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I. Image processing

II. Modeling
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What is 3D Rendering?

• Topics in computer graphics
 Imaging = representing 2D images

 Modeling = representing 3D objects

 Rendering = constructing 2D images from 3D models

 Animation = simulating changes over time



What is 3D Rendering?

• Construct image from 3D model

Rendering



Interactive 3D Rendering

 Images generated in fraction of a second (e.g., 1/30)

as user controls rendering parameters (e.g., camera)

» Achieve highest quality possible in given time

» Useful for visualization, games, etc.



Offline 3D Rendering

 One image generated with as much quality as possible

for a particular set of rendering parameters

» Take as much time as is needed (minutes, hours…)

» Photorealism: movies, cut scenes, etc.

Avatar



3D Rendering Issues

• What issues must be addressed 

by a 3D rendering system?
Pixar

Luxo Jr. - Pixar.mp4
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Pinhole Camera Parameters

• Position
 Eye position (px, py, pz)

• Orientation
 View direction (dx, dy, dz) or “look at” point

 Up direction (ux, uy, uz)

• Coverage
 Field of view (fovx, fovy)

• Resolution
 x and y

right

back

Up direction

Eye 
Position

“Look at”
Point



3D Rendering Issues

• What issues must be addressed 

by a 3D rendering system?
 Camera

 Visible surface determination

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.



Visible Surface Determination

• The color of each pixel on the view plane

depends on the radiance (“amount of light”) 

emanating from visible surfaces

How find visible surfaces?



ACM Comput. Surv. 6, 1 (March 1974)



3D Rendering Issues

• What issues must be addressed 

by a 3D rendering system?
 Camera

 Visible surface determination

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.



Lighting Simulation

N

L2

V

Viewer L1



3D Rendering Issues

• What issues must be addressed 

by a 3D rendering system?
 Camera

 Visible surface determinaton

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.



Shadows

• Occlusions from light sources
 Soft shadows with area light source

Moller



3D Rendering Issues

• What issues must be addressed 

by a 3D rendering system?
 Camera

 Visible surface determinaton

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.



Indirect Illumination

Jensen

Henrik Wann Jensen



3D Rendering Issues

• What issues must be addressed 

by a 3D rendering system?
 Camera

 Visible surface determinaton

 Shadows

 Reflectance

 Indirect illumination

 Sampling

 etc.



Sampling

• Scene can be sampled with any ray
 Rendering is a problem in sampling and reconstruction



Rendering Method I:

Ray Casting



Ray Casting

• The color of each pixel on the view plane

depends on the radiance emanating along rays 

from visible surfaces in scene

Camera

Light
Surfaces



Scene

• Scene has:
 Scene graph with surface primitives

 Set of lights

 Camera

Camera

Light
Surfaces

struct R3Scene {

R3Node *root;

vector<R3Light *> lights;

R3Camera camera;

R3Box bbox;

R3Rgb background;

R3Rgb ambient;

};



Scene Graph

• Scene graph is hierarchy of nodes, each with:
 Bounding box (in node’s coordinate system)

 Transformation (4x4 matrix)

 Shape (mesh, sphere, … or null)

 Material (more on this later)

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]



• Simple scene graph implementation:

Scene Graph

struct R3Node {

struct R3Node *parent;

vector<struct R3Node *> children;

R3Shape *shape;

R3Matrix transformation;

R3Material *material;

R3Box bbox;

};

struct R3Shape {

R3ShapeType type;

R3Box *box;

R3Sphere *sphere;

R3Cylinder *cylinder;

R3Cone *cone;

R3Mesh *mesh;

};



Ray Casting

• For each sample (pixel) …
 Construct ray from eye position through view plane

 Compute radiance leaving first point of intersection 

between ray and scene

Camera

Light
Surfaces



Ray Casting

• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene,  &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}



Ray Casting

• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene,  &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}



Constructing Ray Through a Pixel

right

back

Up direction

P0

View
Plane

P

V

Ray: P = P0 + tV



Constructing Ray Through a Pixel

• 2D Example

d

Q towardsP0

right

right = towards × up

Q = frustum half-angle

d = distance to view plane

P1 = P0 + d*towards – d*tan(Q)*right

P2 = P0 + d*towards + d*tan(Q)*right

P1

P2

2
*
d
*
tan

(Q
)

P

P  = P1 + ((i + 0.5) / width) * (P2 - P1)

V = (P - P0) / ||P - P0 ||

(d cancels out…)

V

Ray: P = P0 + tV



Ray Casting

• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene,  &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}



Ray Casting

• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

{

R3Intersection intersection = ComputeIntersection(scene, ray);

return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {

bool hit;

R3Node *node;

R3Point position;

R3Vector normal;

double t;

};

Camera

Light
Surfaces



Ray Casting

• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

{

R3Intersection intersection = ComputeIntersection(scene, ray);

return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {

bool hit;

R3Node *node;

R3Point position;

R3Vector normal;

double t;

};

Camera

Light
Surfaces



Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees



Ray Intersection

• Ray Intersection
➢Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees



Ray-Sphere Intersection

P0

V

O

P

r

P’



Ray-Sphere Intersection

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0 

P0

V

O

P

r

P’



Ray-Sphere Intersection I

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0 

Substituting for P, we get:

|P0 + tV - O|2 - r 2 = 0 

Solve quadratic equation: 

at2 + bt + c = 0

where:

a = V2

b = 2 V • (P0 - O) 

c = |P0 - C|2 - r 2 = 0 

P0

V

O

P

r

P’

Algebraic Method

P = P0 + tV



Ray-Sphere Intersection II

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0 

L = O - P0

tca = L • V

if (tca < 0) return INF

d2 = L • L - tca
2

if (d2 > r2) return INF

thc = sqrt(r2 - d2)

t = tca - thc and tca + thc

P0

V

O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV



Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection 

for lighting calculations (next lecture)



Ray Intersection

• Ray Intersection
 Sphere

➢Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees



Ray-Triangle Intersection

P

P0

V



Ray-Triangle Intersection

• First, intersect ray with plane

• Then, check if intersection point is inside triangle

P

P0

V



Ray-Plane Intersection

Ray: P = P0 + tV

Plane: P • N + d = 0

Substituting for P, we get:

(P0 + tV) • N + d = 0

Solution: 

t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV



Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle

V1 = T1 – P0

V2 = T2 – P0

N1 = V2 x V1

Normalize N1

Plane p(P0, N1)

if (SignedDistance(p, P) < 0)

return FALSE

end

return TRUE



Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle

V1 = T1 – P0

V2 = T2 – P0

N1 = V2 x V1

Normalize N1

Plane p(P0, N1)

if (SignedDistance(p, P-P0) < 0)

return FALSE

end

return TRUE



Ray-Triangle Intersection II

• Check if point is inside triangle algebraically

P
T1

T2

T3

V2
V1

For each side of triangle

V1 = T1 - P

V2 = T2 - P

N1 = V2 x V1

if (V • N1 < 0)

return FALSE

end

return TRUE

N1

P0

V



Ray-Triangle Intersection II

• Check if point is inside triangle algebraically

P

T1

T2

T3

V2

V1

For each side of triangle

V1 = T1 - P

V2 = T2 - P

N1 = V2 x V1

if (V • N1 < 0)

return FALSE

end

return TRUE

N1P0

V



Ray-Triangle Intersection III

• Check if point is inside triangle parametrically

P

P0

“Barycentric coordinates” a, b, :

P = aT3 + bT2 + T1

where a + b +  = 1

a = Area(T1T2P) / Area(T1T2T3)

b = Area(T1PT3) / Area(T1T2T3)

 = Area(PT2T3) / Area(T1T2T3)

= 1 – a – b

V

a

b

T1

T2

T3

1-a-b



Ray-Triangle Intersection III

• Check if point is inside triangle parametrically

P

P0

Compute “barycentric coordinates” a, b:

a = Area(T1T2P) / Area(T1T2T3)

b = Area(T1PT3) / Area(T1T2T3)

Area(T1T2T3) = ½ || (T2-T1) x (T3-T1) ||
check if backfacing:

((T2-T1) × (T3-T1)) ∙ N < 0

Check if point inside triangle.

0  a  1 and 0  b  1

and a + b  1

V

a

b

T1

T2

T3

1-a-b



Ray Intersection

• Ray Intersection
 Sphere

 Triangle

➢Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees



Ray-Box Intersection

• Check front-facing sides for intersection with ray 

and return closest intersection (least t)

P0

P

(x2,y2)

V

(x1,y1)



Ray-Box Intersection

• Check front-facing sides for intersection with ray 

and return closest intersection (least t)
 Find intersection with plane

 Check if point is inside rectangle

P0

P

V

(x1,y1)

(x2,y2)

(0,-1)



Ray-Box Intersection

• Check front-facing sides for intersection with ray 

and return closest intersection (least t)
 Find intersection with plane

 Check if point is inside rectangle

P0

V

P(x1,y1)

(x2,y2)

(0,-1)



Other Ray-Primitive Intersections

• Cone, cylinder:
 Similar to sphere

 Must also check end caps

• Convex polygon
 Same as triangle (check point-in-polygon algebraically)

 Or, decompose into triangles, and check all of them

• Mesh
 Compute intersection for all polygons

 Return closest intersection (least t)

http://www.cs.princeton.edu/courses/archive/spring10/cos426/assn3/output/cylinder2.jpg


Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

➢Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees



Ray-Scene Intersection

• Intuitive method
 Compute intersection for all nodes of scene graph

 Return closest intersection (least t)

Camera

Light
Surfaces



Ray-Scene Intersection

• Scene graph is a DAG
 Traverse with recursion

Camera

Light
Surfaces

Sphere

BoxCylinder



Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Check for intersection with shape

shape_intersection = Intersect node’s shape with ray

if (shape_intersection is a hit) closest_intersection = shape_intersection

else closest_intersection = infinitely far miss

// Check for intersection with children nodes

for each child node

// Check for intersection with child contents

child_intersection = ComputeIntersection(scene, child, ray);

if (child_intersection is a hit and is closer than closest_intersection) 

closest_intersection = child_intersection;

// Return closest intersection in tree rooted at this node

return closest_intersection

}



Ray-Scene Intersection

• Scene graph can have transformations

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]



Ray-Scene Intersection

• Scene graph node can have transformations
 Transform ray (not primitives) by inverse of M

 Intersect in coordinate system of node

 Transform intersection by M Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]



Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

}



Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

}

Note: directions (including

ray direction and surface normal N)

must be transformed by

inverse transpose of M
N



Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees



Ray Intersection Acceleration

• What if there are a lot of nodes?

http://www.3dm3.com



Bounding Volumes

• Check for intersection with 

simple bounding volume first



Bounding Volumes

• Check for intersection with bounding volume first



Bounding Volumes

• Check for intersection with bounding volume first
 If ray doesn’t intersect bounding volume, 

then it can’t intersect its contents



Bounding Volumes

• Check for intersection with bounding volume first
 If already found a primitive intersection closer than 

intersection with bounding box, then skip checking 

contents of bounding box



Bounding Volume Hierarchies

• Scene graph has hierarchy of bounding volumes
 Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C



Bounding Volume Hierarchies

• Checking bounding volumes hierarchically (within 

each node) can greatly accelerate ray intersection

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3



Bounding Volume Hierarchies

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with  children nodes

for each child node 

// Check for intersection with child bounding box first

bbox_intersection = Intersect child’s bounding box with ray

if (bbox_intersection is a miss or further than closest_intersection) continue

// Check for intersection with child contents

child_intersection = ComputeIntersection(scene, child, ray);

if (child_intersection is a hit and is closer than closest_intersection) 

closest_intersection = child_intersection;

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

}



Sort Bounding Volume Intersections

• Sort child bounding volume intersections and 

then visit child nodes in front-to-back order

• Why?



Cache Node Intersections

• For each node, store closest child intersection

from previous ray and check that node first 

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3



Bounding Volumes

• Common primitives are:
 Axis-aligned bounding box

 Sphere

• What are the tradeoffs?
 Sphere has simple/efficient intersection code

 Bounding box is generally “tighter”



Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

➢Uniform grids

 Octrees

 BSP trees



Uniform Grid

• Construct uniform grid over scene
 Index primitives according to overlaps with grid cells

A

B

C

D

E

F



Uniform Grid

• Trace rays through grid cells 
 Fast

 Incremental

A

B

C

D

E

F
Only check primitives

in intersected grid cells



Uniform Grid

• Potential problem:
 How choose suitable grid resolution? 

A

B

C

D

E

F

Too little benefit

if grid is too coarse

Too much cost

if grid is too fine



Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

➢Octrees

 BSP trees



Octree

• Construct adaptive grid over scene
 Recursively subdivide box-shaped cells into 8 octants

 Index primitives by overlaps with cells

A

B

C

D

E

F
Generally fewer cells



Octree

• Trace rays through neighbor cells 
 Fewer cells

A

B

C

D

E

F
Trade-off fewer cells for

more expensive traversal



Octree

• Or, check rays versus octree boxes hierarchically
 Computing octree boxes

while descending tree

 Sort eight boxes 

front-to-back at each level

 Check primitives/children

inside box

A

B

C

D

E

F



Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

➢BSP trees



Binary Space Partition (BSP) Tree

• Recursively partition space by planes
 BSP tree nodes store partition plane and 

set of polygons lying on that partition plane

 Every part of every polygon lies on a partition plane

a

b

c

d

e

f

1

2

3

7

4

5

6

a

b
c

de

f

g

Object

a

b

cde

f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree



Binary Space Partition (BSP) Tree

• Traverse nodes of BSP tree front-to-back
 Visit halfspace (child node) containing P0

 Intersect polygons lying on partition plane

 Visit halfspace (other child node) not containing P0

a

b

c

d

e

f

1

2

3

7

4

5

6

a

b
c

de

f

g

Object

a

b

cde

f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

P0



Binary Space Partition (BSP) Tree

R3Intersection

ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max_t)

{

// Compute parametric value of ray-plane intersection

t = ray parameter for intersection with split plane of node

if  (t < min_t) || (t < max_t)) return no_intersection;

// Compute side of partition plane that contains ray start point

int side = (SignedDistance(node->plane, ray.Start()) < 0) ? 0 : 1;

intersection1 = ComputeBSPIntersection(ray, node->child[side],  min_t, t);

if (intersection1 is a hit) return intersection1;

intersection2 = ComputePolygonsIntersection(ray, node->polygons);

if (intersection2 is a hit) return intersection2;

intersection3 = ComputeBSPIntersection(ray, node->child[1-side], t, max_t);

return intersection 3;

}



Other Accelerations

• Screen space coherence – check > 1 ray at once
 Beam tracing

 Pencil tracing

 Cone tracing

• Memory coherence
 Large scenes

• Parallelism
 Ray casting is “embarrassingly parallelizable”

 Assignment 3 (raytracer) runs program per-pixel

• etc.



Acceleration

• Intersection acceleration techniques are important
 Bounding volume hierarchies

 Spatial partitions

• General concepts
 Sort objects spatially

 Make trivial rejections quick

 Perform checks hierarchically

 Utilize coherence when possible

Expected time is sub-linear in number of primitives



Summary

• Writing a simple ray casting renderer is easy
 Generate rays

 Intersection tests

 Lighting calculations

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) { 

for (int j = 0; j < height; j++) { 

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene,  &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}



Heckbert’s Business Card Ray Tracer

• typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;

double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,

.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,

.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x

*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;

return B;}vec vunit(A)vec A;{return vcomb(1./sqrt( vdot(A,A)),A,black);}struct sphere*intersect

(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),

u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&

u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color; 

struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=

s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen )));if(d<0)N=vcomb(-1.,N,black),

eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&

intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z

*=U.z;e=1-eta* eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-

sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb

(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-

yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf

("%.0f %.0f %.0f\n",U);}/*minray!*/ 



Next Time is Illumination!

Without Illumination With Illumination


