
3D Rendering Intro

& Ray Casting

COS 426, Spring 2020

Felix Heide

Princeton University

Ed Catmull and Pat Hanrahan win ACM Turing award

Syllabus

I. Image processing

II. Modeling

III. Rendering

IV. Animation

Image Processing
(Rusty Coleman, CS426, Fall99)

Modeling
(Dennis Zorin, CalTech) Animation

(Angel, Plate 1)

Rendering
(Michael Bostock, CS426, Fall99)

What is 3D Rendering?

• Topics in computer graphics
 Imaging = representing 2D images

 Modeling = representing 3D objects

 Rendering = constructing 2D images from 3D models

 Animation = simulating changes over time

What is 3D Rendering?

• Construct image from 3D model

Rendering

Interactive 3D Rendering

 Images generated in fraction of a second (e.g., 1/30)

as user controls rendering parameters (e.g., camera)

» Achieve highest quality possible in given time

» Useful for visualization, games, etc.

Offline 3D Rendering

 One image generated with as much quality as possible

for a particular set of rendering parameters

» Take as much time as is needed (minutes, hours…)

» Photorealism: movies, cut scenes, etc.

Avatar

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
Pixar

Luxo Jr. - Pixar.mp4

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
 Camera

 Visible surface determinaton

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
 Camera

 Visible surface determination

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.

Pinhole Camera Parameters

• Position
 Eye position (px, py, pz)

• Orientation
 View direction (dx, dy, dz) or “look at” point

 Up direction (ux, uy, uz)

• Coverage
 Field of view (fovx, fovy)

• Resolution
 x and y

right

back

Up direction

Eye
Position

“Look at”
Point

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
 Camera

 Visible surface determination

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.

Visible Surface Determination

• The color of each pixel on the view plane

depends on the radiance (“amount of light”)

emanating from visible surfaces

How find visible surfaces?

ACM Comput. Surv. 6, 1 (March 1974)

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
 Camera

 Visible surface determination

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.

Lighting Simulation

N

L2

V

Viewer L1

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
 Camera

 Visible surface determinaton

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.

Shadows

• Occlusions from light sources
 Soft shadows with area light source

Moller

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
 Camera

 Visible surface determinaton

 Lights

 Reflectance

 Shadows

 Indirect illumination

 Sampling

 etc.

Indirect Illumination

Jensen

Henrik Wann Jensen

3D Rendering Issues

• What issues must be addressed

by a 3D rendering system?
 Camera

 Visible surface determinaton

 Shadows

 Reflectance

 Indirect illumination

 Sampling

 etc.

Sampling

• Scene can be sampled with any ray
 Rendering is a problem in sampling and reconstruction

Rendering Method I:

Ray Casting

Ray Casting

• The color of each pixel on the view plane

depends on the radiance emanating along rays

from visible surfaces in scene

Camera

Light
Surfaces

Scene

• Scene has:
 Scene graph with surface primitives

 Set of lights

 Camera

Camera

Light
Surfaces

struct R3Scene {

R3Node *root;

vector<R3Light *> lights;

R3Camera camera;

R3Box bbox;

R3Rgb background;

R3Rgb ambient;

};

Scene Graph

• Scene graph is hierarchy of nodes, each with:
 Bounding box (in node’s coordinate system)

 Transformation (4x4 matrix)

 Shape (mesh, sphere, … or null)

 Material (more on this later)

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

• Simple scene graph implementation:

Scene Graph

struct R3Node {

struct R3Node *parent;

vector<struct R3Node *> children;

R3Shape *shape;

R3Matrix transformation;

R3Material *material;

R3Box bbox;

};

struct R3Shape {

R3ShapeType type;

R3Box *box;

R3Sphere *sphere;

R3Cylinder *cylinder;

R3Cone *cone;

R3Mesh *mesh;

};

Ray Casting

• For each sample (pixel) …
 Construct ray from eye position through view plane

 Compute radiance leaving first point of intersection

between ray and scene

Camera

Light
Surfaces

Ray Casting

• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene, &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}

Ray Casting

• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene, &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}

Constructing Ray Through a Pixel

right

back

Up direction

P0

View
Plane

P

V

Ray: P = P0 + tV

Constructing Ray Through a Pixel

• 2D Example

d

Q towardsP0

right

right = towards × up

Q = frustum half-angle

d = distance to view plane

P1 = P0 + d*towards – d*tan(Q)*right

P2 = P0 + d*towards + d*tan(Q)*right

P1

P2

2
*
d
*
tan

(Q
)

P

P = P1 + ((i + 0.5) / width) * (P2 - P1)

V = (P - P0) / ||P - P0 ||

(d cancels out…)

V

Ray: P = P0 + tV

Ray Casting

• Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene, &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}

Ray Casting

• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

{

R3Intersection intersection = ComputeIntersection(scene, ray);

return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {

bool hit;

R3Node *node;

R3Point position;

R3Vector normal;

double t;

};

Camera

Light
Surfaces

Ray Casting

• Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)

{

R3Intersection intersection = ComputeIntersection(scene, ray);

return ComputeRadiance(scene, ray, intersection);

}

struct R3Intersection {

bool hit;

R3Node *node;

R3Point position;

R3Vector normal;

double t;

};

Camera

Light
Surfaces

Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees

Ray Intersection

• Ray Intersection
➢Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees

Ray-Sphere Intersection

P0

V

O

P

r

P’

Ray-Sphere Intersection

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

P0

V

O

P

r

P’

Ray-Sphere Intersection I

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

Substituting for P, we get:

|P0 + tV - O|2 - r 2 = 0

Solve quadratic equation:

at2 + bt + c = 0

where:

a = V2

b = 2 V • (P0 - O)

c = |P0 - C|2 - r 2 = 0

P0

V

O

P

r

P’

Algebraic Method

P = P0 + tV

Ray-Sphere Intersection II

Ray: P = P0 + tV

Sphere: |P - O|2 - r 2 = 0

L = O - P0

tca = L • V

if (tca < 0) return INF

d2 = L • L - tca
2

if (d2 > r2) return INF

thc = sqrt(r2 - d2)

t = tca - thc and tca + thc

P0

V

O

P

r

P’

rdthc

tca

L

Geometric Method

P = P0 + tV

Ray-Sphere Intersection

P0

V

O

P
r

N = (P - O) / ||P - O||

N

• Need normal vector at intersection

for lighting calculations (next lecture)

Ray Intersection

• Ray Intersection
 Sphere

➢Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees

Ray-Triangle Intersection

P

P0

V

Ray-Triangle Intersection

• First, intersect ray with plane

• Then, check if intersection point is inside triangle

P

P0

V

Ray-Plane Intersection

Ray: P = P0 + tV

Plane: P • N + d = 0

Substituting for P, we get:

(P0 + tV) • N + d = 0

Solution:

t = -(P0 • N + d) / (V • N)

N

P

P0

V

Algebraic Method

P = P0 + tV

Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle

V1 = T1 – P0

V2 = T2 – P0

N1 = V2 x V1

Normalize N1

Plane p(P0, N1)

if (SignedDistance(p, P) < 0)

return FALSE

end

return TRUE

Ray-Triangle Intersection I

• Check if point is inside triangle algebraically

P

P0

N1

T1

T2

T3

V2

V1

For each side of triangle

V1 = T1 – P0

V2 = T2 – P0

N1 = V2 x V1

Normalize N1

Plane p(P0, N1)

if (SignedDistance(p, P-P0) < 0)

return FALSE

end

return TRUE

Ray-Triangle Intersection II

• Check if point is inside triangle algebraically

P
T1

T2

T3

V2
V1

For each side of triangle

V1 = T1 - P

V2 = T2 - P

N1 = V2 x V1

if (V • N1 < 0)

return FALSE

end

return TRUE

N1

P0

V

Ray-Triangle Intersection II

• Check if point is inside triangle algebraically

P

T1

T2

T3

V2

V1

For each side of triangle

V1 = T1 - P

V2 = T2 - P

N1 = V2 x V1

if (V • N1 < 0)

return FALSE

end

return TRUE

N1P0

V

Ray-Triangle Intersection III

• Check if point is inside triangle parametrically

P

P0

“Barycentric coordinates” a, b, :

P = aT3 + bT2 + T1

where a + b + = 1

a = Area(T1T2P) / Area(T1T2T3)

b = Area(T1PT3) / Area(T1T2T3)

 = Area(PT2T3) / Area(T1T2T3)

= 1 – a – b

V

a

b

T1

T2

T3

1-a-b

Ray-Triangle Intersection III

• Check if point is inside triangle parametrically

P

P0

Compute “barycentric coordinates” a, b:

a = Area(T1T2P) / Area(T1T2T3)

b = Area(T1PT3) / Area(T1T2T3)

Area(T1T2T3) = ½ || (T2-T1) x (T3-T1) ||
check if backfacing:

((T2-T1) × (T3-T1)) ∙ N < 0

Check if point inside triangle.

0 a 1 and 0 b 1

and a + b 1

V

a

b

T1

T2

T3

1-a-b

Ray Intersection

• Ray Intersection
 Sphere

 Triangle

➢Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees

Ray-Box Intersection

• Check front-facing sides for intersection with ray

and return closest intersection (least t)

P0

P

(x2,y2)

V

(x1,y1)

Ray-Box Intersection

• Check front-facing sides for intersection with ray

and return closest intersection (least t)
 Find intersection with plane

 Check if point is inside rectangle

P0

P

V

(x1,y1)

(x2,y2)

(0,-1)

Ray-Box Intersection

• Check front-facing sides for intersection with ray

and return closest intersection (least t)
 Find intersection with plane

 Check if point is inside rectangle

P0

V

P(x1,y1)

(x2,y2)

(0,-1)

Other Ray-Primitive Intersections

• Cone, cylinder:
 Similar to sphere

 Must also check end caps

• Convex polygon
 Same as triangle (check point-in-polygon algebraically)

 Or, decompose into triangles, and check all of them

• Mesh
 Compute intersection for all polygons

 Return closest intersection (least t)

http://www.cs.princeton.edu/courses/archive/spring10/cos426/assn3/output/cylinder2.jpg

Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

➢Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees

Ray-Scene Intersection

• Intuitive method
 Compute intersection for all nodes of scene graph

 Return closest intersection (least t)

Camera

Light
Surfaces

Ray-Scene Intersection

• Scene graph is a DAG
 Traverse with recursion

Camera

Light
Surfaces

Sphere

BoxCylinder

Ray-Scene Intersection I

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Check for intersection with shape

shape_intersection = Intersect node’s shape with ray

if (shape_intersection is a hit) closest_intersection = shape_intersection

else closest_intersection = infinitely far miss

// Check for intersection with children nodes

for each child node

// Check for intersection with child contents

child_intersection = ComputeIntersection(scene, child, ray);

if (child_intersection is a hit and is closer than closest_intersection)

closest_intersection = child_intersection;

// Return closest intersection in tree rooted at this node

return closest_intersection

}

Ray-Scene Intersection

• Scene graph can have transformations

Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

Ray-Scene Intersection

• Scene graph node can have transformations
 Transform ray (not primitives) by inverse of M

 Intersect in coordinate system of node

 Transform intersection by M Base
[M1]

Upper Arm
[M2]

Lower Arm
[M3]

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

}

Ray-Scene Intersection II

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

}

Note: directions (including

ray direction and surface normal N)

must be transformed by

inverse transpose of M
N

Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

 BSP trees

Ray Intersection Acceleration

• What if there are a lot of nodes?

http://www.3dm3.com

Bounding Volumes

• Check for intersection with

simple bounding volume first

Bounding Volumes

• Check for intersection with bounding volume first

Bounding Volumes

• Check for intersection with bounding volume first
 If ray doesn’t intersect bounding volume,

then it can’t intersect its contents

Bounding Volumes

• Check for intersection with bounding volume first
 If already found a primitive intersection closer than

intersection with bounding box, then skip checking

contents of bounding box

Bounding Volume Hierarchies

• Scene graph has hierarchy of bounding volumes
 Bounding volume of interior node contains all children

1

2 3

A

B

C

D

E

F

3

2

1

A B E FD

C

Bounding Volume Hierarchies

• Checking bounding volumes hierarchically (within

each node) can greatly accelerate ray intersection

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Bounding Volume Hierarchies

R3Intersection ComputeIntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

for each child node

// Check for intersection with child bounding box first

bbox_intersection = Intersect child’s bounding box with ray

if (bbox_intersection is a miss or further than closest_intersection) continue

// Check for intersection with child contents

child_intersection = ComputeIntersection(scene, child, ray);

if (child_intersection is a hit and is closer than closest_intersection)

closest_intersection = child_intersection;

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

}

Sort Bounding Volume Intersections

• Sort child bounding volume intersections and

then visit child nodes in front-to-back order

• Why?

Cache Node Intersections

• For each node, store closest child intersection

from previous ray and check that node first

1

2 3C

A B E FD A

B

C

D

E

F

3

2

1
1

2

A B

C 3

Bounding Volumes

• Common primitives are:
 Axis-aligned bounding box

 Sphere

• What are the tradeoffs?
 Sphere has simple/efficient intersection code

 Bounding box is generally “tighter”

Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

➢Uniform grids

 Octrees

 BSP trees

Uniform Grid

• Construct uniform grid over scene
 Index primitives according to overlaps with grid cells

A

B

C

D

E

F

Uniform Grid

• Trace rays through grid cells
 Fast

 Incremental

A

B

C

D

E

F
Only check primitives

in intersected grid cells

Uniform Grid

• Potential problem:
 How choose suitable grid resolution?

A

B

C

D

E

F

Too little benefit

if grid is too coarse

Too much cost

if grid is too fine

Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

➢Octrees

 BSP trees

Octree

• Construct adaptive grid over scene
 Recursively subdivide box-shaped cells into 8 octants

 Index primitives by overlaps with cells

A

B

C

D

E

F
Generally fewer cells

Octree

• Trace rays through neighbor cells
 Fewer cells

A

B

C

D

E

F
Trade-off fewer cells for

more expensive traversal

Octree

• Or, check rays versus octree boxes hierarchically
 Computing octree boxes

while descending tree

 Sort eight boxes

front-to-back at each level

 Check primitives/children

inside box

A

B

C

D

E

F

Ray Intersection

• Ray Intersection
 Sphere

 Triangle

 Box

 Scene

• Ray Intersection Acceleration
 Bounding volumes

 Uniform grids

 Octrees

➢BSP trees

Binary Space Partition (BSP) Tree

• Recursively partition space by planes
 BSP tree nodes store partition plane and

set of polygons lying on that partition plane

 Every part of every polygon lies on a partition plane

a

b

c

d

e

f

1

2

3

7

4

5

6

a

b
c

de

f

g

Object

a

b

cde

f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

Binary Space Partition (BSP) Tree

• Traverse nodes of BSP tree front-to-back
 Visit halfspace (child node) containing P0

 Intersect polygons lying on partition plane

 Visit halfspace (other child node) not containing P0

a

b

c

d

e

f

1

2

3

7

4

5

6

a

b
c

de

f

g

Object

a

b

cde

f

1

2

3

4

5

6

7

Binary Spatial Partition

Binary Tree

P0

Binary Space Partition (BSP) Tree

R3Intersection

ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max_t)

{

// Compute parametric value of ray-plane intersection

t = ray parameter for intersection with split plane of node

if (t < min_t) || (t < max_t)) return no_intersection;

// Compute side of partition plane that contains ray start point

int side = (SignedDistance(node->plane, ray.Start()) < 0) ? 0 : 1;

intersection1 = ComputeBSPIntersection(ray, node->child[side], min_t, t);

if (intersection1 is a hit) return intersection1;

intersection2 = ComputePolygonsIntersection(ray, node->polygons);

if (intersection2 is a hit) return intersection2;

intersection3 = ComputeBSPIntersection(ray, node->child[1-side], t, max_t);

return intersection 3;

}

Other Accelerations

• Screen space coherence – check > 1 ray at once
 Beam tracing

 Pencil tracing

 Cone tracing

• Memory coherence
 Large scenes

• Parallelism
 Ray casting is “embarrassingly parallelizable”

 Assignment 3 (raytracer) runs program per-pixel

• etc.

Acceleration

• Intersection acceleration techniques are important
 Bounding volume hierarchies

 Spatial partitions

• General concepts
 Sort objects spatially

 Make trivial rejections quick

 Perform checks hierarchically

 Utilize coherence when possible

Expected time is sub-linear in number of primitives

Summary

• Writing a simple ray casting renderer is easy
 Generate rays

 Intersection tests

 Lighting calculations

R2Image *RayCast(R3Scene *scene, int width, int height)

{

R2Image *image = new R2Image(width, height);

for (int i = 0; i < width; i++) {

for (int j = 0; j < height; j++) {

R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);

R3Rgb radiance = ComputeRadiance(scene, &ray);

image->SetPixel(i, j, radiance);

}

}

return image;

}

Heckbert’s Business Card Ray Tracer

• typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;

double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,

.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8, 1.,.3,.7,0.,0.,1.2,3.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,

.8,1., 1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x

*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;

return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A,black);}struct sphere*intersect

(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),

u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>0?sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&

u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;

struct sphere*s,*l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=

s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),

eta=1/eta,d= -d;l=sph+5;while(l-->sph)if((e=l ->kl*vdot(N,U=vunit(vcomb(-1.,P,l->cen))))>0&&

intersect(P,U)==l)color=vcomb(e ,l->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z

=U.z;e=1-eta eta*(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-

sqrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb

(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-

yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf

("%.0f %.0f %.0f\n",U);}/*minray!*/

Next Time is Illumination!

Without Illumination With Illumination

