
COS 426: Computer Graphics (Spring 2020)

Will Sweeny

Introducing Assignment 2:
Mesh Processing & Half Edges

Agenda

● Brief overview of A2
○ GUI Changes
○ Tips

● Half-edge data structure
○ Definition
○ Traversal
○ Modification

Setup

Same as in A0 and A1:

• Run “python3 -m http.server” (or similar) inside
the assignment directory

• Open “http://localhost:8000” in web browser

GUI

GUI

• Useful functions
– Base Mesh
– Select: click faces or verts to select them
– Display Settings: show useful mesh info
– BatchMode: fix current parameter settings
– Image Capture (‘i’ to download a screenshot)
– Object Download (‘o’ to download the 3D model)

GUI

• Features to implement
– Transformations (move mesh in space)
– Traversal (step through mesh)
– Analysis (info about mesh)
– Warps (deform the mesh)
– Filters (similar to A1 filters: sharpen, smooth, etc)
– Topology (change mesh structure)
– Subdivision (smoothly add new faces)

Tips for Three.js and A2

● For A2 you will be using the Three.js library
○ Simple and efficient primitives for working in 3D

● You should read the docs!
○ Vector3
○ Euler (for rotations)

● Modularity is your friend!
○ You will be writing helper functions. Use them!

https://threejs.org/docs/#api/en/math/Vector3
https://threejs.org/docs/#api/en/math/Euler

Features
Transformations

- Translation
- Rotation
- Scale

Traversal
- Various edge/vertex/face helpers

Analysis
- Face Area
- Per-vertex Normals
- Average Edge Lengths

Warps
- Twist
- Inflate
- Wacky

Filters
- Noise
- Smoothing
- Sharpening
- Curvature

Topology
- Triangulate
- Truncate
- Extrude
- Split Long Edges

Subdivision
- Triangle Topology
- Loop
- Quad Topology
- Catmull-Clark

Meshes vs. Images

• Images have implicit adjacency information
– Window around a pixel
– Easy to express local operations

• (e.g. convolution)

● What about meshes?
○ How to apply smoothing?

Meshes

• Meshes can be quite dense

Meshes

• How can we efficiently access adjacency information?

What is a Half-Edge?

● Imagine splitting each edge in two
○ Each half gets one of the edge’s faces
○ Each face, vertex, and half-edge stores some state
○ Conceptually very similar to doubly linked list

Half-Edge: What State is Stored?

Half Edge Vertex Face

Vertex Position Half-Edge

Opposite
Half-Edge

Outgoing
Half-Edge

Face

Next
Half-Edge

Half-Edge Data Structure

Half Edge

Vertex

Opposite
Half-Edge

Face

Next
Half-Edge

Half-Edge Data Structure

Vertex

Location

Outgoing
Half-Edge

Q: Which half-edge to choose?
A: Pick one arbitrarily

Half-Edge Data Structure

Face

Half-Edge

Q: Which half-edge to choose?
A: Pick one arbitrarily

Half-Edge Visualization

• Faces:

• Half-edges:

• Vertices:

id

id

id

Traversal (Vertices on vertex)

• How do we get one-ring neighbors of a vertex?

Traversal (Vertices on vertex)

• How do we get one-ring neighbors of a vertex?

● A2 asks for other adjacency queries as well
○ vertices around a face, faces around a vertex, and so on...

original_he = vertex.he;
he = original_he;
do {

// some calculations
he = he.opposite.next

} while (he != original_he)
vertex.he

Traversal (Vertex Normals)

• Vertex Normals are defined as a weighted average of the normals of
adjacent faces (weighted by face area)

• How would you compute vertex normals given face normals and areas?

vertex.he

Half Edge

Vertex

Opposite
Half-Edge

Face

Next
Half-Edge

Traversal (Vertex Normals)

• Vertex Normals are defined as a weighted average of the normals of
adjacent faces (weighted by face area)

• How would you compute vertex normals given face normals and areas?

vertex.he

original_he = vertex.he;
he = original_he;
do {

// some calculations
he = he.opposite.next

} while (he != original_he)

Traversal (Vertex Normals)

• Vertex Normals are defined as a weighted average of the normals of
adjacent faces (weighted by face area)

• How would you compute vertex normals given face normals and areas?

vertex.he

original_he = vertex.he;
he = original_he;
v_normal.set(0,0,0);
do {

f_normal = he.face.normal;
area = he.face.area;
v_normal.add(f_normal*area);
he = he.opposite.next

} while (he != original_he)
v_normal.normalize()

Traversal (Vertex Normals)

• Vertex Normals are defined as a weighted average of the normals of
adjacent faces (weighted by face area)

• How would you compute vertex normals given face normals and areas?

vertex.he

fs = mesh.facesOnVertex(v);
v_normal.set(0,0,0);
for (let f of fs) {

v_normal.add(f.normal * f.area);
}
v_normal.normalize()

Easier way: use facesOnVertex()!

Traversal (Laplacian Smoothing)

• Similarly, in uniform Laplacian smoothing, each vertex moves towards
the average of it and its neighbors.

vertex.he

original_he = vertex.he;
he = original_he;
do {

// some calculations
he = he.opposite.next

} while (he != original_he)

Traversal (Laplacian Smoothing)

• Similarly, in uniform Laplacian smoothing, each vertex moves towards
the average of it and its neighbors.

vertex.he

original_he = vertex.he;
he = original_he;
avg_pos.set(0,0,0);
do {

avg_pos.add(he.vertex);
he = he.opposite.next

} while (he != original_he)
avg_pos.add(-vertex*num_neigh);
new_pos = vertex + avg_pos * delta;

Traversal (Laplacian Smoothing)

● Some tips for uniform Laplacian smoothing:
○ You can use verticesOnVertex() to simplify your code!
○ Be careful not to modify your mesh before you’ve computed

offsets for all vertices!
■ (Similar to filters in A1 that modified the image)

Traversal (Cotan Laplacian Smoothing)

● Cotangent Laplacian smoothing

● Notes:
○ pi = center vert
○ Iterate over all neighboring pj
○ pi , pj will share two faces
○ αij , βij are the far angles on these faces

avg_pos.add(he.vertex); ⇒ avg_pos.add(w*he.vertex);
num_neigh ⇒ total_w

pi

pj

αij

βij

Data Structure Modification

What if we want to add new vertices to an existing half-edge data structure?

splitEdgeMakeVert(v1,v2,factor):

v3 = addVertex(v1.pos.lerp(v2.pos, factor));

he1.vertex = v3; he3.next = he1_next;
he2.vertex = v2; he4.next = he2_next;
he3 = addHalfEdge(v3,v2,f1); he1.opposite = he4;
he4 = addHalfEdge(v3,v1,f2); he4.opposite = he1;
he1.next = he3; he2.opposite = he3;
he2.next = he4; he3.opposite = he2;

Data Structure Modification

What if we want to add new vertices to an existing half-edge data structure?

splitFaceMakeEdge(f, v1, v2, vertOnF, switchFaces)

● Remember to re-link he4 and he1 to point to f2
● Optional args: (for advanced filters, like Extrude)

○ vertOnF: if provided, this vert will still be on the original face
○ switchFaces: if true, vertOnF is placed on the new face instead

f2 = addFace(); he5.next = he2;
 he3.next = he5;
he5 = addHalfEdge(v1,v2,f1); he1.next = he6;
he6 = addHalfEdge(v2,v1,f2); he6.next = he4;

he5.opposite = he6; f1.halfedge = he5;
he6.opposite = he5; f2.halfedge = he6;

Data Structure Modification

● How would you go about subdividing a quad face?
○ You’re given split edge and split face
○ Just use those - guaranteed validity of mesh after use!

● Figuring this out is part of the assignment
○ Think about it for next week!

Q&A

Quick Announcement

● If you're interested in computational photography,
timelapses, 360 videos, and VR…

● Come see June’s VIS senior thesis show: self portrait!

● March 02-06, in the Lucas Gallery
○ (2nd floor of 185 Nassau St.)

● Opening reception March 4, 5:45 PM - 7:15 PM.

