Sampling, Resampling,
and Warping

Felix Heide
Princeton University
COS 426, Spring 2020




-

Digital Image Processing

~

TR

« Changing pixel values
» Linear: scale, offset, etc.

= Nonlinear: gamma,
saturation, etc.

= Histogram equalization

 Filtering over
neighborhoods
= Blur & sharpen
= Detect edges
= Median
= Bilateral filter

* Moving image locations
= Scale
= Rotate
= Warp

« Combining images
= Composite
= Morph

« Quantization

« Spatial / intensity
tradeoff
= Dithering




-

Image Warping

* Move pixels of an image

‘r.

sSource image

_Destination Ima

£

ge




-

Image Warping

* |ssues:
o Specifying where every pixel goes (mapping)

£

Source image Destination image




-

Image Warping

* |ssues:
o Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)

OOOO'OON

00000
: N

\\\\
ooooooooooo

¢
......

Source image Destination image

J




-
Image Warping

* |ssues:
» Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)

OOOOOON

[ °
]

< /
00000
1 =

\\\\
00000000000

4
......

Source image Destination image




-

Two Options

« Forward mapping

S:ou:rce: imége:
* Reverse mapping

Source image

Destination image




-

Mapping

e W

~N

 Define transformation

o Describe the destination (X,y) for every source (u,v)
(actually vice-versa, if reverse mapping)




-

Parametric Mappings

« Scale by factor:
o X = factor * u
o y = factor * v

Scale
0.8




-

Parametric Mappings

* Rotate by ® degrees:
o X = UC0SO - vSIN®
o Yy = USIN® + vCcosO




-

Parametric Mappings

« Shear in X by factor:
o X =U + factor * v

oy:V Vv

« ShearinY by factor:
o X=1U

o y=v+factor*u Vv

Shear X

Shear Y

y

)
2




-

Other Parametric Mappings

« Any function of u and v:
o X =f(u,v) —
o y =1, (uv)

Fisye




-

C0OS426 Examples

Aditya Bhaskara

Wei Xiang




-

More COS426 Examples

Sid Kapur

Michael Oranato

Eirik Bakke




-

Point Correspondence Mappings

e W

~N

« Mappings implied by correspondences:
o A— A
o B~ B
o CoC

Warp




-
Line Correspondence Mappings

~N

%f‘r‘
Lt

[Beier&Neeley’92] use pairs of lines to specify warp

(more on this in next lecture)




-
Image Warping

* |ssues:
o Specifying where every pixel goes (mapping)
» Computing colors at destination pixels (resampling)

OOOOOON

[ °
]

< /
00000
1 =

\\\\
00000000000

4
......

Source image Destination image




-

Digital Image Processing

When implementing operations that move pixels,
must account for the fact that digital images are
sampled versions of continuous ones




-

Sampling and Reconstruction

(& FEneET)

e W

A

Continuous function

N

(o]

o

>

Sampling

Discrete samples

[111]

>




-

Sampling and Reconstruction

(& FEneET)

e W

A

Continuous function

N\

>

Discrete samples
2 o

IR

>

Continuous function

2%

—

Sampling

Reconstruction




-

Sampling and Reconstruction

Original W
l Sampling

|

Reconstruction

- %

signal

gure 19.9 FvDFH




-
Sampling Theory

How many samples are enough?
o How many samples needed to represent a signal?
o What can be reconstructed for a given sampling rate?

What happens when we use too few samples?

4 Original function

/ Reconstructed function

/N

JM//




-

Sampling Theory

What happens when we use too few samples?
o Aliasing: high frequencies masquerade as low ones

Y

Specifically, in graphics:
o Spatial aliasing
o Temporal aliasing

Figure 14.17 FvDFH

J




-

Spatial Aliasing

Artifacts due to limited spatial resolution

a
n
»




-

Spatial Aliasing

Artifacts due to limited spatial resolution

(Barely) adequate sampling

Inadequate sampling




-

Spatial Aliasing

Artifacts due to limited spatial resolution




-

Spatial Aliasing

Artifacts due to limited spatial reso

ution

“Jaggies”




-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering




-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering




-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering




-

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering




-

Sampling Theory

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

il i .




-
Sampling Theory

il i .

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Inadequate




-
Sampling Theory

il i .

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Adequate?




-
Sampling Theory

il i .

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Inadequate




-
Sampling Theory

il i .

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Adequate




-
Sampling Theory

il i .

How many samples are enough to avoid aliasing?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Adequate




-
Spectral Analysis

il i .

« Spatial domain: * Frequency domain:
o Function: f(X) o Function: F(u)

o Filtering: convolution o Filtering: multiplication
J @) |F )|

Any signal can be written as a
sum of periodic functions.




-

Fourier Transform

J &)

a

m

VI
7/

Vil

Sn T 1.5t 2rn

Figure 2.6 Wolberg




-

Fourier Transform

* Fourier transform:
F(u) = f f(x)e"™dx

* Inverse Fourier transform:

f(X) _ }F(u)eHZnuxdu




Sampling Theorem

* A signal can be reconstructed from its samples
Iff It has no content > %2 the sampling frequency
— Shannon

* The minimum sampling rate for a bandlimited
function is called the “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.
That frequency is called the bandwidth.



-

Antialiasing

« Option: Sample at higher rate
o Not always possible
o Doesn’t always solve the problem

* Option: Pre-filter to form bandlimited signal
o Use low-pass filter to limit signal to < 1/2 sampling rate
o Trades blurring for aliasing




-

Image Processing

Consider scaling the image

(or, equivalently, reducing resolution)

O OO0 0O0OODOOOOO ODOOOOO OO

Original image

1/4 resolution




-
Image Processing

l Real world

Sample
| Discrete samples (pixels)

Reconstruct
Reconstructed function

Transform
Transformed function

A

Filter
Bandlimited function

Sample
| Discrete samples (pixels)

Reconstruct
l Display y




-

Image Processing

l Real world

>

Continuous Function




-

Image Processing

Sample
l Discrete samples (pixels)

9 o

1111]

Discrete Samples

>




-

Image Processing

Reconstruct
1 Reconstructed function

A

_/\/\/

Reconstructed Function

>




-

Image Processing

Transform
l Transformed function

A

A%V

Transformed Function

>




-

Image Processing

Filter
l Bandlimited function

A

— \o/

>

Bandlimited Function




-

Image Processing

Sample
l Discrete samples (pixels)

o

N

Discrete samples




-

Image Processing

Reconstruct
1[33phy

Display




-

Image Processing

l Real world

Sample
l Discrete samples (pixels)

Reconstruct
l Reconstructed function

Transform
l Transformed function

Filter
l Bandlimited function

Sample
| Discrete samples (pixels)

Reconstruct
l Display

Reconstruction filter
especially important
when magnifying

Bandlimiting filter
especially important
when minifying




4 )

ldeal Image Processing Filter

* Frequency domain Retain these frequencies

/ Remove these frequencies

SINTTX

Sinc(x) =
X

-0 8 -6 -4 -2 0 2 4 6 8 10

Figure 4.5 Wolberg




~

Resampling

-

Practical Image Processing
| Real world |

Sample Resampling: effectively

| Discrete samples (pixels)

Reconstruct

l Reconstructed function

Transform

l Transformed function

Filter
l Bandlimited function

Sample

| Discrete samples (pixels)

Reconstruct

l Display

(discrete) convolution
to prevent artifacts

Finite low-pass filters
o Point sampling (bad)
o Box filter
o Triangle filter
o Gaussian filter




-

Point Sampling

« Possible (poor) resampling implementation:

float Resample(src, u, v, k, w) {
int iu = round(u) ;
int iv = round(v) ;
return src(iu,iv);

}

............................................................................................................................................................................................................................

Source image Destination image




-
Point Sampling

« Use nearest sample

i ,

t t
Input Output




-

Point Sampling

Point Sampled: Aliasing!

Correctly Bandlimited




-

Resampling with Filter

« Output Is weighted average of inputs:

float Resample(src, u, v, k, w)
{
float dst = 0;
float ksum = 0;
int ulo = u - w; elC.
for (int iu = ulo; iu < uhi; iu++) {
for (int iv = vlo; iv < vhi; iv++) {
dst += k(u,v,iu,iv,w) * src(u,v)
ksum += k(u,v,iu,iv,w);

}

}

return dst / ksum;

Source image Destination image

J




-

Image Resampling

« Compute weighted sum of pixel neighborhood

o Qutput is weighted average of input, where
weights are normalized values of filter kernel (k)

K(ix,ly) represented by gray value




-

Image Resampling

* For isotropic Triangle and Gaussian filters,

k(ix,ly) Is function of d and w

Filter Width = 2

-W d W
Triangle filter

K(i,))=max(1 - d/w, 0)




-

Image Resampling

* For isotropic Triangle and Gaussian filters,

k(ix,ly) Is function of d and w

o Filter width chosen based on scale factor (or blur)

Filter Width =1

AN

-W W
Triangle filter

Width of filter
affects blurriness

J




-

Gaussian Filtering

« Kernel 1s Gaussian function

G(d,o)=e ™)

-W W
Gaussian Function

 Drops off quickly, but
never gets to exactly O

* In practice: compute
out tow ~ 2.56 or 3¢




-
Image Resampling

~N

(& FEneET)

TR

« What if width (w) is smaller than sample spacing?

A

W W

(U,Vg W Triangle filter

Filter Width < 1 )




4 )

Image Resampling (with width < 1)

* Reconstruction filter:
bilinear interpolation of four closest pixels
o a = linear interpolation of src(u,,v,) and src(u,,v,)
o b = linear interpolation of src(u,,v,) and src(u,,v,)
o dst(x,y) = linear interpolation of “a” and “b”

u,,v d u,,V
Vo) ()
(u,v i
( )O O O
u,,v b
Filter Width < 1 bl (u2’vl)




-

Image Resampling (with width < 1)

~N

* Alternative: force width to be at least 1

Filter Width < 1




-

Putting it All Together

* Possible implementation of image scale:

Scale(src, dst, sx, sy) {
w = max(l/sx,1/sy);
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {
float u = ix / sx;
float v = iy / sy;
dst (ix,iy) = Resample(src,u,v,k,w);
}
}
}

Source image Destination image

J




-

Putting it All Together

* Possible implementation of image rotation:

Rotate (src, dst, O) {
w=x1
for (int ix

= 0; ix < xmax; ix++) {

for (int iy = 0; iy < ymax; iy++) {
float u = ix*cos(-0) - iy*sin(-0O);
float v = ix*sin(-O@) + iy*cos (-0);
dst (ix,iy) = Resample(src,u,v,k,w);

o |eooe




Sampling Method Comparison

* Trade-offs
o Aliasing versus blurring
o Computation speed

Gaussian



-

Forward vs. Reverse Mapping

for

}
}
}

* Reverse mapping:
Warp (src, dst) {

(int ix = 0; ix < xmax; ix++) {

float w =
float u = £ 1 (ix,iy);
float v = £,71(ix,iy);

for (int iy = 0; iy < ymax; iy++) {
1 / scale(ix, iy);

dst (ix,iy) = Resample(src,u,v,w);

P S SN SO NP SN

Source image

Destination image




-

Forward vs. Reverse Mapping

* Forward mapping:

Warp (src, dst) {
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
float x = £ _(iu,iv);
float y = £, (iu,iv);
float w 1 / scale(x, y);
Splat(src(iu,iv) ,x,y,k,w);

R S S L S PE SRS SN

Source image Destination image




-

Forward vs. Reverse Mapping

* Forward mapping:

Warp (src, dst) {
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
float x £ .(iu,iv);
float y f,(iu,iv);
float w 1 / scale(x, y);
Splat(src(iu,iv) ,x,y,k,w);

Source image Destination image




-

Forward vs. Reverse Mapping

* Forward mapping:
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {

float x = £ _(iu,iv);
float y = £,(iu,iv);
float w = 1 / scale(x, y);

for (int ix = xlo; ix <= xhi; ix++) {
for (int iy = ylo; iy <= yhi; iy++) {
dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
}
}
}

} Problem?

Destination i'ma'ge Y,




-

Forward vs. Reverse Mapping

}

for (ix

* Forward mapping:
for (int iu
for (int iv

float x = £ _(iu,iv);
float y = £,(iu,iv);
float w # 1 / scale(x, y);

for (int ix

}
}
}

0; ix < xmax; ix++)
< ymax; iy++)

ksum(ix, iy)

for (iy = 0, iy
dst (ix,iy) /=

0; iu < umax; iu++) {
= 0; iv < vmax; iv++) {

xlo; ix <= xhi,; ix++) {
for (int iy = ylo; iy <= yhi; iy++) {
dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);

ksum(ix,iy) += k(x,y,ix, iy, w);

Destination i'ma'ge Y,




-

Forward vs. Reverse Mapping

 Tradeoffs?




-

Forward vs. Reverse Mapping

« Tradeoffs:
o Forward mapping:
- Requires separate buffer to store weights

o Reverse mapping:

- Requires inverse of mapping function,
random access to original image




-

Summary

« Mapping
o Forward vs. reverse
o Parametric vs. correspondences

« Sampling, reconstruction, resampling
o Frequency analysis of signal content
o Filter to avoid undersampling: point, triangle, Gaussian
o Reduce visual artifacts due to aliasing
» Blurring is better than aliasing




4 )
Next Time...
« Changing pixel values + Moving image locations
= Linear: scale, offset, etc. = Scale
= Nonlinear: gamma, = Rotate
saturation, etc. = Warp

= Histogram equalization

Combining images
 Filtering over = Composite
neighborhoods = Morph
= Blur & sharpen
= Detect edges

= Median Spatial / intensity
= Bilateral filter tradeoff

Quantization

= Dithering




