
Summarization II

May Jiang and Sonia Murthy

3/26/2020

1

Summarization: Overview
● Task: Creating a shorter version of one or more documents,

while preserving their information content

● Motivation: Growing need to access and digest large
amounts of textual data

2

Summarization: Extractive vs Abstractive
● Extractive: Summary created by identifying (i.e. extracting)

and concatenating the most salient text units in a document

● Abstractive: Summary created by generating novel
sentences - not restricted to source text

3

Recap: Extractive vs Abstractive
● Abstractive can produce higher quality summaries because

it allows for paraphrasing, generalization, etc

○ But, liable to reproduce factual details inaccurately,
struggles with OOV words, repeating themselves

● Extractive is easier because copying ensures basic
grammaticality and accuracy

4

Summarization I (Tues) vs Today’s papers
● Tuesday’s papers:

○ Built on top of sequence-to-sequence for abstractive

summarization of a single document
■ One introduced pointer-generator networks, other incorporated

reinforcement learning
■ Produce a short summary of a news article

● Today’s papers:

○ First paper is purely extractive summarization

○ Second tries to scale up abstractive summarization to long-text
generation with an extractive component

5

[1] Figure from Kushal Chauhan “Unsupervised Text Summarization using Sentence Embeddings”
https://medium.com/jatana/unsupervised-text-summarization-using-sentence-embeddings-adb15ce83db1

6

https://medium.com/jatana/unsupervised-text-summarization-using-sentence-embeddings-adb15ce83db1

Timeline

The automatic creation of li
terature abstracts

(Luhn 1958) -
Extractive

TextRank (M
ihalcea and Tarau 2004) -

Extractive

A deep reinforced m
odel fo

r abstractive

summarization (P
aulus et al. 2

018) - Abstractive

(fr
om Tuesday!)

Summarization with Pointer-Generator Networks

(See et al 2
017) - Abstractive (fr

om Tuesday!)

Neural Summarization by Extracting Sentences and

W
ords (C

heng and Lapata 2016) - Extractive**

Generating W
ikipedia by Summarizing

Long Sequences (Liu et al. 2
018) - Both

1950s-
2000s

2016 2017 2018

** one of the first to apply neural
methods for extractive summarization

7

Neural Summarization by
Extracting Sentences and

Words
Cheng and Lapata 2016

8

Previous Extractive Approaches
● Identify sentences based on human-engineered features

such as sentence position/length, words in title, word
frequency

● Then score the sentences and select them using binary
classifiers, graph algorithms

9

This work: Contributions
● Data-driven extractive approach based on neural networks

(NN) rather than manually engineered features
○ NN-based hierarchical document reader/encoder

○ Attention-based content extractor

● Use DailyMail article highlights to make large scale training
dataset

10

Problem Formulation: Sentence Extraction
● Given a document D consisting of a sequence of sentences

and a word set :

● Sentence extraction aims to create a summary from D by
selecting and scoring a subset of j sentences predicting a
label indicating whether the sentence should be
included

11

Summary produced with sentence extraction:

Adelaide Crows defender Daniel Talia has kept his driving license, telling a court
he was speeding 36km over the limit because he was distracted by his sick cat. In
the Adelaide magistrates court on Wednesday, Magistrate Bob Harrap fined Talia
$824 for exceeding the speed limit by more than 30km/h.

Adelaide Crows defender Daniel Talia has kept his driving license, telling a
court he was speeding 36km over the limit because he was distracted by his
sick cat. The 22-year-old AFL star, who drove 96km/h in a 60km/h road works
zone on the South Eastern expressway in February, said he didn’t see the
reduced speed sign because he was so distracted by his cat vomiting violently
in the back seat of his car. In the Adelaide magistrates court on Wednesday,
Magistrate Bob Harrap fined Talia $824 for exceeding the speed limit by
more than 30km/h. He lost four demerit points, instead of seven, because of his
significant training commitments.

12

Problem Formulation: Word Extraction
● Given a document D consisting of a sequence of sentences

and a word set :

● Word extraction aims to find a subset of words in D and
their optimal ordering to form a summary

13

Summary produced with word extraction:
defender Daniel Talia was speeding distracted by his sick cat. didn’t see reduced
speed sign. Magistrate Bob Harrap fined Talia

Adelaide Crows defender Daniel Talia has kept his driving license, telling a
court he was speeding 36km over the limit because he was distracted by his
sick cat. The 22-year-old AFL star, who drove 96km/h in a 60km/h road works
zone on the South Eastern expressway in February, said he didn’t see the
reduced speed sign because he was so distracted by his cat vomiting violently
in the back seat of his car. In the Adelaide magistrates court on Wednesday,
Magistrate Bob Harrap fined Talia $824 for exceeding the speed limit by
more than 30km/h. He lost four demerit points, instead of seven, because of his
significant training commitments.

14

Training Objective: Sentence Extraction
● Maximize the likelihood of all sentence labels

given the input document D and model parameters θ:

15

Training Objective: Word Extraction
● Maximize the likelihood of the generated sentences, which

can be further decomposed by enforcing conditional
dependencies among their constituent words:

16

Word Extraction
● Most existing extractive approaches extract sentences
● Why word extraction?

○ Extractive summaries contain redundant info →
word extraction could be middle ground between
full abstractive summarization which can exhibit a
wide range of rewrite operations and extractive
which has none

17

Training Data
● Limitation: summarization training data

○ Existing dataset DUC-2002 only has 567 documents

● Create two large-scale datasets by reverse-approximating
gold standard summary using DailyMail article highlights
○ Sentence Extraction (200K docs)
○ Word Extraction (170K docs)

18

DailyMail article

Highlights

19

Training Data: Sentence Extraction
● Designed a rule based system to determine whether a

document sentence matches a highlight and should be in
the gold-standard summary

● Rules take into account the position of the sentence,
unigram and bigram overlap, number of entities

● Rule-based system was 85% accurate

20

Training Data: Word Extraction
● Lexical overlap between highlights and news article

○ All highlight words come from original document →
valid training example

○ For OOV words try to find semantically equivalent
replacement in news article using pre-trained
embeddings

21

Neural Summarization Model
● Document reader
● Sentence extractor
● Word extractor

22

Model: Document Reader
● Hierarchical structure: CNN at word level to acquire sentence-level

representations → input to the RNN to acquire document level

representations

○ Convolutional sentence encoder

○ Recurrent document encoder

23

Convolutional
Sentence Encoder

Setup:

Sentence has 6 words, word
embeddings have 5 dimensions

Sentence embeddings have 6
dimensions → 6 feature maps
per width

Blue feature maps have width 2
→ 5 elements

Red feature maps have width 3
→ 4 elements

5 x 6

6 x 5 6 x 4

24

Convolutional
Sentence Encoder

 is jth element of ith feature map,
calculated by applying convolution
between W (word embeddings)
and kernel K

a feature map f1 for width c=2 6 x 5 6 x 4

5 x 6

25

Hadamard Product

26

Convolutional
Sentence Encoder

Max pooling over j to obtain the
i-th feature

These features s
i,K

 make up the
sentence vector for width c

27

Convolutional
Sentence Encoder

Sum these sentence vectors for
different widths to obtain the
final sentence representation

28

Why CNN?
● More efficient than RNN

● Can be trained effectively without any long-term
dependencies in the model

● Have been successfully used for sentence-level
classification tasks

29

Recurrent Document
Encoder

● Standard RNN

● Composes a sequence of
sentence vectors into a
document representation
(h1 h2 h3 h4)

● Captures document
organization at the level
of sentence-to-sentence
transitions

30

Model: Sentence Extractor
● RNN that labels sentences sequentially, applies attention,

predicts a label for the next sentence at each time step

31

Model: Sentence Extractor
Given encoder hidden states

and extractor hidden states

decoder attends the t-th sentence by
relating its current decoding state to the
corresponding encoding state

p
t-1

 represents the degree to which the
extractor believes the previous sentence
should be extracted and memorized

32

The sentence extraction model essentially regards the
problem as sequence labeling: whether each sentence in the
source document should be selected or not (labeled as 0 or 1).
Why did they still adopt an encoder-decoder framework
instead of a more direct sequence tagger model?

● Sequence tagging doesn't have long term dependencies or require

context from what was previously tagged

● Choosing a sentence for a summary is not independent of the other

sentences’ labels since redundancy matters, better to treat all

sentences as a whole

○ Next labeling decision made with both the encoded document and

previously labeled sentences in mind
33

Model: Word Extractor
● Generation task instead of sequence labeling - instead of predicting

label for next sentence, output next word in summary

34

Model: Word Extractor
● Hierarchical attention

architecture: at time step t:

○ the decoder softly
attends each sentence
and subsequently each
word in the document

○ computes probability of
the next word to be
included in the summary
with a softmax classifier

35

Model: Word Extractor
● Hierarchical attention

architecture: at time step t:

○ the decoder softly
attends each sentence
and subsequently each
word in the document

○ computes probability of
the next word to be
included in the summary
with a softmax classifier

Encoder hidden states
(h1 h2 …)

Sentence extractor

hidden states (h̅1 h̅2 …)

36

Model: Word Extractor
● Hierarchical attention

architecture: at time step t:

○ the decoder softly
attends each sentence
and subsequently each
word in the document

○ computes probability of
the next word to be
included in the summary
with a softmax classifier

Word
extractor
hidden
states
(ĥ1 ĥ2 …)

37

Model: Word Extractor
● Hierarchical attention

architecture: at time step t:

○ the decoder softly
attends each sentence
and subsequently each
word in the document

○ computes probability of
the next word to be
included in the summary
with a softmax classifier

38

39

Experimental Setup
● Proper nouns: named entity recognition

● Number of sentences to extract - use 3, relative ranking

● Compare to lead-3 sentences, logistic and human
engineered feature classifier, neural abstractive baseline, 3
previous systems

40

Models
This paper
● NN-SE: sentence extraction
● NN-WE: word extraction

Baselines
● NN-ABS (Rush et al. 2015): neural abstractive baseline
● LEAD: first 3 sentences
● LREG: logistic regression
● ILP (Woodsend and Lapata 2010): phrase-based constraints
● URANK (Wan 2010): graph-based sentence ranking
● TGRAPH (Parveen et al. 2015): graph-based using topic models

41

Evaluation
● ROUGE scores
● Human judgement

42

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

● Compare an automatically produced summary against a reference or a

set of references (human-produced) summary

● ROUGE-N: Overlap of N-grams between the system and reference

summaries

● ROUGE-L: Longest Common Subsequence (LCS) based

43

Human Judgement
● Mechanical Turk participants asked to rank a set of

summaries in order of informativeness and fluency for
randomly sampled news articles

● Set of summaries included NN-SE, NN-WE, baselines and
the human authored summary

44

Results: ROUGE
NN and LREG models
trained on DailyMail
news set and evaluated
on DUC-2002 and
DailyMail

TGRAPH, URANK, ILP
from previously published
results

45

Results: Human Judgement

46

Results
● NN-SE does well in ROUGE score

● NN-WE does less well because ROUGE not suited to
paraphrasing but does better than NN-ABS

● Human evaluation - human summaries best, then NN-SE

47

Takeaways
● Hierarchical neural structures that reflect the nature of

the summarization task

● Generation by extraction

● Large-scale dataset using DailyMail highlights

48

Generating Wikipedia by
Summarizing Long Sequences

Liu et al., 2018

49

Previous Abstractive Approaches
● Datasets/tasks:

○ Gigaword (Graff & Cieri, 2003): used for sentence to
headline generation pioneered in (Rush et al., 2015)

○ CNN/DailyMail (Nallapati et al., 2016): news article
to story highlights

● Models:
○ RNN-based models that mirrored MT techniques
○ Transformer encoder-decoder models (Vaswani et

al., 2017) 50

This Work: Contributions
● Generating English Wikipedia articles as a multi-document

summarization of source documents

● Model: a decoder-only Transformer architecture that can
scalably attend to very long sequences

○ Handles input length of 11,000 words

● Dataset: WikiSum dataset is orders-of-magnitude larger
than previous summarization datasets in terms of
input/output length

51

52

Problem Formulation
● Supervised machine learning task

○ Input: Wikipedia topic (article title) + collection of
non-Wikipedia reference documents

○ Target: Wikipedia article text

53

Dataset
● English Wikipedia as a multi-document summarization

dataset:
○ Wikipedia = a collection of summaries given by title
○ All reputable documents = source material

■ Sources cited in references section of Wikipedia
articles

■ Top 10 web search results with low level of unigram
overlap with target article

54

55

Methods
● Stage 1: Extractive summarization

○ Select a subset of the (very large) input
● Stage 2: Abstractive summarization

○ Train abstractive model that generates Wikipedia text
by conditioning on the output of the extractive stage

56

Extractive Stage
● Investigated 5 extractive methods that aim to return L

tokens as the input to the abstractive stage:
○ Identity
○ Tf-idf
○ Cheating
○ TextRank (Mihalcea & Tarau, 2004): rank paragraphs using

similarity measure based on word overlap

○ SumBasic (Nenkova & Vanderwede, 2005): rank sentences by

assigning scores to words using word frequencies in input text
57

Extractive Stage (cont.)
● Identity: use first L tokens of input
● Tf-idf: rank paragraphs as documents in a query-retrieval

problem

● Cheating: rank paragraphs using recall of bigrams in ground
truth text

N
w

 = count of the word in the document
N

d
 = total number of documents

N
dw

= total number of documents containing the word

a
i
 = article

pi
j
 = jth paragraph of ith input reference document

58

Abstractive Stage
● Input: title + concatenation of ordered paragraphs

● Output: Wikipedia lead text

● Formulated as a sequence transduction problem:
very long input sequences (<= 11,000) → medium output
sequences (<500)

59

Abstractive Stage (cont.)
● Models tested:

○ Standard LSTM encoder-decoder with attention
(seq2seq-att)

○ Transformer encoder-decoder (T-ED)
○ Transformer decoder (T-D)
○ Transformer decoder with memory-compressed

attention (T-DMCA)

60

Abstractive Stage: T-D
● Transformer decoder (T-D):

○ Drop the encoder module
○ Combine input and output

sequences into a single
“sentence”

○ Train as a standard language
model

61

Abstractive Stage: T-DMCA
● T-D with memory-compressed attention (T-DMCA)

○ Motivation: reduce memory usage to handle longer
sequences

○ Modify multi-head self-attention of Transformer

○ Consists of two kinds of attention layers:
■ Local attention
■ Memory-compressed attention

62

Abstractive Stage: T-DMCA
● Local attention: perform attention

individually within a block of 256
sequence tokens
○ Attention memory cost per

block becomes constant
○ Allows the number of

activations to stay linear with
respect to the sequence length

63

Abstractive Stage: T-DMCA
● Memory-compressed attention:

exchange information globally on
the entire sequence
○ Project tokens into query, key,

value embeddings
○ Use strided convolution to

reduce number of keys and
values

64

Abstractive Stage: T-DMCA
● Final architecture: 5-layer network (LMLML) alternating

between local-attention (L) layers and memory-compressed
attention (M) layers

● Mixture of experts (MoE) layer (Shazeer et al., 2017) to
increase the network’s capacity

65

Evaluation Metrics
● Perplexity

○ Low perplexity indicates the probability distribution is
good at predicting the sample

● ROUGE-L F1

66

Experiments
● Varied along 4 dimensions:

○ Extractive method: SumBasic, TextRank, tf-idf, identity,
cheating extractor

○ Input corpus: citations, search results, combined
○ Abstractive model input length, L: values between 100

and 11000
○ Abstractive model architecture: seq2seq-att, T-ED, T-D,

T-DMCA

67

Results
● Extractive-only is not enough

● Extractive method matters

● Input corpus: Combined dataset (cited sources + search results)

performs best 68

Results (cont.)

69

Results (cont.)

70

Results (cont.)

71

Results (cont.)

72

Results (cont.)

73

Results (cont.)

● Perplexity vs. L (tf-idf

extraction, combined corpus)
○ E = size of mixture-of-experts

layer
■ Added model capacity for

high L

74

Results (cont.): Human Evaluations
● Evaluation of linguistic quality on 5 dimensions:

○ Raters assign randomly selected samples a score from 1
to 5 (higher is better)

○ Side-by-side preference experiments: human judgement
correlates with automatic metrics 75

Results (cont.): Human Evaluations
● Evaluation of linguistic quality on 5 dimensions:

○ Raters assign randomly selected samples a score from 1
to 5 (higher is better)

○ Side-by-side preference experiments: human judgement
correlates with automatic metrics 76

77

Takeaways
● WikiSum dataset is orders-of-magnitude larger than

previous summarization datasets

● Possible to learn sequence transduction models on
combined input-output sequence lengths of ~12000 (T-D)

● Generated articles (of constrained length) are organized
into plausible sections, exhibit global coherence

○ Still, not as good as Wikipedia articles or generated leads

78

Future Work
● Improve extractive methods: train a supervised model to

predict relevance
● Extend decoder-only architecture to learn from larger L

while maintaining sufficient model capacity
● Focus on full-article task

79

