
Sampling, Resampling,

and Warping

Felix Heide

Princeton University

COS 426, Spring 2020

Digital Image Processing

• Changing pixel values
▪ Linear: scale, offset, etc.

▪ Nonlinear: gamma,

saturation, etc.

▪ Histogram equalization

• Filtering over

neighborhoods
▪ Blur & sharpen

▪ Detect edges

▪ Median

▪ Bilateral filter

• Moving image locations
▪ Scale

▪ Rotate

▪ Warp

• Combining images
▪ Composite

▪ Morph

• Quantization

• Spatial / intensity

tradeoff
▪ Dithering

Image Warping

• Move pixels of an image

Source image Destination image

Warp

Image Warping

• Issues:
 Specifying where every pixel goes (mapping)

Source image Destination image

Warp

Image Warping

• Issues:
 Specifying where every pixel goes (mapping)

 Computing colors at destination pixels (resampling)

Source image Destination image

Warp

Image Warping

• Issues:
➢Specifying where every pixel goes (mapping)

 Computing colors at destination pixels (resampling)

Source image Destination image

Warp

Two Options

• Forward mapping

• Reverse mapping

Source image Destination image

(u,v)

(ix,iy)
f

f
(iu,iv)

(x,y)

Source image Destination image

Mapping

• Define transformation
 Describe the destination (x,y) for every source (u,v)

(actually vice-versa, if reverse mapping)

v

u

y

x

Parametric Mappings

• Scale by factor:
 x = factor * u

 y = factor * v

Scale

0.8

y

x

v

u

Parametric Mappings

• Rotate by Q degrees:
 x = ucosQ - vsinQ

 y = usinQ + vcosQ

Rotate

30

v

u

y

x

Parametric Mappings

• Shear in X by factor:
 x = u + factor * v

 y = v

• Shear in Y by factor:
 x = u

 y = v + factor * u

Shear X

1.3

Shear Y

1.3

v

u

v

u

y

x

y

x

Other Parametric Mappings

• Any function of u and v:
 x = fx(u,v)

 y = fy(u,v)

Fish-eye

“Swirl”

“Rain”

COS426 Examples

Wei XiangAditya Bhaskara

More COS426 Examples

Michael Oranato

Sid Kapur

Eirik Bakke

Point Correspondence Mappings

• Mappings implied by correspondences:
 A ↔ A’

 B ↔ B’

 C ↔ C’

A
A’

B B’

C’C

Warp

Line Correspondence Mappings

[Beier&Neeley’92] use pairs of lines to specify warp

(more on this in next lecture)

Image Warping

• Issues:
 Specifying where every pixel goes (mapping)

➢Computing colors at destination pixels (resampling)

Source image Destination image

Warp

Digital Image Processing

When implementing operations that move pixels,

must account for the fact that digital images are

sampled versions of continuous ones

Sampling and Reconstruction

Sampling

Continuous function

Discrete samples

Sampling and Reconstruction

Sampling

Reconstruction

Continuous function

Discrete samples

Continuous function

Sampling and Reconstruction

Figure 19.9 FvDFH

Sampling Theory

How many samples are enough?
 How many samples needed to represent a signal?

 What can be reconstructed for a given sampling rate?

What happens when we use too few samples?

Reconstructed function

Original function

Sampling Theory

What happens when we use too few samples?
 Aliasing: high frequencies masquerade as low ones

Specifically, in graphics:
 Spatial aliasing

 Temporal aliasing

Figure 14.17 FvDFH

Spatial Aliasing

Artifacts due to limited spatial resolution

Spatial Aliasing

Artifacts due to limited spatial resolution

(Barely) adequate sampling

Inadequate sampling

Spatial Aliasing

Artifacts due to limited spatial resolution

Spatial Aliasing

Artifacts due to limited spatial resolution

“Jaggies”

Temporal Aliasing

Artifacts due to limited temporal resolution
 Strobing

 Flickering

Temporal Aliasing

Artifacts due to limited temporal resolution
 Strobing

 Flickering

Temporal Aliasing

Artifacts due to limited temporal resolution
 Strobing

 Flickering

Temporal Aliasing

Artifacts due to limited temporal resolution
 Strobing

 Flickering

Sampling Theory

How many samples are enough to avoid aliasing?
 How many samples are required to represent

a given signal without loss of information?

 What signals can be reconstructed without loss

for a given sampling rate?

Sampling Theory

How many samples are enough to avoid aliasing?
 How many samples are required to represent

a given signal without loss of information?

 What signals can be reconstructed without loss

for a given sampling rate?

Inadequate

Sampling Theory

How many samples are enough to avoid aliasing?
 How many samples are required to represent

a given signal without loss of information?

 What signals can be reconstructed without loss

for a given sampling rate?

Adequate?

Sampling Theory

How many samples are enough to avoid aliasing?
 How many samples are required to represent

a given signal without loss of information?

 What signals can be reconstructed without loss

for a given sampling rate?

Inadequate

Sampling Theory

How many samples are enough to avoid aliasing?
 How many samples are required to represent

a given signal without loss of information?

 What signals can be reconstructed without loss

for a given sampling rate?

Adequate

Sampling Theory

How many samples are enough to avoid aliasing?
 How many samples are required to represent

a given signal without loss of information?

 What signals can be reconstructed without loss

for a given sampling rate?

Adequate

Spectral Analysis

• Spatial domain:
 Function: f(x)

 Filtering: convolution

• Frequency domain:

o Function: F(u)

o Filtering: multiplication

Any signal can be written as a

sum of periodic functions.

Fourier Transform

Figure 2.6 Wolberg

Fourier Transform

• Fourier transform:

• Inverse Fourier transform:

Sampling Theorem

• A signal can be reconstructed from its samples

iff it has no content ½ the sampling frequency

– Shannon

• The minimum sampling rate for a bandlimited

function is called the “Nyquist rate”

A signal is bandlimited if its

highest frequency is bounded.

That frequency is called the bandwidth.

Antialiasing

• Option: Sample at higher rate
 Not always possible

 Doesn’t always solve the problem

• Option: Pre-filter to form bandlimited signal
 Use low-pass filter to limit signal to < 1/2 sampling rate

 Trades blurring for aliasing

Image Processing

Consider scaling the image

(or, equivalently, reducing resolution)

Original image 1/4 resolution

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Continuous Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Discrete Samples

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Reconstructed Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Transformed Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Bandlimited Function

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Discrete samples

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

Display

Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

• Reconstruction filter

especially important

when magnifying

• Bandlimiting filter

especially important

when minifying

Ideal Image Processing Filter

• Frequency domain

• Spatial domain

Figure 4.5 Wolberg

0 fmax

Retain these frequencies

Remove these frequencies

Practical Image Processing

Sample

Real world

Reconstruct

Discrete samples (pixels)

Transform

Reconstructed function

Filter

Transformed function

Sample

Bandlimited function

Reconstruct

Discrete samples (pixels)

Display

• Resampling: effectively

(discrete) convolution

to prevent artifacts

• Finite low-pass filters
 Point sampling (bad)

 Box filter

 Triangle filter

 Gaussian filter

R
es

am
p
li

n
g

Point Sampling

• Possible (poor) resampling implementation:

Source image Destination image

f(u,v)
(ix,iy)

float Resample(src, u, v, k, w) {

int iu = round(u);

int iv = round(v);

return src(iu,iv);

}

(iu,iv)

Point Sampling

• Use nearest sample

Input Output

Point Sampling

Point Sampled: Aliasing! Correctly Bandlimited

Resampling with Filter

• Output is weighted average of inputs:

float Resample(src, u, v, k, w)

{

float dst = 0;

float ksum = 0;

int ulo = u - w; etc.

for (int iu = ulo; iu < uhi; iu++) {

for (int iv = vlo; iv < vhi; iv++) {

dst += k(u,v,iu,iv,w) * src(u,v)

ksum += k(u,v,iu,iv,w);

}

}

return dst / ksum;

}

Source image Destination image

f
(u,v)

(ix,iy)

Image Resampling

• Compute weighted sum of pixel neighborhood
 Output is weighted average of input, where

weights are normalized values of filter kernel (k)

(u,v)

k(ix,iy) represented by gray value

w

(ix,iy)

d

Image Resampling

• For isotropic Triangle and Gaussian filters,

k(ix,iy) is function of d and w

(u,v)

Filter Width = 2

Triangle filter

d

w w-w d

k(i,j)=max(1 - d/w, 0)

(ix,iy)

Image Resampling

• For isotropic Triangle and Gaussian filters,

k(ix,iy) is function of d and w
 Filter width chosen based on scale factor (or blur)

Filter Width = 1

Width of filter

affects blurriness

Triangle filter

w-w

w(u,v)

Gaussian Filtering

• Kernel is Gaussian function

(u,v)
Gaussian Function

w-w

d

w3

)2/(22

),(dedG −=

• Drops off quickly, but

never gets to exactly 0

• In practice: compute

out to w ~ 2.5 or 3

Image Resampling

• What if width (w) is smaller than sample spacing?

Filter Width < 1

Triangle filter

w-w
w(u,v)

Image Resampling (with width < 1)

• Reconstruction filter:

bilinear interpolation of four closest pixels
 a = linear interpolation of src(u1,v2) and src(u2,v2)

 b = linear interpolation of src(u1,v1) and src(u2,v1)

 dst(x,y) = linear interpolation of “a” and “b”

(u1,v1)

(u2,v2)

(u2,v1)

(u1,v2)

(u,v)

a

b
Filter Width < 1

Image Resampling (with width < 1)

• Alternative: force width to be at least 1

Filter Width < 1

w = 1

Putting it All Together

• Possible implementation of image scale:

Scale(src, dst, sx, sy) {

w ≈ max(1/sx,1/sy);

for (int ix = 0; ix < xmax; ix++) {

for (int iy = 0; iy < ymax; iy++) {

float u = ix / sx;

float v = iy / sy;

dst(ix,iy) = Resample(src,u,v,k,w);

}

}

}

Source image Destination image

(u,v)
f (ix,iy)

Putting it All Together

• Possible implementation of image rotation:

Rotate(src, dst, Θ) {

w ≈ 1

for (int ix = 0; ix < xmax; ix++) {

for (int iy = 0; iy < ymax; iy++) {

float u = ix*cos(-Θ) – iy*sin(-Θ);

float v = ix*sin(-Θ) + iy*cos(-Θ);

dst(ix,iy) = Resample(src,u,v,k,w);

}

}

}

Rotate

Θ

v

u

y

x

Sampling Method Comparison

Point Triangle Gaussian

• Trade-offs
 Aliasing versus blurring

 Computation speed

Forward vs. Reverse Mapping

• Reverse mapping:
Warp(src, dst) {

for (int ix = 0; ix < xmax; ix++) {

for (int iy = 0; iy < ymax; iy++) {

float w ≈ 1 / scale(ix, iy);

float u = fx
-1(ix,iy);

float v = fy
-1(ix,iy);

dst(ix,iy) = Resample(src,u,v,w);

}

}

}

Source image Destination image

(u,v)

(ix,iy)
f

Forward vs. Reverse Mapping

• Forward mapping:
Warp(src, dst) {

for (int iu = 0; iu < umax; iu++) {

for (int iv = 0; iv < vmax; iv++) {

float x = fx(iu,iv);

float y = fy(iu,iv);

float w ≈ 1 / scale(x, y);

Splat(src(iu,iv),x,y,k,w);

}

}

}

f
(iu,iv)

(x,y)

Source image Destination image

Forward vs. Reverse Mapping

• Forward mapping:
Warp(src, dst) {

for (int iu = 0; iu < umax; iu++) {

for (int iv = 0; iv < vmax; iv++) {

float x = fx(iu,iv);

float y = fy(iu,iv);

float w ≈ 1 / scale(x, y);

Splat(src(iu,iv),x,y,k,w);

}

}

}
(iu,iv) (x,y)

Source image Destination image

Forward vs. Reverse Mapping

• Forward mapping:

Destination image

(x,y)

for (int iu = 0; iu < umax; iu++) {

for (int iv = 0; iv < vmax; iv++) {

float x = fx(iu,iv);

float y = fy(iu,iv);

float w ≈ 1 / scale(x, y);

for (int ix = xlo; ix <= xhi; ix++) {

for (int iy = ylo; iy <= yhi; iy++) {

dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);

}

}

}

}
Problem?

Forward vs. Reverse Mapping

• Forward mapping:
for (int iu = 0; iu < umax; iu++) {

for (int iv = 0; iv < vmax; iv++) {

float x = fx(iu,iv);

float y = fy(iu,iv);

float w ≈ 1 / scale(x, y);

for (int ix = xlo; ix <= xhi; ix++) {

for (int iy = ylo; iy <= yhi; iy++) {

dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);

ksum(ix,iy) += k(x,y,ix,iy,w);

}

}

}

}

for (ix = 0; ix < xmax; ix++)

for (iy = 0; iy < ymax; iy++)

dst(ix,iy) /= ksum(ix,iy)
Destination image

(x,y)

Forward vs. Reverse Mapping

• Tradeoffs?

Forward vs. Reverse Mapping

• Tradeoffs:
 Forward mapping:

- Requires separate buffer to store weights

 Reverse mapping:

- Requires inverse of mapping function,

random access to original image

Summary

• Mapping
 Forward vs. reverse

 Parametric vs. correspondences

• Sampling, reconstruction, resampling
 Frequency analysis of signal content

 Filter to avoid undersampling: point, triangle, Gaussian

 Reduce visual artifacts due to aliasing

» Blurring is better than aliasing

Next Time…

• Changing pixel values
▪ Linear: scale, offset, etc.

▪ Nonlinear: gamma,

saturation, etc.

▪ Histogram equalization

• Filtering over

neighborhoods
▪ Blur & sharpen

▪ Detect edges

▪ Median

▪ Bilateral filter

• Moving image locations
▪ Scale

▪ Rotate

▪ Warp

• Combining images
▪ Composite

▪ Morph

• Quantization

• Spatial / intensity

tradeoff
▪ Dithering

