

● Input corpus: Combined dataset (cited sources + search results) 

performs best 68



Results (cont.) 
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Results (cont.) 
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Results (cont.) 
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Results (cont.) 
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Results (cont.) 
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Results (cont.) 

● Perplexity vs. L (tf-idf 

extraction, combined corpus)
○ E = size of mixture-of-experts 

layer
■ Added model capacity for 

high L
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Results (cont.): Human Evaluations  
● Evaluation of linguistic quality on 5 dimensions:

○ Raters assign randomly selected samples a score from 1 
to 5 (higher is better)

○ Side-by-side preference experiments: human judgement 
correlates with automatic metrics 75



Results (cont.): Human Evaluations  
● Evaluation of linguistic quality on 5 dimensions:

○ Raters assign randomly selected samples a score from 1 
to 5 (higher is better)

○ Side-by-side preference experiments: human judgement 
correlates with automatic metrics 76
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Takeaways
● WikiSum dataset is orders-of-magnitude larger than 

previous summarization datasets

● Possible to learn sequence transduction models on 
combined input-output sequence lengths of ~12000 (T-D)

● Generated articles (of constrained length) are organized 
into plausible sections, exhibit global coherence

○ Still, not as good as Wikipedia articles or generated leads
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Future Work 
● Improve extractive methods: train a supervised model to 

predict relevance 
● Extend decoder-only architecture to learn from larger L 

while maintaining sufficient model capacity
● Focus on full-article task 
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