The 3D Rasterization Pipeline

COS 426, Spring 2020
Felix Heide
Princeton University

3D Rendering Scenarios

e W

o Offline

o One image generated with as much quality as possible
for a particular set of rendering parameters

» Take as much time as is needed (minutes)
» Targets photorealistism, movies, etc.

> Interactive

o Images generated dynamically, in fraction of a second
(e.g., 1/30) as user controls rendering parameters (e.g.,
camera)

» Achieve highest quality possible in given time
» Visualization, games, etc.

3D Polygon Rendering

« Many applications use rendering of 3D polygons
with direct illumination Valve

-
3D Polygon Rendering

« Many applications use rendering of 3D polygons
with direct illumination

Assignment 2

-
Ray Casting Revisited

 For each sample ...
o Construct ray from eye position through view plane
o Find first surface intersected by ray through pixel
o Compute color of sample based on illumination

.o o |

(o]
O @ @ O
(]
—
(o]
(o |
o

o
o
o
o
o
o
\.

-
3D Polygon Rasterization

* We can render polygons faster if we take
advantage of spatial coherence

o o (o] (o] (o] o

o o O @ @ O

o o (o] (] (] o
~

o o (o] (o] (o] o

o o o o (o | o

-

3D Polygon Rasterization

e How?

-

3D Polygon Rasterization

e How?

-

~N
Rasterization Pipeline (or directilumination)

®

3D Primitives

Modeling
Transformation

Lighting

Tk

S This is a pipelined
Transformation sequence of operations
to draw 3D primitives

Into a 2D image

1

Projection
Transformation

Clipping

1

Viewport
Transformation

1

Scan
Conversion

Image j

!

-

Rasterization Pipeline (or directilumination)

3D Primitives
|
Modelin
Transformation

glBegin (GL_ POLYGON) ;

il

Lighting glVertex3£(0.0, 0.0, 0.0);

glVertex3£(1.0, 0.0, 0.0);

Tﬁ%%wgmm glvVertex3£(0.0, 1.0, 0.0);
glEnd() ;

Projection
Transformation

Clipping

1

OpenGL executes steps
Viewport of 3D rendering pipeline
for each polygon

Transformation

1

Scan
Conversion

Image j

!

-

Rasterization Pipeline (for direct illumination)

®

3D Primitives

Tramgeengon | Transform into 3D world coordinate system

Lighting

T

Viewing
Transformation

1

Projection
Transformation

Clipping

1

Viewport
Transformation

1

Scan
Conversion

!

Image

-

Rasterization Pipeline (for direct illumination) £

i ‘
Emmni

3D Primitives

Tramoeeing.on | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

1k

Viewing
Transformation

1

Projection
Transformation

Clipping

1

Viewport
Transformation

1

Scan
Conversion

!

Image

-

Rasterization Pi pel Ine (for direct illumination)

3D Primitives

Tramoeeing.on | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tk

V'. 0 .]
Transformation Transform into 3D camera coordinate system

1

Projection
Transformation

Clipping

1

Viewport
Transformation

1

Scan

Conversion View Space

!

Image

4)

Rasterization Pipeline (for direct illumination)

®

3D Primitives

Tramoeeing.on | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tk

V'. 0])
Transformation Transform into 3D camera coordinate system

1

Projecti : :
Transformation Transform into 2D camera coordinate system

(-1,1,1)

Clipping

1

Viewport
Transformation

1

Scan
Conversion

!

Image (,-1,-1) j

-
Rasterization Pipeline (for direct illumination)

ERAIGET)
@

3D Primitives

Tramoeeing.on | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tk

V'. 0])
Transformation Transform into 3D camera coordinate system

1

Projecti : :
Transformation Transform into 2D camera coordinate system

clipped

Clipping Clip primitives outside camera’s view vinge

thrown away

N\
a8

1

Viewport
Transformation

1

Scan
Conversion

near clipping
plane =

Image far clipping image plane j

!

plane

-

Rasterization Pi pel Ine (for direct illumination)

~
R

O
Ceerp

~N

3D Primitives

Modeling
Transformation

Lighting

Tk

Viewing
Transformation

1

Projection
Transformation

Clipping

1

Viewport
Transformation

1

Scan
Conversion

!

Image

Transform into 3D world coordinate system

llluminate according to lighting and reflectance

Transform into 3D camera coordinate system

Transform into 2D camera coordinate system

Clip primitives outside camera’s view ... in clip space

unit-cube

L

4V

/

L7
I.-»

> X

Clipping

"

new vertex ~—/

new vertices

/e

Y/

-

Rasterization Pipeline (for direct illumination)

®

3D Primitives

Modeling
Transformation

Lighting

Tk

Viewing
Transformation

1

Projection
Transformation

Clipping

1

Viewport
Transformation

1

Scan
Conversion

!

Image

Transform into 3D world coordinate system

llluminate according to lighting and reflectance

unit-cube T

g i Screen mapping

| (xl 9)"])

Transform into image coordinate system

-
Rasterization Pipeline (for direct illumination)

®

3D Primitives

Tramoeeing.on | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

Tk

V'. 0])
Transformation Transform into 3D camera coordinate system

1

Projecti : :
Transformation Transform into 2D camera coordinate system

Clipping

1

Viewport
Transformation

1

Comanion Draw pixels (includes texturing, hidden surface, ...)

Image)

!

4)

~
R

Rasterization Pipeline (for direct illumination) £

3D Primitives

Tramgeengon | Transform into 3D world coordinate system

Lighting llluminate according to lighting and reflectance

oL

V'. 0]]
Transformation Transform into 3D camera coordinate system

1

Projecti : :
Transformation Transform into 2D camera coordinate system

Clipping Clip primitives outside camera’s view

1

Viewport : . .
Tranlsfr)\:‘mgtion Transform into Image coordinate System

1

Comamion Draw pixels (includes texturing, hidden surface, ...)

Image j

!

-

Transformations

P(X,Y,2)

l 3D Object Coordinates

Modeling
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection_
Transtormation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(x.y’)

Transformations map points from
one coordinate system to another

3D Camera
Coordinates

3D Object
Coordlnates

Coordinates

-

Viewing Transformations

P(X,Y,2)

l 3D Object Coordinates

Modeling
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ectior]
Transtormation

2D Screen Coordinates

Viewport

Transformation

2D Image Coordinates

p'(x.y’)

Viewing Transformations

-

Review: Viewing Transformation

« Mapping from world to camera coordinates
o Eye position maps to origin
o Right vector maps to X axis

o Up vector maps to Y axis back
o - Up
Back vector maps to Z axis right

Z .

View

plane

Camera
y i

X
World

-
Review: Camera Coordinates

« Canonical coordinate system
o Convention is right-handed (looking down -z axis)
o Convenient for projection, clipping, etc.

Camera up vector
A

y 1 mapstoY axis
Camera right vector

Camera back vector maps to X axis

maps to Z axis
T 0 >
(pointing out of page) 7z %

J

Finding the Viewing Transformatio

« Trick: map from camera coordinates to world
o Qrigin maps to eye position
o Z axis maps to Back vector
o Y axis maps to Up vector
o X axis maps to Right vector

U

X X

S N < X

oo W
<

S N < X

Uy
Uz
U

W)
M

W W W W]

* This matrix is Tt so we invertittoget T ... easy!

Finding the viewing transformation
 We have the camera (in world coordinates)

 We want T taking objects from world to camera

o€ =T pV

 Trick: find T- taking objects in camera to world

pW :T—lpC

-

Viewing Transformations

P(X,Y,2)

l 3D Object Coordinates

Modeling
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection
Transtormation

2D Screen Coordinates

Viewport

Transformation

2D Image Coordinates

p'(x.y’)

Viewing Transformations

-

Projection

* General definition:
o Transform points in n-space to m-space (m<n)

* In computer graphics:
o Map 3D camera coordinates to 2D screen coordinates

-

Taxonomy of Projections

Planar geometric
projections

T —

Parallel

T P

Orthographic

Obliqgue One-point

Top Cabinet
(plan)

Front Axonometric

elevation

Side
elevation

Cavalier

Other

Isometric
Other

Two-point

Perspective

Three-point

FVFHP Figure 6.10
J

-

Taxonomy of Projections

Planar geometric
projections

Parallel

Orthographic Obliqgue One-point
Top Cabinet
(plan)
Front Axonometric Cavalier
elevation
Side
elevation Other
Isometric
Other

Two-point

Perspective

Three-point

FVFHP Figure 6.10
J

-

Parallel Projection

« Center of projection is at infinity

o Direction of projection (DOP) same for all points

Angel Figure 5.4

J

-

Orthographic Projections

* DOP perpendicular to view plane

Top Side

Angel Figure 5.5
J

-

Parallel Projection

Matrix

PERSPECTIVE
PROJECTION

AXONOMETRIC
PROJECTION
(ISOMETRIC)

OBLIQUE
PROJECTION
(CABINET)

-

Parallel Projection Matrix

« General parallel projection transformation:

yv/
7
(xv.2) _-4 1 /
.E: Xv
~~0 {b/
ix v
View — — —
Plane
XS

oo O — O

-

Parallel Projection View Volume '«

Parallelpiped
View Volume

H&B Figure 12.30
/

-

Taxonomy of Projections

Planar geometric
projections

Parallel
Orthographic Obliqgue One-point
Top Cabinet
(plan)
Front Axonometric Cavalier
elevation
Side
elevation Other
Isometric
Other

Perspective

Two-point

Three-point

FVFHP Figure 6.10
J

4)

Return to Perspective Projection

« Map points onto “view plane” along “projectors”
emanating from “center of projection” (COP)

Angel Figure 5.9
J

-

Perspective Projection

« Compute 2D coordinates from 3D coordinates
with similar triangles

(X..2) 7 g

‘\‘D\
-Z
) (0,0,0)

What are the coordinates J‘/Vie""

: : Pl

of the point resulting from ane
projection of (x,y,z) onto Yy
the view plane?

-
Perspective Projection

« Compute 2D coordinates from 3D coordinates
with similar triangles

(x,,2) 2

’\41‘

-Z

| DA S
(xD/z, yD/z) View

Plane

-

Perspective Projection Matrix

* 4x4 matrix representation?

X, =X.D/z,

ys = Y.D/z,

z.=D

w, =1
X | 2 2 2 7%
Ys |_|? 2 ? 2|V
z, | |? ? 2 ?|z
w | 7?7?71

-

Perspective Projection Matrix

* 4x4 matrix representation?
X, =X.D/z, X, =X Tw
y.=y.D/z, y. =Yy /w
Z

. =D z,=7'1w

w, =1
X | [2 2 2 2%
Ys | |7 7 7 7Y,
z |72 ? 2 2|z
w | 2?7?71

X'= X,
f=yc
2'=1,
w=z /D

-

Perspective Projection Matrix

* 4x4 matrix representation?

X, =X.D/z, X, =X'/WwW X'= X,
y,=y.Dlz, y, =y Iw y=y,
z.=D z,=7'1w 2'=1,
w, =1 w=2z1/D

X | 10 0 0]X%

Yo 10O 1 0 0OfYV.

z.|7|0 0 1 0]z

w,| [0 01D 0) 1

-

Perspective Projection Matrix

 |In practice, want to compute a value related to
depth to include in z-buffer

X, =X.D/z, X, =X'/wW X'= X,
Ys=Y.Dlz. y.=ylw y=y
z.=—D/z, z,=7'Iw 2'=—
w, =1 w=2 /D
'x,] [1 0 0 O07x
Y| [0 1 0 0|y,
z,| |00 0 -1 Z.
w,| [0 0 1/D 01

-

Perspective Projection View Volume

Frustum
View Volume

View
Plane

Plaria e e i rojection
» Reference

Front Paint

H&B Figure 12.30
J

-

Perspective vs. Parallel

« Perspective projection
+ Size varies inversely with distance - looks realistic
— Distance and angles are not (in general) preserved
— Parallel lines do not (in general) remain parallel

« Parallel projection s
+ Good for exact measurements ™~
+ Parallel lines remain parallel
— Angles are not (in general) preserved
— Less realistic looking

-

Transformations
p(x,y,z)
l 3D Object Coordinates Transformations map points from
one coordinate system to another
Modeling
Transformation

3D World Coordinates

3D Camera
Coordinates

Viewing
Transformation

3D Camera Coordinates 3D Object

Coordlnates

Prog'ection_
Transtormation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(x.y’)

Coordinates

-

Viewport Transformation

« Transform 2D geometric primitives from
screen coordinate system (normalized device
coordinates) to image coordinate system (pixels)

_Screen Image

\\‘"“-(; : .';r/_——’—"f =7 I

Viewport

Window

-
Viewport Transformation

« Window-to-viewport mapping
wy?2 memort
@) O
(WX, wy) (VX,Vvy)

1 1
Wywxl: » WX2 val: » VX2

Screen Coordinates Image Coordinates
v = vxl + (wx - wxl) * (vx2 - vxl) / (wx2 - wxl);
vy = vyl + (wy - wyl) * (vy2 - vyl) / (wy2 - wyl);

J

-

Summary of Transformations

P(X,Y,2)

l 3D Object Coordinates

Modeling
Transformation

3D World Coordinates

Viewing
Transformation

3D Camera Coordinates

Prog'ection_
Transtormation

2D Screen Coordinates

Viewport
Transformation

2D Image Coordinates

p'(x.y’)

Modeling transformation

Viewing transformations

Viewport transformation

-

3D Rendering Pipeline (for direct illumination)

~

3D Primitives
| 3D Modeling Coordinates

Modeling
Transformation
3D World Coordinates
Lighting
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport
Transformation
2D Image Coordinates
Scan
Conversion
2D Image Coordinates

Image

4)

Clipping

TR

« Avoid drawing parts of primitives outside window
o Window defines part of scene being viewed
o Must draw geometric primitives only inside window

Viewing
Window

-
Polygon Clipping

~N

(& FEneET)

TR

* Find the part of a polygon inside the clip window?

VAN

Before Clipping

-
Polygon Clipping

~N

(& FEneET)

TR

* Find the part of a polygon inside the clip window?

/\

After Clipping

-

Sutherland Hodgeman Clipping

* Clip to each window boundary one at a time
(for convex polygons)

ERYAN

-

Sutherland Hodgeman Clipping

* Clip to each window boundary one at a time

ERYAN

-

Sutherland Hodgeman Clipping

=

* Clip to each window boundary one at a time

VAN

-

Sutherland Hodgeman Clipping

* Clip to each window boundary one at a time

A

-

Sutherland Hodgeman Clipping

* Clip to each window boundary one at a time

/\

-

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P,

Window
Boundary Inside

Qutside

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

P,

Window
Boundary Inside

Qutside

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary Inside

Qutside

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
nsert new points when cross window boundary,
Remove points outside window boundary

Window
Boundary Inside

Qutside

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ Inside

Qutside

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ Inside

Qutside

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ Inside

Qutside

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary

-

~

Clipping to a Boundary

TR

« Do inside test for each point in sequence,
when cross window boundary,
Remove points outside window boundary

Window
Boundary P’ p» Inside

Qutside

-

Sutherland Hodgeman Failure

« Concave Polygons

-

3D Rendering Pipeline (for direct illumination)

N 5

S0 WU

a

3D Primitives
3D Modeling Coordinates

Modelm
Transformation

3D World Coordinates

Lighting
3D World Coordinates

Viewing
Transformation
3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping

2D Screen Coordinates

Viewport

Transformation

2D Image Coordinates

can
Conversion

2D Image Coordinates

Image

Viewing
Window

-
3D Rendering Pipeline (for direct illumination)

3D Pr|m|t|ves
3D Modeling Coordinates

Modelm
Transformation

3D World Coordinates

Lighting
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates
Clipping

2D Screen Coordinates

Viewport
Transformation

Standard (aliased)
2D Image Coordinates Scan Conversion

can
Conversion

2D Image Coordinates

Image

-
3D Rendering Pipeline (for direct illumination)

3D Pr|m|t|ves
3D Modeling Coordinates

Modelm
Transformation

3D World Coordinates

Lighting
3D World Coordinates
Viewing
Transformation
3D Camera Coordinates

Projection
Transformation

2D Screen Coordinates

Clipping
2D Screen Coordinates
Vi t UNT
Tranls?‘c\gvrlrgm%tion Antialiased
2D Image Coordinates Scan COnverSion

can
Conversion

2D Image Coordinates

Image

-
Scan Conversion

* Render an image of a geometric primitive
by setting pixel colors

void SetPixel (int x, int y, Color rgba) I

« Example: Filling the inside of a triangle

Py

-

Triangle Scan Conversion

* Properties of a good algorithm
o Symmetric
o Straight edges
o No cracks between adjacent primitives
o (Antialiased edges)
o FAST!

-
Simple Algorithm

« Color all pixels inside triangle

void ScanTriangle (Triangle T, Color rgba) {
for each pixel P in bbox (T) {
if (Inside (T, P))
SetPixel (P.x, P.y, rgba);

Py

4)

Triangle Sweep-Line Algorithm

« Take advantage of spatial coherence
o Compute which pixels are inside using horizontal spans
o Process horizontal spans in scan-line order

« Take advantage of edge linearity
o Use edge slopes to update coordinates incrementally

dx
dy

-

Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for each edge pair {
initialize x;, Xg;
compute dx /dy; and dx./dyg;
for each scanline at y
for (int x = x;; x <= x;; x++)
SetPixel (x, y, rgba);
x, += dx, /dy;;

Xp += dxp/dyg;

-

Triangle Sweep-Line Algorithm

void ScanTriangle (Triangle T, Color rgba) {
for each edge pair {
initialize x;, Xg;
compute dx /dy; and dx./dyg;
for each scanline at y
for (int x = x;; x <= x;; x+t++)
SetPlxel(x y, rgba) ;

X, +

X +

Minimize computation
In Inner loops

GPU Architecture

NVIDIA architecture based

on Fermi logical pipeline ,
Example config:
4 GPCs each

o o 4 SMs
When tessellation is not used, Primitive Distributor

two principle phases are sufficient. Srossbar
Work is redistributed across
entire GPU after each phase.

Work Distribution Crossbar sends
triangle to raster engine(s) based
on screen rectangle

Crossbar

Multiple GPCs with their SMs can
be shading the pixels of one triangle.
GF 100 Memory Hierarchy A 4

Uniform cache not shown, can cause
warp-serialized access on divergent loads

~ latencies LI

tens of
cycles

GPU

L1&12Caches

several

hundred ; hd k4
ovces [

SM organizes threads in
groups of 32 called warp.
The threads within are
processed in lock-step.

Mmo|jeieqg

PolyMorph Engine

(oot] [emonitr] [Ty,
[t s (s o]

Instructions, time

Each warp gets subset of register file.
If a shader needs many registers ->
less warps resident, less latency hiding

“”“”"m 0 muv'!'“”“ LU UL L1 Jv“!"""m LAl

‘Warp 9 instruction 11
o pancions2 [W

[sz o s
e ——

A given warp is processed in-order and
it may take several executions until an
instruction is advanced (depends on hw-
generation and type of instruction).

The scheduler switches between warps
to avoid waiting for instructions that
take longer (memory fetches...).

12 3 30 31 32 33 3

o F ¥

Divergent behavior between threads within warp
(if/else block, loops with varying iterations..) can

increase computation time for all because of lock-
step processing and may risk under utilizing cores.

GPU Architecture

PCI Express 3.0 Host Interface
PolyMorph Engine

g [T | I :|

Disputch Uit Dinpotch Uit Dinpatich Unit Do Uit Dlagateh Und BlupatchUnd Dispustch Usll Diauatch skt
+ + . + + :3 + "

Register File (65,536 x 32-bit)
4 4 4 4 4 4 2 4 4 84 4 4 4 4 B
Com Cors Cors Coms Com Com (03T SFU o Coss Core Cors T

Rogister File (16,384 x 32-bit)

Register File (32,768 x 32-bit)

5 4 £ S E 2
LOvST

LDvST

Memery Controlier
FreTTSY S—

Cors Cors Coms Core LOST SFU Coms Com Cors Cors

-

Core Core Core Core 03T SFU Core Cors Core Core

Core Cors Core Cove LDET Core Core Core Core

LDvsT
LivsT Cors Cors Com Cors Cors Cors Cors Cors
LDvST

LOvST

Core
com
Cone
Coes
Core
Core
Core Cors Cors Core Cors Core Core Core =
Core

1111

Core Cors Core Core Cors Core Cors Core

LDssT

Core Cors Come Core Core Come Core Core

LDsST

LDvsT Cars Cors Com Core Comm Cor Cors Core
LDvST

LOvST

Cors Cors Cors Cors Cors Cors Cors Core

Memary Controller
S —

o B o B B B B B o Prpesen . P

LOsST
LDvST

P BN BN BN En Rogistor File (16,384 x 12-bit) Register File (16,384 x 324it)

LOvST
LOvST

Core Cors Com Com Core Core Core Core

Core Cors Com Core Cors Cors Cors Core

Core Core Core
Core Core Core
Core Core Core
Core Core Core
Core Core Core
Core Core Core
Core Core Core
Core Core Core

Cors Cors Coms Corm Cors Coss Cors Core

IEEEEEREEEEEREEE

Care Core Core Core Core Core

GM204 Architecture

1111111
1111111
1111111
1111111
R

Kepler and Maxwell work in principle similar to Fermi.

The most obvious changes are typically in the SM design

image copy-pasted and annotated or number of ROPs. The overall design can be scaled from

by @pixeljetstream high-end desktop to mobile by varying the number of modules.
http://www.hardwarebg.com/bak/files/nvidia_gf100_whitepaper.pdf

http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL. pdf on-demand.gputechconf.com/gte/2013/presentations/53466-Programming-Guidelines-GPU-Architecture. pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF www.highperformancegraphics.org/previous/www_2010/media/Hot3D/HPG2010_Hot3D_NVIDIA.pdf

GPU Architecture

NVIDIA architecture based

on Fermi logical pipeline

Pushbuffer .
Example config:
4 GPCs each
Prmiive Distouor [

Crossbar

When tessellation is not used,

two principle phases are sufficient.
Work is redistributed across

entire GPU after each phase.

Work Distribution Crossbar sends
triangle to raster engine(s) based
on screen rectangle

Crossbar
Multiple GPCs with their SMs can

be shading the pixels of one triangle.
GF 100 Memory Hierarchy

Uniform cache not shown, can cause
warp-serialized access on divergent loads

~ latencies LG

tens of
cycles

GPU
Hull, Domain &) -

several

hundred :
oces [T

mol|jereq

The color-coded renderings illustrate the work
distribution across the hardware (not frame-coherent).

Colored by fragment gl_SMID

g

Colored by fragment gl_WarpID

-

