
COS 426: Computer Graphics (Spring 2020)

June Ho Park

Introducing Assignment 4:
Rasterizer

Agenda

● Overview of Rasterizer
● Rasterization Pipeline

○ Transformation Pipeline
○ Triangle Pipeline
○ Pixel Shading (Coloring)
○ Texture Mapping

What is Rasterization?

● Renders 3D
primitives to a 2D
image using
projection

Rasterization vs Ray Tracing

● Pros:
○ Less computationally expensive

■ “Shoot rays from screen to objects” vs “Project objects to screen”
○ Takes advantage of spatial coherence of 3D objects

■ “Since this pixel is determined by a point on this triangle, then
the neighboring pixels are likely determined by the same tri.”

● Con: Less realistic light behavior than ray tracing
● Therefore, useful for live rendering

○ Video games, Assignment 2(!)

Rasterization Pipeline

Transform into 3D world coordinates

Illuminate according to lighting and model reflectance

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip primitives outside camera’s view

Transform into image coordinate system

Draw pixels

Transformation Pipeline

In A4:
All meshes are made of
triangular faces

Your function transforms a
triangle with 3D world
coordinates to a projected
triangle with 2D image
coordinates

Viewing Transformation

● Going from world coordinates to camera coordinates
● The “pose” of a camera is written as [R|t], a 4x4 matrix

○ R is a 3x3 rotation matrix, t is a 3x1 translation term
○ The last row exists because we are using homogeneous

coords.
● [R|t] transforms a point represented in cam coordinates to world

coordinates
● So to do the opposite, we apply the inverse of [R|t]

Homogeneous Coordinates

● It has a fourth dimension, but think of it as another
representation of 3D coordinates.

● To transform a 4D homogeneous coord to 3D coord:
○ (x, y, z, w) -> (x/w, y/w, z/w)

● A 3D coordinate (x,y,z) is equivalent to (x, y, z, 1) in 4D
homogeneous coordinates.

● Important because the projection matrices we provide are in 4D
homogeneous coordinates

Perspective Projection Transformation

● Going from 3D camera coordinates to 2D screen coordinates
○ More specifically, we want to convert to Normalized Device

Coordinates (NDC)

View Volumes

● Camera Coordinates
○ A truncated pyramid frustum

view, bounded by [l, r] in x,
[b, t] in y, and [-n, -f] in z

○ Positive z axis is going
towards camera

View Volumes

● Normalized Device Coordinates
○ The “canonical” view volume

bounded by a cube
○ Maps [l, r] -> [-1,1] in x,
○ [b, t] -> [-1, 1] in y,
○ [-n, -f] -> [-1, 1] in z

Intuition of Transform to Canonical View

● Think about one dimension at a time
○ How can we scale it so the edges are going to be bound by

[-1,1]?
○ Using similar triangles is part of it

Perspective Projection Matrix

● The matrix that transforms from frustum view to canonical view

○ Remember to divide your result by w to get the 3D equivalent
○ If your resulting z is not within the bounds of the canonical view, skip

the triangle because it shouldn’t be seen

projMat =

Viewport Transformation

● Going from Normalized Device Coordinates to image coordinates
○ X: [-1,1] -> [0, image width]
○ Y: [-1,1] -> [0, image height]

● Should we save Z?
○ Yes, need it for Z-buffering

■ Determining which object is closer to camera if they take
up the same pixel, the closer thing gets rendered

Implementation Hints for Transform

● The world to camera transformation and perspective projection
matrices are already precomputed for you!
○ viewMat = projMat * [R|t]-1

● You have to apply this matrix to the 3D triangle to project it to
Normalized Device Coordinates, then scale it to image coordinates

Pipeline of Rendering a Triangle

● Now we know how to transform, how do we render it?
● Transform a 3D triangle in world space to 2D triangle in image

space
● Compute bounding box of the triangle
● For each pixel (x, y) in the bounding box:

○ Check if it’s in the triangle w/ barycentric coordinates. If not, skip this
pixel

○ Use barycentric coords to interpolate the z value for this pixel
○ If this z value is bigger than the value in z buffer for this pixel, skip

this pixel
○ Render the pixel, and save this z value to z buffer for this pixel

Barycentric Coordinates

● A point in a triangle can be represented as a convex combination
of the three vertices
○ If any of the weights (ti) are negative, then point is not in triangle

Efficient 2D algorithm on slides 30-33 at
https://www.cs.drexel.edu/~david/Classes/CS430/Lectures/L-10_NURBSDrawing.pdf

https://www.cs.drexel.edu/~david/Classes/CS430/Lectures/L-10_NURBSDrawing.pdf

Pipeline of Rendering a Pixel

● Now we know which pixel to render, how do we color it?
● For a pixel to render,

○ Compute the normal and position of this pixel in world coords **
■ Use barycentric coords to interpolate

○ Find view position of the camera in world coords
○ Find light source position(s) in world coords
○ Get the material of this pixel (getPhongMaterial) **
○ Apply Phong Reflection Model using the above variables to color the

pixel
■ Very similar to A3!

● **Implementation of these steps depend on flat, Gourand, or Phong

Overview of Shaders

● Flat
○ Color of pixel is determined by face normal and centroid

■ Calculate color once per triangle
● Gouraud

○ Color of pixel is an interpolation of the colors at the vertices
■ Calculate color x3 per triangle

● Phong
○ Color of pixel determined by its normal found by interpolation

■ Calculate color once per pixel

Texture Mapping

● If a mesh has a texture map, you have to define the uv coordinate
for getPhongMaterial

● UV Coordinates
○ A vertex of the triangle with uv coordinate (u,v) in the texture

map will have that color of texture map at (u,v)
○ Make sure uvs[] is defined for the triangle because not all

meshes have texture maps

Texture Mapping

● Normal Mapping
○ Adds additional detail to texture map
○ Stores normal vector information in an image I
○ The image uses same UV coordinates
○ For a vertex with UV coordinate (u,v)

■ Get RGB at I(u,v)
■ Compute normal XYZ = normalize(2*RGB - 1)

○ Use this new normal when calculating color with Phong Reflection
Model

Q&A

