
COS 426: Computer Graphics (Spring 2020)

Reilly Bova

Introducing Assignment 3:
GLSL & Raytracing I

Agenda

● GLSL
○ What is a GPU?
○ What is a Shader?
○ What is GLSL?
○ GLSL Programming
○ GLSL Examples

● Raytracing
○ Background & Theory
○ Raytracing in Assignment 3

● Ray Intersections

What is a GPU?

http://www.youtube.com/watch?v=-P28LKWTzrI

What is a GPU?

● A CPU is to a GPU, as a writer is to a printing press:

What is a GPU?

● A CPU contains a few powerful general processors
that can each perform complex tasks.
○ CPU cores have a large memory bank (RAM)
○ CPU cores can execute complex machine instructions
○ CPUs can support modest parallelization via multithreading
○ Threads can communicate with each other via RAM, but this

can cause trouble (take COS 318 for more)

What is a GPU?

● A GPU can contain thousands of microprocessors that
can only perform simple tasks.
○ GPU cores have a limited memory bank (VRAM)

■ VRAM has to store the frame buffer, textures, and processing data for
each of the 1K+ cores (it’s crowded). Thus, cores have limited memory.

○ GPU cores can only execute simpler instructions
○ GPU cores are blind: they cannot communicate with each

other
○ GPU cores forget: they cannot remember previous frames
○ GPUs are designed for massive parallelization

What is a GPU?

What is a Shader?

● A shader is a program that executes on the GPU
● The yellow boxes in the following diagram of the

OpenGL graphics pipeline are programmable shaders:

What is a Shader?

● Vertex Shader:
○ Automatically runs once per vertex
○ Project a vertex from 3D space to 2D space with a Z-depth using the camera
○ Must output the final vertex position and any attributes the fragment shader

needs
● Fragment Shader:

○ Automatically runs once per rasterization fragment (think of this as a pixel)
○ Has access to certain attributes provided by the GPU and vertex shader
○ Must output a final pixel color

● Geometry Shader:
○ Optional, but it can modify geometries and even add vertices

What is GLSL?

● GLSL = Open Graphics Library Shader Language
○ Part of the OpenGL specification
○ Adapted for browsers as WebGL

● GLSL is a C/C++ flavoured language with more type
safety and no recursion; it executes on the GPU

● GLSL is used to write shader programs, which are
used by OpenGL applications to render graphics

What is GLSL?

● What’s missing from C in GLSL syntax: “C \ GLSL”
○ No Recursion => You must unroll recursive functions into loops
○ No Implicit Casting => You must explicitly cast everything
○ No Libraries => You must write/provide all the code yourself
○ No Dynamic Memory => No heap! All memory is static
○ No Pointers => Yay?
○ No Objects (but there are structs)
○ No char
○ No string
○ No I/O => No trace statements!

What is GLSL?

● GLSL syntax extensions: “GLSL \ C”
○ Storage qualifiers: varying, uniform, & attribute
○ Parameter qualifiers: in, out, & inout
○ Variable types: vecN, & matN

■ Vectors and Matrices, respectively, e.g: vec2, vec3, mat4, …
■ Standard math operators (+, -, *, /) are applied component-wise.
■ swizzling: vec3 yxz_comp = some_vec3.yxz;

○ Polymorphic builtins: max, min, sqrt, dot, cross, …
○ Predefined variables: gl_*

■ gl_Position
■ gl_FragCoord
■ gl_FragColor, gl_FragData[]

GLSL Programming

● uniform (i.e. Dynamically Uniform):
○ Read-only and statically shared between all vertices and fragments
○ Similar to global variables in C; set by the application and then passed into

the vertex and fragment shaders
○ Common use: informing the shaders of the lights and objects in the scene

● varying:
○ Variables set by the GPU (so it does the heavy lifting)
○ Per-vertex outputs in the vertex shader
○ Automatically interpolated between triangle vertices by the GPU and

passed as per-pixel inputs to the fragment shader
○ Varying variables are written by the vertex shader and read by the

fragment shader
○ Used to pass information from the vertex shader to the fragment shader

GLSL Programming

● attribute:
○ Values that are unique per-vertex and are passed into the vertex shader
○ Common uses: providing a vertex its position, color, and material

GLSL Programming

● The in parameter qualifier:
○ Argument value is copied into the function
○ This is the default if no qualifier is specified
○ “Copy and pass by value”

● The out parameter qualifier:
○ The function cannot read the argument, but it can write to the argument
○ Changes to the variable are visible (to the caller) outside of the function
○ “Pass by reference, but write-only”

● The inout parameter qualifier:
○ The function can both read and write to the argument
○ Changes to the variable are visible (to the caller) outside of the function
○ “Pass by reference”

// pseudocode

GLSL Programming

● Parameter qualifiers example I:
● value is an inout

variable
● Function can read

the variable
● Function can modify

the variable

void multiplyByTwo(inout float value) {
value *= 2;

}

void main() {
float t = 2;
multiplyByTwo(t);
// t is now 4

}

// pseudocode

GLSL Programming

● Parameter qualifiers example II:
● intersect is an out

variable
● Function cannot

read the variable
● Function can modify

the struct directly
(e.g. its position
and normal fields)

float findIntersectionWithPlane(Ray ray, vec3 norm, float dist,
 out Intersection intersect) {
 float a = dot(ray.direction, norm);
 float b = dot(ray.origin, norm) - dist;

 if (a < EPS && a > -EPS)
 return INFINITY;

 float len = -b / a;
 if (len < EPS)
 return INFINITY;

 intersect.position = rayGetOffset(ray, len);
 intersect.normal = norm;
 return len;
}

// pseudocode

GLSL Programming

● vecN: easy vector math

vec3 a = vec3(1.0, 2.0, 3.0); // make a vec3
vec4 b = vec4(a, 1.0); // make vec4 from vec3
vec3 c = b.xyz + a.zyx; // add two vec3 together
vec3 d = 2.0 * c; // mult vec3 by scalar
vec4 e; e.xyz = c; e[3] = b.w; // can use index or .{xyzw}

GLSL Programming

● Important built-in gl_* values:
○ gl_Position

■ The key vertex shader output (the vertex position)
○ gl_FragColor

■ The key fragment shader output (the pixel color)
○ gl_FragCoord

■ The pixel location in window space

// pseudocode

GLSL Examples

● A Simple Vertex Shader

attribute vec2 my_position;
void main() {

gl_Position = vec4(my_position, 0, 1);
}

// pseudocode

GLSL Examples

● A Simple Fragment Shader

// What does this draw? (assume entire screen is rendered)
void main() {

gl_FragColor = vec4(gl_FragCoord.x / canvas_width,
 gl_FragCoord.y / canvas_height,

 0, 1
);
}

// pseudocode

GLSL Examples

// pseudocode

GLSL Examples

● A (Less) Simple Fragment Shader

bool inArea(float cX, float cY) {
return (sqrt(cX*cX + cY*cY) < 80.0);

}

// What does this draw? (assume entire screen is rendered)
void main() {

float cX = gl_FragCoord.x – width/2.0;
float cY = gl_FragCoord.y – height/2.0;
if (inArea(cX, cY)) {

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);
} else {

gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
}

}

// pseudocode

GLSL Examples

GLSL Examples

● Here are some cool examples of complex shaders:
○ An Ocean
○ A Flame
○ A Snail
○ Intra-nebular Space
○ Voxels
○ A Rainforest
○ Zoom’s #1 Profit Driver This Quarter and the Source of My Despair
○ Raytraced Cornell Box with Global Illumination*
○ Raytraced Scene with Advanced Materials*

*These are advanced versions of A3.
DO NOT INSPECT “BUFFER A” CODE UNTIL FINISHED ASSIGNMENT 3

https://www.shadertoy.com/view/MdXyzX
https://www.shadertoy.com/view/MdX3zr
https://www.shadertoy.com/view/ld3Gz2
https://www.shadertoy.com/view/XlfGRj
https://www.shadertoy.com/view/4dfGzs
https://www.shadertoy.com/view/4ttSWf
https://www.shadertoy.com/view/tt3XR7
https://www.shadertoy.com/view/XlGcWD
https://www.shadertoy.com/view/MtycDD

Raytracing

Raytracing: A Background

● Traced back to techniques of 16th century artist
Albrecht Dürer:

Raytracing: A Background

● Now the standard technique for rendering CGI and 3D
animations
○ First fully raytraced film was Monster House (2006)
○ Earlier 3D feature films (like Toy Story) only used rasterization

(next assignment)
● Video games, which are generally rasterized, are also

now incorporating raytracing
○ See Nvidia’s “RTX on” videos

Raytracing: Theory

● The goal of raytracing is to approximate the physics of light as
closely as possible (just need to trick the eye)
○ See also: electromagnetism and quantum electrodynamics
○ A full simulation will never be feasible, and many real-world effects

have to be ignored; the only known simulator of all known
electromagnetic effects at all wavelengths at all positions in time is
the Universe

● Key insight: a photon’s path obeys time-symmetry
○ Shooting a ray from where a photon expires will bounce back along

the photon’s path back to where it originated
○ Raytracing: shoot rays from the “eye/camera” to retrace photons

Raytracing: Theory

● Raycasting analogy: your eye “looking” through the pixels of your
computer screen:

Raytracing: Theory

● A common optimization is to
only look at the first
intersection of each ray in
the scene:
○ Photons lose a lot of energy

after the first bounce
○ Assume almost all radiance

at an intersection comes
directly from the light

○ “Direct Illumination”

Raytracing in Assignment 3

● You will implement Direct Illumination (DI) for your
Assignment 3 raytracer
○ Scenes won’t look photorealistic, but they’ll be fast and sharp
○ Your eye will be somewhat tricked
○ Some advanced techniques (not required for A3) next week

● Certain DI intersections still need raycasting recursion
○ Reflections (mirror bounce)
○ Refractions (refractive bounce)
○ Formulae for bounces drawn from electromagnetism (optics)

Raytracing in Assignment 3

● Here is a visualization of
paths traced for a scene
with a mirror ball in a
mirror box
○ Paths are terminated

when they leave through
the open face of the box

○ Color of ray warms with
each bounce

// pseudocode

Raytracing in Assignment 3

● How do we recur without recursion?
● Use a loop!
● This is known as

“unrolling” recursion
● Any recursive

function can be
unrolled into a
tail-recursive
procedure like this

#define MAX_RECURSION 10

function g() {
float x = 0.0, weight = 1.0, res = 0.0;
float cur_contrib;

for (int i = 0; i < MAX_RECURSION; i++) {
cur_contrib = f();
res = res + weight * cur_contrib;
weight = weight * 0.8;

}

return res;
}

Raytracing in Assignment 3

● How are we raytracing with a shader program?
○ Think of the rendered scene as a large rectangle made up of 2 triangles

■ There are 4 vertices in total (2 are shared between the 2 triangles)
○ The fragment shader operates on each of the pixels inside this rectangle and

computes that pixel’s color
■ NB: each pixel’s position was interpolated from the original 4 vertices!

○ The resulting color for each pixel is what we get from tracing a ray for the
corresponding ”pixel” in the camera!

// pseudocode

Raytracing in Assignment 3

● Raytracing in a Fragment Shader

void main() {
 float cameraFOV = 0.8;
 vec3 direction = vec3(v_position.x * cameraFOV * width / height, v_position.y * cameraFOV, 1.0);

 Ray ray;
 ray.origin = vec3(uMVMatrix * vec4(camera, 1.0));
 ray.direction = normalize(vec3(uMVMatrix * vec4(direction, 0.0)));

 // trace the ray for this pixel
 vec3 res = traceRay(ray);

 // paint the resulting color into this pixel
 gl_FragColor = vec4(res.x, res.y, res.z, 1.0);
}

Raytracing in Assignment 3

● No console I/O or breakpoints makes traditional debugging
techniques ineffective

● Instead, you must do visual debugging which is simply creative
use of the one shader output you have: the pixel color

● Some simple suggestions:
○ Output red for sphere, yellow for triangle, green for cylinder, etc.
○ Output the normal vector of the surface directly.
○ if (some_condition) then GREEN else normal shading.

■ This can track down which pixels are problematic.
○ Move around in the scene! The real-time performance of the

raytracer for A3 is a huge asset and real treat. Leverage it!

Ray Intersections: Triangle

● There are many algorithms for testing ray intersections with a triangle
○ The industry standard is Möller-Trumbore. Do not read code for this algorithm if you

choose to attempt it.
○ Other algorithms use a plane-intersection test, and then check if the point of

intersection lies within the provided triangle (recommended).
○ Lecture 11 gives three algorithms — use any!

Ray Intersections: Sphere

● Need to be careful to return the nearest closest intersection
○ t1 = tca – thc; t2 = tca + thc;
○ if (t1 > 0) return t 1; else if (t2 > 0) return t 2;
○ else return INFINITY;

● Also need to compute the normal at the intersect for lighting

Ray Intersections: Box

● Treat each side of the face as
a plane

● Intersect the ray with each
plane separately

● Filter out intersections that
do not lie on the box
○ This is easy because the

box is axis-aligned
● Return the closest

intersection, if one exists

Ray Intersections: Closed Cylinder

● A closed cylinder is an open cylinder
with two caps (discs)

● First intersect an open cylinder of
fixed height

● Then intersect the two discs
● Out of all intersections, choose the

nearest
● Refer to the assignment specs to

guide your solution (and math)

Ray Intersections: Closed Cone

● Similar to a closed cylinder
● A closed cone is an open cone with one cap
● First intersect an open cone (half of a finite

double cone)
● Then intersect the cap (disc)
● Out of all intersections, choose the nearest
● Refer to the assignment specs to guide your

solution (and math)

Q&A

