
COS 426: Computer Graphics (Spring 2020)

June Ho Park

● Logistical Updates
● General tips on tackling A2
● Going over more advanced features of A2

○ Truncate, Extrude, Bevel
○ Triangle/Quad Topology, Loop/Catmull-Clark

subdivision
○ Smoothing, Curvature

● A2 is now due on Tuesday, 11:55 PM
● Please fill out A1 Feedback Form!

○ https://forms.gle/SVVV12E422K7nH619

● Midterm is in-class Thursday, 03/12
○ Practice exams will be released this weekend
○ One double-sided A4 cheat sheet, typed or written
○ Next week’s precept will be a review session

https://forms.gle/SVVV12E422K7nH619

● Happening sometime after Dean’s Date TBD
● Two sessions in one day

○ One morning, one afternoon
○ All students must attend both sessions, with the

exception of exam conflicts
○ Food will be provided

● Start local
○ Modifications to a primitive shouldn’t affect other

primitives
● Work with one primitive first

● Topology
○ Relations between structures defining the mesh

■ eg. What vertices do I need to add?
■ eg. Between what vertices should I add an edge?

● Geometry
○ Spatial relationships, shape, form

■ eg. Where on the edge should I insert the vertex?

● Figure out topology first, then geometry

● Caution with Data
○ Do I need to store information about data before

modifying them?
● Draw your operations out
● Count primitives after modifications

○ Console Log is your friend!

● Cut the corners off of a shape
● For every vertex with N edges…

○ Add N-1 vertices
○ Add 1 face

● Consider a vertex with 3 edges
● So we need to add 2 vertices, 1 face

Initial SplitEdge x 2 Split Face

Note that the blue
vertices should be
on top of original
vertex in reality.

They are moved
apart for easier
visualization.

● Now we move vertices along the edges
○ Calculate all offset vectors before applying changes

After Making Face Apply Offsets

● Each face is moved along its normal
● For each N-gon face:

○ Add N vertices
○ Add N faces

● Note again that the visualizations don’t
represent accurate spatial relations

● New blue vertices should be directly on top of
the old ones at first!!!

● Let’s think about the end result for 1 face
Topological View:3D View:

f0

f0

● Denote ov for old vert and nv for new vert

● First, insert 4 new vertices
○ SplitEdgeMakeVert x 4
○ Again, there’s no actual

movement happening

Topological View:

Reality:

nv2 nv1

nv0nv3

● Then, split 4 adjacent faces
○ SplitFaceMakeEdge x 4
○ Between which 2 vertices

should we split the face each
time?

○ Which vertex would we like
on which face at the end?

Topological View:

● Then, split 4 adjacent faces
○ SplitFaceMakeEdge x 4
○ Between which 2 vertices

should we split the face each
time?

○ Which vertex would we like
on which face at the end?

Topological View:

● We want to connect the new vertices

nv3 nv0

ov0ov3

nv3 nv0

ov0ov3

splitFaceMakeEdge()f

nf0

f

nf0

nf5

● Now join the two new faces

nv3 nv0

ov0ov3

joinFaceKillEdge()

f

nf0

nv3 nv0

ov0ov3

f

nf0

nf5

● Simple
○ Move each new vert by factor * f.normal

● Call Filters.triangulate()
○ First split all n-gons into triangles

● We want each face to become 4 faces by
splitting each edge in half

● For each face:
○ Add 3 vertices
○ Add 3 faces

● First, split all edges
○ Create a list of all half edges beforehand

■ Why? When you split a half edge, opposite will be split,
so you need to keep track - avoid double splitting

splitEdgeMakeVert() x 3

● Join new vertices around a face
○ Keep track of new indices by index - new ones are

always added to end of verts array
● Do edge splits and join verts in separate

loops
splitFaceMakeEdge() x 3

● Calculate new positions of vertices as you
perform triangle topology

■ Find positions of old verts before adding new verts, and
positions of new verts before joining them

● One TriTop is done, update positions

These weights are w/
respect to the old
vertices!

● On boundary edges, use a different mask:

● To prevent degenerate faces, non-selected
faces that touch the boundary should receive
a TriTop subdivision.

● Divide an N-gon into quadrilaterals
○ Split each edge
○ Join any 2 new vertices
○ Split this new edge, denote this vert nv0
○ Join the rest of the new vertices with nv0
○ Move nv0 to centroid

● Just as in TriTop, don’t do redundant splits

● One possible method:

Old Vertices MidPoints Centroids

n = number of neighbors of vert

● Another possible method:
Old Vertices MidPoints Centroids

n = number of neighbors of vert

● And a third:
Old/Even Vertices MidPoints Centroids

● Receive centroid of their
face before the update

● Receive the average of
all their neighbors
(centroid vertices, and
even vertices)

● Let F = average of n
neighboring face
centroids

● Let R = average of n
neighboring edge
midpoints

● Let p = current position
● The new position is (F +

2R + (n - 3)p) / n

● Boundaries?
Same as Loop… but trickier to implement correctly.

● We want to “flatten”
corners and edges
○ Each edge “becomes” a

face
○ Each vertex “becomes” a

face

● A good place to start is calling truncate
○ This already flattens each vertex

● Now we want to convert edges to faces
○ Let’s consider one edge

● For each corner face, split all of its edges in
half

● For each long edge (v1, v2)…
■ Connect the neighboring verts of v1 and v2
■ Remove the original long edge
■ Remove v1 and v2

splitFaceMakeEdge x 2 joinFaceKillEdge joinEdgeKillVert x 2
v1

v2

● Simply move each vertex closer to the
centroid of its corresponding face

● We want to calculate the curvature associated
with a vertex

● Then color it based on its curvature

● This paper: Akleman, 2006
● Section 2.2 is the most relevant part

○ Area associated with vertex = Sum of area of faces
neighboring vertex

● (This makes for really good art submissions!)

https://pdfs.semanticscholar.org/5995/6ffab254b3dfd4dddb0fcef5225ba3589b92.pdf

● To update vertex position
○ vnew = v + (Σni - N * v) * 𝛅

■ ni = neighbor position
■ N = num neighbors

● Mesh must be triangular
● To update vertex position

○ vnew = v + (Σni*wi - v*Σwi) * 𝛅
v

ni

ɑij

βij

● Scale delta to where

