Finishing Up Assignment 1:

Image Processing

COS 426: Computer Graphics (Spring 2020)

Reilly Bova

Course Logistics Update

New course website incoming!
— Preview at https://reillybova.qithub.io/COS426-Website/
— Should have everything, but may be slightly buggy as we work out kinks
— If you notice any problems, please make a public Piazza post under the
“‘website” folder

Web Framework specs (for those interested):
— ReactJS for state-based logic and modularity
— MaterialUl to build a Material Design compliant interface
— GatsbyJS to compile the React App to static server files (allows us to
host site as a normal webpage, and makes it blazing fast)
— Content generate from Markdown

https://reillybova.github.io/COS426-Website/
https://reactjs.org/
https://material-ui.com/
https://material.io/design/
https://www.gatsbyjs.org/

Fill out the Assignment 0 Feedback Form

Do this now — it takes less than a minute:
https://forms.gle/o2ea1iJ978zYE6Kd/8

https://forms.gle/o2ea1iJ978zY6Kd78

An Update on the Bilateral Filter

Compute color distance in RGB space, scaled to [0, 255].

(=024 -02 (G- I(k0))

w(z, j, k1) =€ }

Dyl Nl
205 2of

bout the

iar a

ing fam

th

>
C
@©
(]
Q
-
O
Z

pattern?

<
—
Q
=
S
aw
—
S
s
S
=~
<

Why Dither?

It's a Floyd-Steinberg dither over
RGB channels (1 bit each)!

This filter was often used to
compress web GIFs — look for the
artifact in old-school animations!

Ordered dithering

Pseudo code for n-bit case: (15 7 13 5]
1l=xmodm m =4, D= 3 11 1 9
J = y mod m 12 4 14 6
err = I(x, y) - floor quantize(I(x, Vy))) 0 8 2 10
threshold = (D(i,)+ 1) / (m™2 + 1)

if err > threshold

P(x, y) = ceil quantize(I(x, Vy)))
else

P(x, y) = floor quantize(I(x, vy)))

floor quantize (p)

= floor(p * (2°n-1)) / (2°n-1)
cell quantize (p)

= ceil(p * (2°n-1)) / (2"n-1) n=1 example

Picking up where we lett off last week...

Luminance Dithering
- Brightness - Quantization
- Contrast - Random dithering
- Gamma - Floyd-Steinberg error diffusion
- Vignette - Ordered dithering
- Histogram equalization
Color Resampling
- Grayscale - Bilinear sampling
- Saturation - Gaussian sampling
- White balance - Translate
- Histogram matching - Scale
Filter - Rotate
- Gaussian - Swirl
- Sharpen
- Edge detect Composite
- Median - Composite

Bilateral filter - Morph

Morph

 Basic concepts
— transform the background image to the foreground image
— alpha = 0: show background
— alpha = 1: show foreground
— alpha is the blending factor / timestamp

* General approach
— specify correspondences (morphLines.html)
— create an intermediate image with interpolated correspondences (alpha)
— warp the background image to the intermediate image
— warp the foreground image to the intermediate image
— blend using alpha

Interpolate Morph Lines

Background Image Foreground Image

current_line[i] = (1 —alpha) * background_lines[i] + alpha * foreground_lines[i]

Warp Image

(X—P)-(Q—P)
lQ—-PII?
(X—=P)-Perpendicular (Q—P)I

[lQ—Pl|
v-Perpendicular(Q'—P")

.v:

X'=P' +u-(Q'—P)+ — TP

* dist = shortest distance from X to PQ
* O0<=u<=1:dist=|v|
e u<O:dist=||X-P]|
cu>1l:dist=||X-Ql|

. lengthPp
e weight =
g (a+dist)

* weusep=0.5a=0.01,b=2

P

Destination Image

P'
Source Image

Warp Image

—
—
—
- -

Destination Image

| 4 X'

N

P'
Source Image

unknown

4

X

Let S be the
projection point of X
onto PQ

u = fraction of SP’s
signed length over
PQ’s absolute length

v = X’s signed
distance to PQ, or to
say, signed length of
SXL

For each pixel X in the destination X
DSUM = (0,0)
weightsum = () “
For each line P; Q; p
calculate u,v based on P; Q; Destination Image

Source Image

calculate X’; based on &,v and P,-'Q,-'
calculate displacement D; = X;’ - X; for this line
dist = shortest distance from X to P 0;
weight = (length? [(a + dist))”
DSUM += D, * weight
weightsum += weight
X'=X +DSUM [weightsum
destinationlmage(X) = sourcelmage(X"’)

Blending

alpha = 0.5 (also the blending factor)

Background Image Foreground Image

GenerateAnimation(Image,, Ly[...], Image,, L,[...])
begin
foreach intermediate frame time t do
for i = 1 to number of line pairs do
L[i] = line t-th of the way from L, [i] to L, [i]
end
Warp, = Warplmage(Image,, L,, L)
Warp, = Warplmage(Image,, L,, L)
foreach pixel p in Finallmage do
Result(p) = (1-t) Warp, + t Warp,

end
end

Blending

alpha = 0.5 (also the blending factor)

Background Image Foreground Image

