Introducing Assignment 3:

GLSL & Raytracing 1

COS 426: Computer Graphics (Spring 2020)

Reilly Bova

Agenda

GLSL

What is a GPU?

What is a Shader?

What is GLSL?

GLSL Programming

GLSL Examples
Raytracing

o Background & Theory

o Raytracing in Assignment 3

Ray Intersections

O O O O O

What is a GPU?

http://www.youtube.com/watch?v=-P28LKWTzrI

What is a GPU?

A CPU isto a GPU, as a writeristo a printing press:

\\\‘\\..\\w\ -

Pwlutxtce(m
"f‘ 0

e

it
<<

e adiaataiad: f,.//

RIPTORIUM MONK AT WORK. (From Zacroix.)

What is a GPU?

A CPU contains a few powerful general processors

that can each perform complex tasks.

o CPU cores have a large memory bank (RAM)

o CPU cores can execute complex machine instructions

o CPUs can support modest parallelization via multithreading

o Threads can communicate with each other via RAM, but this
can cause trouble (take COS 318 for more)

What is a GPU?

A GPU can contain thousands of microprocessors that

can only perform simple tasks.

o GPU cores have a limited memory bank (VRAM)

= VRAM has to store the frame buffer, textures, and processing data for
each of the 1K+ cores (it's crowded). Thus, cores have limited memory.

o GPU cores can only execute simpler instructions

o GPU cores are blind: they cannot communicate with each
other

o GPU cores forget: they cannot remember previous frames

o GPUs are designed for massive parallelization

What is a GPU?

{4 cru GPU

- Render time Render time
& 1748 seconds 16 seconds

. Rendered at Rendered at
480 x 400 960 x 800

] GPU performed ~437 times faster

Tracing with 8 rays per pixel

i7 -4790K Titan X

S — - —

What is a Shader?

A shader is a program that executes on the GPU
The yellow boxes in the following diagram of the
OpenGL graphics pipeline are programmable shaders:

Application | . Vertex . Geometry | | Clipping | | Fragment | [REEIRGEHEE
Program Program Rasterization Program Operations
[% ~ = a R 5 5 " %
vertices Transformed emitted fragments shaded pixels

vertices primitives fragments

What is a Shader?

Vertex Shader:

o Automatically runs once per vertex

o Project a vertex from 3D space to 2D space with a Z-depth using the camera

o Must output the final vertex position and any attributes the fragment shader
needs

Fragment Shader:
o Automatically runs once per rasterization fragment (think of this as a pixel)
o Has access to certain attributes provided by the GPU and vertex shader
o Must output a final pixel color
Geometry Shader:
o Optional, but it can modify geometries and even add vertices

What is GLSL?

GLSL = Open Graphics Library Shader Language

o Part of the OpenGL specification
o Adapted for browsers as WebGL

GLSL is a C/C++ flavoured language with more type
safety and no recursion; it executes on the GPU
GLSL is used to write shader programs, which are
used by OpenGL applications to render graphics

What is GLSL?

What's missing from Cin GLSL syntax: “C \ GLSL”

O o O o o O O O O

No Recursion => You must unroll recursive functions into loops
No Implicit Casting => You must explicitly cast everything

No Libraries => You must write/provide all the code yourself
No Dynamic Memory => No heap! All memory is static

No Pointers => Yay?

No Objects (but there are structs)

No char

No string

No I/0 => No trace statements!

What is GLSL?

GLSL syntax extensions: "GLSL\ ("

O

O

O

Storage qualifiers: varying, uniform, & attribute
Parameter qualifiers: in, out, & inout
Variable types: vecN, & matN
m Vectors and Matrices, respectively, e.g: vec2, vec3, mat4, ...
= Standard math operators (+, -, *, /) are applied component-wise.
m swizzling: vec3 yxz comp = some vec3.yxz;
Polymorphic builtins: max, min, sqrt, dot, cross, ...
Predefined variables: g1_*
m gl Position
m gl FragCoord
m gl FragColor, gl FragDatal]

GLSL Programming

uniform (i.e. Dynamically Uniform):.

@)

@)

@)

Read-only and statically shared between all vertices and fragments

Similar to global variables in C; set by the application and then passed into
the vertex and fragment shaders

Common use: informing the shaders of the lights and objects in the scene

varying:

@)

@)

@)

Variables set by the GPU (so it does the heavy lifting)

Per-vertex outputs in the vertex shader

Automatically interpolated between triangle vertices by the GPU and
passed as per-pixel inputs to the fragment shader

Varying variables are written by the vertex shader and read by the
fragment shader

Used to pass information from the vertex shader to the fragment shader

GLSL Programming

attribute:
o Values that are unique per-vertex and are passed into the vertex shader
o Common uses: providing a vertex its position, color, and material

GLSL Programming

The in parameter qualifier:
o Argument value is copied into the function
o This is the default if no qualifier is specified
o “Copy and pass by value”

The out parameter qualifier:
o The function cannot read the argument, but it can write to the argument
o Changes to the variable are visible (to the caller) outside of the function
o "Pass by reference, but write-only”

The inout parameter qualifier:
o The function can both read and write to the argument
o Changes to the variable are visible (to the caller) outside of the function
o "“Pass by reference”

GLSL Programming

Parameter qualifiers example I:

~

value IS an inout
void multiplyByTwo(inout float value) {

variable
} value *= 2; Function can read
the variable
void main() { Function can modify
float t = 2; the variable
multiplyByTwo(t);

// t is now 4

GLSL Programming

Parameter qualifiers example Il:

e D
intersect iSan out
float findIntersectionWithPlane(Ray ray, vec3 norm, float dist, .
out Intersection intersect) { Va rlable
float a = dot(ray.direction, norm);
float b = dot(ray.origin, norm) - dist; Function cannot
if < EPS && > -EPS .
: réiurn INFINI'?'Y;) read the variable
float len = b / 2 Function can modify
i en <
I SRR the struct directly
int t.position = GetOffset , len); . . .
intorssct normal o mormy - o eet(ray. den) (e.g.its position
return len; .
} and normal fields)

GLSL Programming

vecN: easy vector math

vec3
vec4d
vec3
vec3
vec4d

a
b
Cc
d
e

= vec3(1.0, 2.0, 3.0); //
= vec4(a, 1.9); //
= b.xyz + a.zyx; //

2.0 * c; //
; e.xyz = c; e[3] = b.w; //

make a vec3

make vec4 from vec3

add two vec3 together
mult vec3 by scalar

can use index or .{xyzw}

GLSL Programming

Important built-in g1_* values:
© gl Position

= The key vertex shader output (the vertex position)
© gl FragColor

= The key fragment shader output (the pixel color)
© gl FragCoord

= The pixel location in window space

GLSL Examples

A Simple Vertex Shader

4)

attribute vec2 my_position;
void main() {

gl_Position = vec4(my_position, 0, 1);
}

GLSL Examples

A Simple Fragment Shader

// What does this draw? (assume entire screen is rendered)
void main() {
gl_FragColor = vec4(gl_FragCoord.x / canvas_width,
gl_FragCoord.y / canvas_height,
0, T
)

GLSL Examples

A (Less) Simple Fragment Shader

bool inArea(float cX, float cY) {
return (sqrt(cX*cX + cY*cY) < 80.0);
}

// What does this draw? (assume entire screen is rendered)
void main() A
float cX = gl_FragCoord.x — width/2.0;
float cY = gl_FragCoord.y — height/2.0;
if (inArea(cX, cY)) {
gl_FragColor = vec4(1.0, 6.0, 0.0, 1.0);
} else {
gl_FragColor
}

vec4(0.0, 0.0, 0.0, 1.0);

GLSL Examples

Here are some cool examples of complex shaders:

An Ocean

A Flame

A Snail

Intra-nebular Space

Voxels

A Rainforest

Zoom's #1 Profit Driver This Quarter and the Source of My Despair
Raytraced Cornell Box with Global lllumination*

Ravtraced Scene with Advanced Materials*

O 0O O O O O O o O

*These are advanced versions of A3.
DO NOT INSPECT “BUFFER A” CODE UNTIL FINISHED ASSIGNMENT 3

https://www.shadertoy.com/view/MdXyzX
https://www.shadertoy.com/view/MdX3zr
https://www.shadertoy.com/view/ld3Gz2
https://www.shadertoy.com/view/XlfGRj
https://www.shadertoy.com/view/4dfGzs
https://www.shadertoy.com/view/4ttSWf
https://www.shadertoy.com/view/tt3XR7
https://www.shadertoy.com/view/XlGcWD
https://www.shadertoy.com/view/MtycDD

Raytracing

Raytracing: A Background

Traced back to techniques of 16th century artist
Albrecht Durer:

B &.....A._ \\.;..... M“mm

:‘ iy - LR .o e S AL o .
. » -~ - e e - 1
] N, e N Su LAk ’

Raytracing: A Background

Now the standard technique for rendering CGl and 3D

animations

o First fully raytraced film was Monster House (2006)

o Earlier 3D feature films (like Toy Story) only used rasterization
(next assignment)

Video games, which are generally rasterized, are also

now incorporating raytracing
o See Nvidia's “RTX on” videos

Raytracing: Theory

The goal of raytracing is to approximate the physics of light as

closely as possible (just need to trick the eye)
o See also: electromagnetism and quantum electrodynamics
o A full simulation will never be feasible, and many real-world effects
have to be ignored; the only known simulator of all known
electromagnetic effects at all wavelengths at all positions in time is
the Universe
Key insight: a photon's path obeys time-symmetry
o Shooting a ray from where a photon expires will bounce back along
the photon’s path back to where it originated
o Raytracing: shoot rays from the “eye/camera” to retrace photons

Raytracing: Theory

Raycasting analogy: your eye “looking” through the pixels of your
computer screen: |

";l I
~_|
[]
) \ ij

1y 7/
1

5
G

/
m

Raytracing: Theory

A common optimization is to
only look at the first
intersection of each ray in
the scene:
o Photons lose a lot of energy
after the first bounce
o Assume almost all radiance
at an intersection comes
directly from the light
o “Direct lllumination”

8 Light Source

View Ray

Scene Object

Raytracing in Assignment 3

You will implement Direct lllumination (DI) for your

Assignment 3 raytracer
o Scenes won't look photorealistic, but they'll be fast and sharp
o Your eye will be somewhat tricked
o Some advanced techniques (not required for A3) next week

Certain Dl intersections still need raycasting recursion

o Reflections (mirror bounce)
o Refractions (refractive bounce)
o Formulae for bounces drawn from electromagnetism (optics)

Raytracing in Assignment 3

Here is a visualization of
paths traced for a scene
with a mirror ball in a

mirror box

o Paths are terminated
when they leave through
the open face of the box

o Color of ray warms with
each bounce

Raytracing in Assignment 3

How do we recur without recursion?

4)
Use a loop!
#define MAX_RECURSION 10 This is known as
.': . 11 M /) M
uncuo?lc?a(t) >§ = 0.0, weight = 1.0, res = 0.0; UnrO”Ing recursion

float cur_contrib;

Any recursive
for (int i = @; i < MAX_RECURSION; i++) {

cur_contrib = f(); function can be
res = res + weight * cur_contrib;
Tl unrolled into a
return res; tail-recursive

procedure like this

Raytracing in Assignment 3

How are we raytracing with a shader program?
o Think of the rendered scene as a large rectangle made up of 2 triangles
m There are 4 vertices in total (2 are shared between the 2 triangles)
o The fragment shader operates on each of the pixels inside this rectangle and
computes that pixel's color
= NB: each pixel's position was interpolated from the original 4 vertices!
o The resulting color for each pixel is what we get from tracing a ray for the
corresponding "pixel” in the cameral

Application |, Vertex | Geometry | . Clipping | .| Fragment ,| Framebuffer
Program Program Rasterization Program Operations

vertices Transformed emitted fragments shaded pixels
vertices primitives fragments

Raytracing in Assignment 3

Raytracing in a Fragment Shader

void main() {
float cameraFOV = 0.8;
vec3 direction = vec3(v_position.x * cameraFOV * width / height, v_position.y * cameraFQV, 1.0);

Ray ray;
ray.origin = vec3(uMVMatrix * vec4(camera, 1.0));
ray.direction = normalize(vec3(uMVMatrix * vec4(direction, 0.0)));

// trace the ray for this pixel
vec3 res = traceRay(ray);

// paint the resulting color into this pixel
gl_FragColor = vec4(res.x, res.y, res.z, 1.0);

Raytracing in Assignment 3

No console I/O or breakpoints makes traditional debugging
techniques ineffective

Instead, you must do visual debugging which is simply creative
use of the one shader output you have: the pixel color

Some simple suggestions:

O

O

O

Output red for sphere, yellow for triangle, green for cylinder, etc.
Output the normal vector of the surface directly.
if (some_condition) then GREEN else normal shading.

= This can track down which pixels are problematic.
Move around in the scene! The real-time performance of the
raytracer for A3 is a huge asset and real treat. Leverage it!

Ray Intersections: Triangle

There are many algorithms for testing ray intersections with a triangle
o Theindustry standard is Méller-Trumbore. Do not read code for this algorithm if you
choose to attempt it.
o Other algorithms use a plane-intersection test, and then check if the point of
intersection lies within the provided triangle (recommended).
o Lecture 11 gives three algorithms — use any!

Ray-Triangle Intersection | %@}

+ Check if point is inside triangle algebraically

For each side of triangle Ts
Vi=T{—Pg
Vo=To— Py
N;=Vox Vy
Normalize N4
Plane p(Po, N4)
if (SignedDistance(p, P) < 0)
return FALSE
end
return TRUE

T

T,

Ray-Triangle Intersection Il
+ Check if point is inside triangle algebraically

For each side of triangle
V,=T,;-P
V,=T,-P
N, =V,x V,
if (V+N;<0)

return FALSE
end

return TRUE

Ray-Triangle Intersection lll @j
+ Check if point is inside triangle parametrically
Compute “barycentric coordinates” a., B: Ts

o =Area(TT,P) / Area(TT,Ty)
B = Area(T,PTj) / Area(TT,T,)

Area(T,T,T5) = ¥ Il (T2-T1) x (T3-T1) Il
check if backfacing:
((T2-T1) x (T3-T1)) -N <0

1

Check if point inside triangle.
0<a<t1and0<pB<Ai
anda+B<1

v T

Po

Ray Intersections: Sphere

Need to be careful to return the nearest closest intersection
© tl - tca - thc; t2 - tca + thc;
e} if (t1 > 0) return tl; else if (t2 > (0) return t2;
O else return INFINITY;

Also need to compute the normal at the intersect for lighting

Ray-Sphere Intersection Il Ray-Sphere Intersection

Ray: P = Py +tV + Need normal vector at intersection
Sphere: IP - OI2-r2=0 Seomairic Method | for lighting calculations (next lecture)
L=0-P, N=(P-0)/IIP-OlIl

th =il =V

if (t.a < 0) return INF

d2=L-L-t,2
if (d2 > r2) return INF P, .

t= tca = thc and tca + thc

P=Ppy+1tV

Ray Intersections: Box

Treat each side of the face as

a plane Ray-Box Intersection 7
: + Check front-facing sides for intersection with ray
Intersect the ray with each and return closest intersection (least t)
p|ane Se pa rate|y o Find intersection.wit.h plane
. . . o Check if point is inside rectangle
Filter out intersections that (x2y2)
do not lie on the box l {
P (x1,yl) P
o This is easy because the — -

box is axis-aligned
Return the closest v
intersection, if one exists

Ray Intersections: Closed Cylinder

A closed cylinder is an open cylinder
with two caps (discs)

First intersect an open cylinder of
fixed height

Then intersect the two discs

Out of all intersections, choose the
nearest

Refer to the assignment specs to
guide your solution (and math)

Ray Intersections: Closed Cone

Similar to a closed cylinder

A closed cone is an open cone with one cap
First intersect an open cone (half of a finite
double cone)

Then intersect the cap (disc)

Out of all intersections, choose the nearest ol
Refer to the assignment specs to guide your
solution (and math) Pa

