
COS 426: Computer Graphics (Spring 2020)

Will Sweeny
(orig. by Austin Le & Jiaqi Su)

Introducing Assignment 5:
Cloth Simulation

Agenda

● Administrative Notes
● Overview of A5

○ GUI
○ Tips

● Cloth Simulation
○ Constraints, Forces, and Intersections
○ Event Handlers
○ Optional Extensions

What’s Next?

● A4 due Sun, Apr 19 at 11:55pm
● A5 due Sun, Apr 26 at 11:55pm

○ Most of today’s focus
○ Should be released shortly

● Final Project
○ Proposals in-class Thu, Apr 30
○ Submission Tues, May 12
○ Presentations ~Thu, May 14

What’s Next?

● Course Project
○ Groups of 2-4 strongly recommended
○ Stay tuned for more detailed spec

● Start thinking about ideas!
○ TAs are happy to provide early feedback
○ Former project “Hall of Fame” on course site
○ Or view all last year’s submissions here

https://www.cs.princeton.edu/courses/archive/spring20/cos426/links#final-project-hall-of-fame
https://www.cs.princeton.edu/courses/archive/spring19/cos426/assign/project/final-projects.html

A5 Overview: Setup

Same as before:

• Run “python3 -m http.server” (or similar) inside
the assignment directory

• Open “http://localhost:8000” in web browser

A5 Overview: GUI

A5 Overview: GUI

● Useful functions
○ Cloth size: change number of particles

○ Wireframe: change rendering style

○ Auto rotate: camera will orbit around scene

○ Wave: cloth oscillates up and down (useful debugging tool)

○ Appearance: change rendering properties

○ Image capture: ‘i’ to download a screenshot

○ Video capture: ‘v’ to start/stop recording

A5 Overview: GUI

● Features to implement:
○ Events: listen for and respond to user inputs

○ Behavior: model a cloth as a mass-and-spring system

○ Forces: apply and react to external forces and impulses
■ Gravity, wind, rain, …

○ Scene: collide with other objects in the scene

A5 Overview: Tips

● Implement and debug incrementally
● First, implement impact handlers for debugging
● Then, define & enforce constraints

○ Verify with your event handlers or the wave oscillator
● Move on to forces and intersections only once

these are working

Physics-Based Cloth Simulation

● Key idea
○ Represent cloth discretely as a grid of point masses

connected by springs
○ In A5, each point mass is a single particle in the particle

system
■ Each point mass is affected by forces in the system

○ In A5, each spring is a constraint on our particle system that
holds the point masses together

Three Types of Constraints

● Structural
○ 1-away neighbors in

row and column

● Shear
○ 1-away neighbors

diagonally

● Bending
○ 2-away neighbors in

row and column

At a high level:
1. Accumulate forces acting on each particle (e.g. gravity)
2. Solve Newton’s equations of motion (by numerical

integration) to compute new positions for each particle
3. Handle collisions
4. Enforce constraints
5. Repeat from Step 1

Simulation Loop

Step 1: Accumulate Forces

● Each particle experiences some net force at every instant
in time

● In A5, there are many possible forces
○ Gravity, wind, and so on...
○ For each particle, simply add up all force vectors acting

on it into a single net force
● Each particle can also be affected by spring forces

(Hooke’s law) from nearby particles, but we omit this in A5

Step 2: Solve Equations of Motion

● Done using numerical integration
● Many choices are available:

○ Explicit Euler
○ Implicit Euler
○ Verlet - good numerical stability, simple to implement

○ Midpoint
○ Runge-Kutta
○ And more!

Step 2: Verlet Integration

● If we use a very small timestep dt, we can assume constant
acceleration and velocity for the equations of motion

● Then, new position (at time t + dt) can be calculated the
from old position (at time t):

● Note: vt * dt is approximated by the change in position
relative to the last timestep.

● D represents a constant damping factor in [0, 1].

Step 2: Timestep Tradeoffs

● Small timesteps provide greater stability and accuracy, but
require more steps of the simulation (i.e. your simulation
can be very slow) to achieve the same end results.

● Large timesteps will require less work and fewer steps of
the simulation (i.e. your simulation will just run faster), but
are prone to error
○ Timesteps that are too large may never find a “resting

state”

Step 3: Handle Collisions

● Particles may collide with other objects (or even other
particles in the same cloth!)

● Detect collisions in 3D space and apply a positional
correction (easier to code) or a repelling force (more
physically accurate)
○ In A5, we will apply a positional correction and simulate

friction to still get visually plausible results

Step 3: Handle Collisions — Floor

● Assume infinite plane with cloth above it
○ Perform simple “hack” of pushing particle back to the surface of the

floor if it goes under
○ Just like in A3, use EPS to ensure stability & avoid clipping

Step 3: Handle Collisions — Sphere

● Suppose that at time t,
○ the particle is just barely outside the sphere, at p0

● … and now at time t + dt,
○ the particle is just barely inside the sphere, at p1
○ There’s been a collision!

● If there is no friction,
○ Project the particle’s position to the closest point

on the sphere’s surface, called posNoFriction
(pnf).

Step 3: Handle Collisions — Sphere

● If there is friction F,
○ then we want to simulate the particle “clinging onto” the sphere that it is in

contact with, especially when it is moving.

● Adjust the particle’s previous position p0
○ … by the same motion v that the sphere made in the last timestep to get a

new posFriction (pf)

● New particle position pnew is linearly interpolated:

newPos = [posFriction * F] + [posNoFriction * (1-F)]

Step 3: Handle Collisions — Sphere

● With friction:
○ Compute pnf by projecting p1

onto the sphere
○ Compute pf by adding to p0

the sphere’s velocity v
○ Compute pnew by linearly

interpolating pf & pnf

Step 3: Handle Collisions — Box

● Same idea as sphere!
○ Compute pnf & pf - then interpolate.

● Main difference:
○ find pnf by projecting p1 onto the closest face of the box

● We set a boundingBox property on the box, which is a
Three.js Box3 object.
○ Consult the Box3 API!
○ You can use its min and max to help find the closest point on the box

using some conditionals.
○ No need for complicated math!

https://threejs.org/docs/#api/en/math/Box3

Step 3: Handle Collisions — Self

● Self-collision prevention is an optional feature
● Basic idea:

○ For each pair of particles in the cloth…
■ If they are too close (closer than rest distance), apply a

correction shifting them both back towards the desired rest
distance.

○ Very similar to how you enforce the constraints!
○ But the naive approach is slow...

Step 4: Enforce Constraints

● Each constraint (spring) tries to keep the particles (point
masses) on either end together at roughly their natural rest
distance.

● At each timestep in the simulation, apply a “correction” directly to
the position of both particles to bring them closer to their rest
distance.

Event Listeners

● Annoying we have no way to directly manipulate the cloth…
○ What if there were some way to move the cloth ourselves, just using

keyboard and mouse?
● Your browser automatically captures keypresses, mouse

movement, and tons of other events
○ By writing an event listener, we can register a callback for the

browser to run any time one of these events is detected within a
particular page element.

● Define an event listener to “bump” the cloth up/down or
left/right when a certain key is pressed

Event Listeners: A simple example

● Event handlers are bound to a
certain event type, like “keyup”,
“mousemove”, or “resize”

● When that event occurs, all
registered handlers are called
with an event object containing
the relevant parameters
○ Which key was pressed
○ The targeted page element
○ and so on...

// A simple keylogger
let keylog = function(event) {

console.log(event.key);
}

window.addEventListener(
“keydown”,
keylog

);

https://developer.mozilla.org/en-US/docs/Web/Events

Extensions

Extensions — Forces

● Time-varying, sinusoidal wind
○ A[cos/sin](wt) + C
○ Wind = s(t) * <f(t), g(t), h(t)>

● Custom force
○ May vary as a function of space, time, and/or any other parameters

you like!
○ Be creative: tractor beams, anti-gravity, or a black hole - the choice is

yours!

Extensions - Forces

● Rain impulse
○ Model rainfall by simulating sudden periodic

strikes at random particles on the cloth.
○ An impulse, not a force - directly move particle

positions in some rainfall direction
■ ...can be a constant, or varying with time/space

○ To model the physical size of a raindrop, apply a
smaller offset to nearby particles as well

Extensions — Intersections

● General Plane Intersections
○ Floor collisions are a bit of a hack, reliant on the specifics of

our scene.
○ Consider general plane equation dot(P,N) + D
○ Implement collisions with plane and account for friction

■ Very similar to intersecting with just one side of a box
● Implement self-intersection prevention

○ The naive solution discussed earlier, or an optimized
solution for better performance (and more points!)

Step 3, Revisited: Handle Collisions — Self

● Heuristic extensions:
○ Only enforce self-intersection constraints on some

(possibly varying) subset of particle pairs at each timestep
Perhaps by assuming

2D locality...
or by enforcing a
random subset...

or an optimization of
your own design...

Step 3, Revisited: Handle Collisions — Self

● A more complex (but more accurate)
solution would use spatial hashing.

● Place particles into bins based on
their current 3D position, and only
enforce constraints within each bin.
○ Bins may need to be recomputed after

particles move.
○ Creating and assigning bins very

similar to A3’s checkerboard material
○ Use a sparse bin representation!
○ Corner cases require special care

Extensions —Scene

● New Objects
○ Add support for collisions with something other than a sphere, box,

or plane
● Custom Scene

○ Put together an interesting scene in which a cloth interacts with
multiple other objects

● Textures
○ Add your own textures to the scene, or use Three.js’s libraries to

support extra features, like normal mapping

Q&A

