Widespread Deployment

- Worldwide cellular subscribers
 - 1993: 34 million
 - 2005: more than 2 billion
 - 2012: 6.8 billion
 (2.1B with mobile broadband)
 - >> 1.2B landline subscribers

- Wireless local area networks
 - Wireless adapters built into laptops, tablets, & phones
 - More ubiquitous than wired broadband? 700M in 2012

Wireless Properties

- Interference / bit errors
 - More sources of corruption compared to wired

- Multipath propagation
 - Signal does not travel in a straight line

- Broadcast medium
 - All traffic to everyone

- Power trade-offs
 - Important for power constrained devices
Wireless Links: High Bit Error Rate

• Decreasing signal strength
 – Disperses as it travels greater distance
 – Attenuates as it passes through matter

• Interference from other sources
 – Radio sources in same frequency band
 – E.g., 2.4 GHz wireless phone interferes with 802.11b wireless LAN
 – Electromagnetic noise (e.g., microwave oven)

Wireless Links: High Bit Error Rate

• Multi-path propagation
 – Electromagnetic waves reflect off objects
 – Taking many paths of different lengths
 – Causing blurring of signal at the receiver

Dealing With Bit Errors

• Wireless vs. wired links
 – Wired: most loss is due to congestion
 – Wireless: higher, time-varying bit-error rate

• Dealing with high bit-error rates
 – Sender could increase transmission power
 • Requires more energy (bad for battery-powered hosts)
 • Creates more interference with other senders
 – Stronger error detection and recovery
 • More powerful error detection/correction codes
 • Link-layer retransmission of corrupted frames
Wireless Links: Broadcast Limitations

- Wired broadcast links
 - E.g., Ethernet bridging, in wired LANs
 - All nodes receive transmissions from all other nodes
- Wireless broadcast: hidden terminal problem

 - A and B hear each other
 - B and C hear each other
 - But, A and C do not

 So, A and C are unaware of their interference at B

Wireless Links: Broadcast Limitations

- Wired broadcast links
 - E.g., Ethernet bridging, in wired LANs
 - All nodes receive transmissions from all other nodes
- Wireless broadcast: fading over distance

 - A and B hear each other
 - B and C hear each other
 - But, A and C do not

 So, A and C are unaware of their interference at B

Example Wireless Link Technologies

- Data networks
 - 802.15.1 (Bluetooth): 2.1 Mbps – 10 m
 - 802.11b (WiFi): 5-11 Mbps – 100 m
 - 802.11a and g (WiFi): 54 Mbps – 100 m
 - 802.11n (WiFi): 200 Mbps – 100 m
 - 802.16 (WiMax): 70 Mbps – 10 km
- Cellular networks, outdoors
 - 2G: 56 Kbps
 - 3G: 384 Kbps
 - 3G enhanced (“4G“): 4 Mbps
 - LTE: 10-100 Mbps

Wireless Network: Wireless Link

- Typically used to connect mobile(s) to base station
- Also used as backbone link
- Multiple access protocol coordinates link access
Wireless Network: Wireless Hosts

- Wireless host
 - Laptop, smartphone
 - Run applications
 - May be stationary (non-mobile) or mobile

Wireless Network: Base Station

- Base station
 - Typically connected to wired network
 - Relay responsible for sending packets between wired network and wireless host(s) in its “area”
 - E.g., cell towers, 802.11 access points

Wireless Network: Infrastructure

- Network infrastructure
 - Larger network with which a wireless host wants to communicate
 - Typically a wired network
 - Provides traditional network services
 - May not always exist

Infrastructure Mode (APs)

- Infrastructure mode
 - Base station connects mobiles into wired network
 - Network provides services (addressing, routing, DNS)
 - Handoff: mobile changes base station providing connection to wired network
Channels and Association

- Multiple channels at different frequencies
 - Network administrator chooses frequency for AP
 - Interference if channel is the same as neighboring AP

Channels and Association

- Multiple channels at different frequencies
 - Network administrator chooses frequency for AP
 - Interference if channel is the same as neighboring AP

- Access points send periodic beacon frames
 - Containing AP’s name (SSID) and MAC address
 - Host scans channels, listening for beacon frames
 - Host selects an access point: association request/response protocol between host and AP

Mobility Within the Same Subnet

- H1 remains in the same IP subnet
 - IP address of the host can remain the same
 - Ongoing data transfers can continue uninterrupted

- H1 recognizes the need to change
 - H1 detects a weakening signal
 - Starts scanning for a stronger one

- Changes APs with the same SSID
 - H1 disassociates from one
 - And associates with other

- Switch learns new location
 - Self-learning mechanism

Questions

- Loss is primarily caused by bit errors
 - (Y) Ethernet (Wired)
 - (M) 802.11 (Wireless)
 - (C) Both
 - (A) Neither

- All hosts on the subnet see all communication
 - (Y) Ethernet (Wired)
 - (M) 802.11 (Wireless)
 - (C) Both
 - (A) Neither
Questions

- Loss is primary caused by bit errors
 - (Y) Ethernet (Wired)
 - (M) 802.11 (Wireless)
 - (C) Both
 - (A) Neither

- All hosts on subnet see all communication
 - (Y) Ethernet (Wired)
 - (M) 802.11 (Wireless)
 - (C) Both
 - (A) Neither

WiFi: 802.11 Wireless LANs

802.11 LAN Architecture

- Access Point (AP)
 - Base station that communicates with the wireless hosts
- Basic Service Set (BSS)
 - Coverage of one AP
 - AP acts as the master
 - Identified by an "network name" known as an SSID

SSID: Service Set Identifier

CSMA: Carrier Sense, Multiple Access

- Multiple access: channel is shared medium
 - Station: wireless host or access point
 - Multiple stations may want to transmit at same time
- Carrier sense: sense channel before sending
 - Station doesn’t send when channel is busy
 - To prevent collisions with ongoing transfers
 - But, detecting ongoing transfers isn’t always possible
CA: Collision Avoidance, Not Detection

- Collision detection in wired Ethernet
 - Station listens while transmitting
 - Detects collision with other transmission
 - Aborts transmission and tries sending again
- Problem #1: cannot detect all collisions
 - Hidden terminal problem
 - Fading

Problem #2: listening while sending
- Strength of received signal is much smaller
- Expensive to build hardware that detects collisions

So, 802.11 does collision avoidance, not detection

Hidden Terminal Problem

- A and C can’t see each other, both send to B
- Occurs b/c 802.11 relies on physical carrier sensing, which is susceptible to hidden terminal problem

Virtual carrier sensing

- First exchange control frames before transmitting data
 - Sender issues “Request to Send” (RTS), incl. length of data
 - Receiver responds with “Clear to Send” (CTS)
- If sender sees CTS, transmits data (of specified length)
- If other node sees CTS, will idle for specified period
- If other node sees RTS but not CTS, free to send
Hidden Terminal Problem

- A and C can’t see each other, both send to B
- RTS/CTS can help
 - Both A and C would send RTS that B would see first
 - B only responds with one CTS (say, echoing A’s RTS)
 - C detects that CTS doesn’t match and won’t send

Exposed Terminal Problem

- B sending to A, C wants to send to D
- As C receives packets, carrier sense would prevent it from sending to D, even though wouldn’t interfere
- RTS/CTS can help
 - C hears RTS from B, but not CTS from A
 - C knows it’s transmission will not interfere with A
 - C is safe to transmit to D

Impact on Higher-Layer Protocols

- Wireless and mobility change path properties
 - Wireless: higher packet loss, not from congestion
 - Mobility: transient disruptions, and changes in RTT
- Logically, impact should be minimal ...
 - Best-effort service model remains unchanged
 - TCP and UDP can (and do) run over wireless, mobile
- But, performance definitely is affected
 - TCP treats packet loss as a sign of congestion
 - TCP tries to estimate the RTT to drive retransmissions
 - TCP does not perform well under out-of-order packets
- Internet not designed with these issues in mind

Questions

- RTS/CTS more like:
 (Y) Statistical multiplexing
 (M) Time-division multiplexing
 (C) Frequency-division multiplexing
- Which of following is NOT true?
 (Y) Collisions are minimized when RTS/CTS used.
 (M) Sender can always detect a collision without feedback from receiver.
 (C) TCP congestion control works poorly in wireless without link-layer retransmission.
 (A) Wireless generally has higher loss rates than wired.
Questions

• RTS/CTS more like:
 (Y) Statistical multiplexing
 (M) Time-division multiplexing
 (C) Frequency-division multiplexing

• Which of following is NOT true?
 (Y) Collisions are minimized when RTS/CTS used.
 (M) Sender can always detect a collision without feedback from receiver.
 (C) TCP congestion control works poorly in wireless without link-layer retransmission.
 (A) Wireless generally has higher loss rates than wired.

Bluetooth piconets

• Up to 7 “slave devices and 225 “parked” devices
• Operates on unlicensed wireless spectrum
 – How to prevent interference?

PHY: Spread Spectrum – Frequency Hopping

• Nodes rapidly jump between frequencies
• Sender and receiver coordinated in jumps
 – How coordinate? Pseudorandom number generator, with shared input known to sender/receiver
• If randomly collide with other transmitted, only for short period before jump again

• Bluetooth
 – 79 frequencies, on each frequency for 625 microseconds
 – Each channel also uses TDMA, with each frame taking 1/3/5 consecutive slots.
 – Only master can start in odd slot, slave only in response
Infrastructure vs. Ad Hoc

- **Infrastructure mode**
 - Wireless hosts are associated with a base station
 - Traditional services provided by the connected network
 - E.g., address assignment, routing, and DNS resolution

- **Ad hoc networks**
 - Wireless hosts have no infrastructure to connect to
 - Hosts themselves must provide network services

- **Similar in spirit to the difference between**
 - Client-server communication
 - Peer-to-peer communication

Conclusions

- **Wireless**
 - Already a major way people connect to the Internet
 - Gradually becoming more than just an access network

- **Mobility (not discussed)**
 - Today’s users tolerate disruptions as they move
 - ... and applications try to hide the effects
 - Tomorrow’s users expect seamless mobility

- **Challenges the design of network protocols**
 - Wireless breaks the abstraction of a link, and the assumption that packet loss implies congestion
 - Mobility breaks association of address and location
 - Higher-layer protocols don’t perform as well